Instructors: | Mike Landy & Eero Simoncelli |
Teaching Assistants: |
Marissa Fassold (mhe229 AT nyu DOT edu), Jordan Lei (hl3976 AT nyu DOT edu), Srinidhi Venkatesan Kalavai (Srinidhi.VenkatesanKalavai@nyulangone.org AT nyulangone DOT org) |
Time: |
Lectures: Tuesday/Thursday, 10:00-12:00 Labs: selected Fridays, 9:30-12:00 |
Location: |
Lectures: Meyer 636 Labs: Meyer 636 |
TA Office hours: | Tuesdays 12-1 (Meyer 631) and occasional Thursdays 12-1 (location TBD) |
Topics include: Linear algebra, least-squares and total-least-squares regression, eigen-analysis and PCA, linear shift-invariant systems, convolution, Fourier transforms, Nyquist sampling, basics of probability and statistics, hypothesis testing, model comparison, bootstrapping, estimation and decision theory, signal detection theory, linear discriminants, classification, clustering, simple models of neural spike generation, white noise (reverse-correlation) analysis.
Prerequisites: Algebra, trigonometry, and calculus. Some experience with matrix algebra and/or computer programming is helpful, but not required. The real prerequisites are an aptitude for logical and geometric reasoning, and a willingness to work hard!
Announcements: We use Piazza for online class announcements, questions, and discussion: piazza.com/nyu/fall2022/psychga2211neurlga2201/ . Rather than emailing the instructors or TAs, we encourage you to post your questions/comments there, where they can be discussed and/or answered by any of us or your fellow classmates.
Schedule: (Notes: labs are in green, content will appear incrementally, for a preview see last year's course page)
Date | Topic | Handouts | Homework |
---|---|---|---|
Thu, Sep 1 |
Introduction to the course
Linear algebra I: vectors, operations, vector spaces Zoom recording, whiteboard (pdf) |
Course description (pdf)
Slides: Course intro (pdf - updated 20sep) Slides: Linear algebra (pdf - updated 13sep) |
|
Fri, Sep 2 |
Matlab I: Environment, basic data types and operations, plotting |
Matlab installation (txt)
Matlab primer (pdf) Lab1 (m), Lab1_solutions (m) Lab1 (Python code or direct access to the notebook here), Lab1_solutions (p) |
HW submission instructions (pdf) |
Tue, Sep 6 |
Linear algebra II: inner products, projection, coordinate systems
Zoom recording, whiteboard (pdf) |
Notes: Linear Algebra (pdf) | Homework 0 (pdf - "due" 9/9) |
Thu, Sep 8 |
Linear algbra III: linear systems, orthogonal/diagonal matrices, geometry
Zoom recording, whiteboard (pdf) |
||
Fri, Sep 9 | Matlab II: Scripts, conditionals, iteration, functions |
Lab 2 files (zip) Lab 2 solutions (zip) |
|
Tue, Sep 13 |
Linear algebra IV: orthogonal matrices, singular value decomposition
Zoom recording, whiteboard (pdf) |
[note: linear Algebra slides (linked above) have been updated to match lectures] |
Homework 1 (pdf - due 9/23) Data for Question 6 (.mat) |
Thu, Sep 15 |
Linear algebra V: Null/Range spaces, Trichromacy example
Zoom recording, whiteboard (pdf) |
Slides: trichromacy (pdf) | |
Fri, Sep 16 | [no lab] | ||
Tue, Sep 20 |
Regression I: regression, multiple regression, partitioning variance
Zoom recording, whiteboard (pdf) |
Slides: Least squares optimization (pdf) | |
Thu, Sep 22 |
Regression II: choosing regressors, weighting, outliers, overfitting
Zoom recording, whiteboard (pdf) |
||
Fri, Sep 23 |
Lab: Regression |
Lab 3 files (Matlab Python) Lab 3 solutions Data file mult_linreg.mat |
|
Tue, Sep 27 |
Regression III: incorporating linear constraints, TLS regression
Zoom recording I, Zoom recording II, whiteboard (pdf) |
Homework 2 (pdf - due 10/11) Files needed (.zip) |
|
Thu, Sep 29 |
Regression IV: Summary statistics, PCA, eigenvalues/eigenvectors Zoom recording, whiteboard (pdf) |
||
Fri, Sep 30 | [no lab] | ||
Tue, Oct 4 |
PCA wrapup. LinSys I: Linear shift-invariant systems, convolution Zoom recording, whiteboard(pdf) |
Notes: Least Squares (pdf) | |
Thu, Oct 6 |
LinSys II: Sinusoids and LSI systems, Discrete Fourier transform Zoom recording, whiteboard (pdf) |
Slides: Linear shift-invariant systems (pdf) | |
Fri, Oct 7 | Lab: Convolution - 1D and 2D + PCA | Lab files (zip) | |
Tue, Oct 11 | [No class: NYU "Legislative Day"] | ||
Thu, Oct 13 |
LinSys III: Fourier Transforms+LSI Zoom recording, whiteboard (pdf) |
Notes: Linear Shift-invariant Systems (pdf) | Homework 3 (zip - due 10/25) |
Fri, Oct 14 |
Lab: Fourier transforms |
Lab files (zip convolution zip) Convolution slides Fourier slides Solutions (zip) |
|
Tue, Oct 18 |
LinSys IV: Fourier examples, indexing/plotting, sampling Zoom recording, whiteboard (pdf) |
||
Thu, Oct 20 |
LinSys V: Extended example: Sound, filtering, and the cochlea Zoom recording, whiteboard (pdf) |
||
Tue, Oct 25 |
Stats intro: summary stats, central tendency, disperson, multi-D
Zoom recording, whiteboard (pdf) |
Homework 4 (pdf - due 11/8) File needed (.mat) |
|
Thu, Oct 27 |
Stats: Multi-D, correlation, regression. Intro probability
Zoom recording, whiteboard (pdf) |
Slides: Probability and statistics (pdf | |
Fri, Oct 28 | Lab: Probability/sampling |
Lab files (zip) Lab solutions (zip) |
|
Tue, Nov 1 |
Probability II: joint/marginal/conditional densities, Bayes Rule, independence Zoom recording, whiteboard (pdf) |
||
Thu, Nov 3 |
Probability III: Gaussians: marginals, conditionals, dependency. correlation mis-interpretations Zoom recording , whiteboard (pdf) |
||
Fri, Nov 4 | Lab: Bayes |
Lab files (MatLab, Python ) Solutions (MatLab, Python ) |
|
Tues, Nov 8 |
Inference I. Averages, 1/N convergence, CLT, significance tests, p-values Zoom recording, whiteboard (pdf) |
Slides: Statistical inference (pdf) |
Homework 5 (pdf - due 11/29 File needed (.mat) |
Thur, Nov 10 |
Inference II: Statistical inference, MLE, examples Zoom recording, whiteboard (pdf) |
||
Tue, Nov 15 |
Inference III: bias-variance tradeoff, confidence intervals, bootstrapping Zoom recording, whiteboard (pdf) |
||
Thu, Nov 17 |
Inference IV: Estimation Example: Signal Detection theory: ML/MAP/Bayes, d', ROC Zoom recording, whiteboard (pdf) |
Slides: Signal detection theory (pdf) | |
Fri, Nov 18 | Lab: Simulations, bootstrapping, cross-validation | Lab files (zip) | |
Tue, Nov 22 |
Inference V:
Multi-D Decision: FLD, SVM, QDA Zoom recording, whiteboard (pdf) |
||
Thu, Nov 24 | [No class: Thanksgiving] | ||
Tue, Nov 29 |
Inference V: Discriminability, Fisher Information Zoom recording, whiteboard (pdf) |
Homework 6 (pdf) - due 12/13 File needed (.zip) |
|
Thu, Dec 1 |
Model fitting: errors, optimization, overfitting, ridge (L2) and LASSO (L1) regression Zoom recording, whiteboard (pdf) |
Slides: model Fitting (pdf) | |
Fri, Dec 2 | Lab: Regularization, classification, clustering | Lab files (zip), Solutions (zip) | |
Tue, Dec 6 |
Clustering: K-means, Hierarchical (mixture) models, soft K-means Zoom recording, Whiteboard (pdf) |
||
Thu, Dec 8 |
Model fitting: Example: Fitting an LNP model to neural responses via
STA Zoom recording, Whiteboard (pdf) |
||
Tue, Dec 13 |
Encoding/decoding: Spike-triggered analysis, population decoding Zoom recording |
Slides: Neural encoding and decoding (pdf) |
Scroll to top of page |