Instructors: | Mike Landy & Eero Simoncelli |
Teaching Assistants: |
FangFang Hong (fh862 AT nyu DOT edu), Owen Marschall (owen.marschall AT gmail DOT com), Theresa Steele (theresa.steele AT nyulangone DOT org) |
Time: |
Lectures: Tuesday/Thursday, 10:00-12:00 Labs: selected Fridays, 9:30-12:00 |
Location: |
Lectures: Meyer 636 Labs: Meyer 636 |
Topics include: Linear algebra, least-squares and total-least-squares regression, eigen-analysis and PCA, linear shift-invariant systems, convolution, Fourier transforms, Nyquist sampling, basics of probability and statistics, hypothesis testing, model comparison, bootstrapping, estimation and decision theory, signal detection theory, linear discriminants, classification, clustering, simple models of neural spike generation, white noise (reverse-correlation) analysis.
Prerequisites: Algebra, trigonometry, and calculus. Some experience with matrix algebra and/or computer programming is helpful, but not required. The real prerequisites are an aptitude for logical and geometric reasoning, and a willingness to work hard!
Announcements: We use Piazza for online class announcements, questions, and discussion: https://piazza.com/nyu/fall2021/psychga2211neurlga2201/home . Rather than emailing the instructors or TAs, we encourage you to post your questions/comments there, where they can be discussed and/or answered by any of us or your fellow classmates.
Schedule: (Notes: labs are in green, content will appear incrementally, for a preview see last year's course page)
Date | Topic | Handouts | Homework |
---|---|---|---|
Thu, Sep 2 |
Introduction to the course
Linear algebra I: vectors, operations, vector spaces Zoom recording, whiteboard (pdf) |
Course description (pdf)
Slides: Course intro (pdf) Slides: Linear algebra (pdf) |
|
Fri, Sep 3 |
Matlab I: Environment, basic data types and operations, plotting |
Matlab installation (txt)
Matlab primer (pdf) Lab1 (m), Lab1_solutions (m) Lab1 (p), Lab1_solutions (p) |
HW submission instructions (pdf) |
Tue, Sep 7 |
Linear algebra II: inner products, projection, coordinate systems
Zoom recording, whiteboard (pdf) |
Homework 0 (pdf - "due" 9/14) | |
Thu, Sep 9 |
Linear algbra III: linear systems, orthogonal/diagonal matrices, geometry
Zoom recording, whiteboard (pdf) |
||
Fri, Sep 10 | Matlab II: Scripts, conditionals, iteration, functions | Lab 2 files (zip) | |
Tue, Sep 14 |
Linear algebra IV: singular value decomposition
Zoom recording, whiteboard (pdf) |
Notes: Linear Algebra (pdf) |
Homework 1 (pdf - due 9/24)
mtxExamples (mat) |
Thu, Sep 16 | [No class: Yom Kippur] | ||
Fri, Sep 17 |
[Makeup class: 10-12] Linear algebra V: Trichromacy example
Zoom recording, whiteboard (pdf) |
Slides: Trichromacy (pdf) | |
Tue, Sep 21 |
Regression I: regression, multiple regression, partitioning variance
Zoom recording, whiteboard (pdf) |
Slides: Least Squares (pdf) | |
Thu, Sep 23 |
Regression II: choosing regressors, weighting, outliers, overfitting
Zoom recording |
||
Tue, Sep 28 |
Regression III: incorporating linear/quadratic constraints Zoom recording, whiteboard (pdf) |
||
Thu, Sep 30 |
Regression IV: TLS regression, PCA, eigenvalues/eigenvectors Zoom recording, whiteboard (pdf) |
Notes: Least Squares (pdf) |
Homework 2 (pdf - due 10/12)
hw2-files (zip) |
Fri, Oct 1 |
Lab: Regression/PCA |
Lab 3 files (zip) | |
Tue, Oct 5 |
LinSys I: Linear shift-invariant systems, convolution Zoom recording, whiteboard (pdf) |
||
Thu, Oct 7 |
LinSys II: Sinusoids and LSI systems, Discrete Fourier transform Zoom recording, whiteboard (pdf) |
Slides: Linear Systems (pdf) Notes: Linear Systems (pdf) |
|
Fri, Oct 8 |
Lab: Convolution in 1 and 2 dimensions |
||
Tue, Oct 12 | [No class: NYU "Legislative Day"] | ||
Thu, Oct 14 |
LinSys III: Fourier Transforms+LSI Zoom recording, whiteboard (pdf) |
||
Fri, Oct 15 |
Lab: Fourier transforms |
||
Tue, Oct 19 |
LinSys IV: Fourier examples, indexing/plotting, sampling Zoom recording, whiteboard (pdf) |
Homework 3 (pdf - due 10/31)
hw3-files (zip) |
|
Thu, Oct 21 |
LinSys V: Extended example: Sound, filtering, and the cochlea Zoom recording, whiteboard (pdf) |
||
Tue, Oct 26 |
Stats intro: summary stats, central tendency, disperson, multi-D
Zoom recording, whiteboard (pdf) |
Slides: Probability and Statistics (pdf) | |
Thu, Oct 28 |
Stats: Multi-D, correlation, regression. Intro probability
Zoom recording, whiteboard (pdf) |
||
Fri, Oct 29 | Lab: Probability/sampling | ||
Tue, Nov 2 |
Probability II: joint/marginal/conditional densities, Bayes Rule,
independence Zoom recording, whiteboard (pdf) |
Homework 4 (pdf - due 11/11)
experimentData (mat) |
|
Thu, Nov 4 |
Probability III: Gaussians: marginals, conditionals, dependency. correlation mis-interpretations Zoom recording whiteboard (pdf) |
||
Fri, Nov 5 | Lab: Bayes | ||
Tues, Nov 9 |
Inference I. Averages, 1/N convergence, CLT, significance tests, p-values Zoom recording, whiteboard (pdf) |
||
Thur, Nov 11 |
Inference II: Statistical inference, MLE, examples Zoom recording, whiteboard (pdf) |
Homework 5 (pdf - due 11/24) | |
Tue, Nov 16 |
Inference III: bias-variance tradeoff, confidence intervals, bootstrapping Zoom recording, whiteboard (pdf) |
Slides: Inference (pdf) | |
Thu, Nov 18 |
Inference IV:
Bayes Estimates, MAP, sequential updating, regression to the mean Zoom recording (apologies: second half only), whiteboard (pdf) |
||
Fri, Nov 19 | Lab: Simulations, bootstrapping, cross-validation | ||
Tue, Nov 23 |
Inference IV: Decisions, Signal Detection Theory Zoom recording, whiteboard (pdf) |
Slides: Signal detection theory (pdf) | |
Thu, Nov 25 | [No class: Thanksgiving] | ||
Tue, Nov 30 |
Inference V: Discriminability, Fisher Information Zoom recording, whiteboard (pdf) |
||
Thu, Dec 2 |
Model fitting: errors, optimization, overfitting, ridge (L2) regression Zoom recording, whiteboard (pdf) |
Slides: model Fitting (pdf) | |
Fri, Dec 3 | Lab: Regularization, classification, clustering | ||
Tue, Dec 7 |
Model fitting: LASSO (L1) regression, clustering Zoom recording, Whiteboard (pdf) |
Homework 6 (pdf - due 12/20) Files (zip) |
|
Thu, Dec 9 |
Model fitting: Example: Fitting an LNP model to neural responses via
STA Zoom recording, Whiteboard (pdf) |
||
Tue, Dec 14 |
Encoding/decoding: Spike-triggered analysis, population decoding Zoom recording |
Scroll to top of page |