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1 Introduction

The primary visual cortex (V1) is arguably the most studied area in the mammalian cortex, and one
of the very few for which we can say something sensible about the computations that it performs.
V1 cells are selective for the position, shape, size, velocity, color, and eye of presentation of a
visual stimulus. The mechanism of this selectivity, as well as its rationale, have recently begun to
be understood, although some aspects still constitute an area of intense debate.

The receptive fields of V1 cells were first mapped by Hubel and Wiesel (1962) using flashing bars.
They termed simple cells those cells for which they could find regions that responded either to the
onset or to the offset of a bright bar, but not to both. Simple cells constitute around 50% of V1
neurons (De Valois et al., 1982a; Schiller et al., 1976). This Chapter is devoted to simple cells, but
it also includes ideas that can be useful in the understanding of the other major V1 cell type, the
complex cells.

 ** Figure 1 About Here **

A number of researchers have proposed that simple cells behave linearly, and that their selectivity
is determined by their linear weighting functions (Figure 1A). This linear model of simple cells is
attractive because if it were correct it would be possible to predict the responses of a simple cell to
any visual stimulus, based on a limited number of measurements. For example, any image can be
approximated by a number of small pixels. Measuring the cell response by lighting each pixel one
by one would allow the experimenter to predict the response to any visual stimulus.

We begin the Chapter with the full definition of the linear model (Section 2). We explain its basic
properties, and we summarize the vast number of studies that were devoted to testing it (Section 3).
In these studies the model was found to be largely successful in explaining the selectivity of simple
cells for stimulus shape, size, position, orientation and direction of motion. We then propose a
biophysical implementation of the linear model, and we discuss its plausibility (Section 4). In this
implementation, simple cells receive both excitation and inhibition arranged in push-pull, so that
when one increases the other decreases, and vice versa. The importance of this arrangement is that
it makes it possible for the visual stimuli to result in perfect current injection in the cell, without
any conductance increase. Conductance increases would result in nonlinear behavior.

While many aspects of simple cell responses are consistent with the linear model, there also are
important violations of linearity (Section 5). For example, scaling the contrast of a stimulus would
identically scale the responses of a linear cell. At high contrasts, however, the responses of simple
cells show clear saturation (Maffei and  Fiorentini, 1973). Moreover, simple cells are subject to
cross-orientation inhibition: the responses to an optimally-oriented stimulus can be diminished by
superimposing an orthogonal stimulus, which would be ineffective in driving the cell when
presented alone (Morrone et al., 1982). These nonlinearities may be partially explained by contrast
gain control mechanisms known to operate as early as in the retina (Shapley and  Victor, 1978).
There is however evidence suggesting that these nonlinearities have an important cortical
component.

Our opinion is that the linear model is a powerful explanation of the behavior of simple cells. Part
of the nonlinear behavior of simple cells can be attributed to the rectification (threshold) in the
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generation of action potentials. The many nonlinearities that are not accounted for by rectification
can be explained by adding to the linear model a divisive inhibition stage (Figure 1B). This stage
controls the gain (responsiveness) of the neurons by means of intracortical feedback from a large
group of other cortical cells. This extended linear model is called the normalization model.
Response normalization was originally proposed by Robson (1988) to provide explanations for
various failures of the linear model of simple cell responses. The model has been expanded and
formalized by Heeger (1993; 1992a; 1992b; 1991), by Albrecht and Geisler (1991), and by
Carandini and Heeger (1994), who have shown that the normalization model is capable, in
principle, of explaining a wide variety of empirical phenomena (see also Carandini et al., 1997b;
Nestares and  Heeger, 1997; Tolhurst and  Heeger, 1997b; Tolhurst and  Heeger, 1997a; DeAngelis
et al., 1992; Bonds, 1989). The overall motivation of the normalization model and its detailed
synaptic mechanisms are surprisingly similar to Marr's (1970) general theory of cerebral neocortex,
and to much of Grossberg's theoretical work on nonlinear neural networks ( for review see
Grossberg, 1988).

We propose (in Section 6) that normalization operates by shunting inhibition: cells inhibit each
other by increasing each other's membrane conductance. This decreases the gain of the
transformation of input currents into membrane potentials. The model explains response saturation
and cross-orientation inhibition because increasing stimulus contrast or adding an orthogonal
grating increases the activity of the network, resulting in increased conductance and decreased gain.
Increasing the conductance also decreases the time constant of the membrane so the latency of the
responses and the temporal filtering properties of the cells depend on the stimulus contrast. As a
consequence the model captures a number of temporal nonlinearities in the responses of V1 cells
(Carandini et al., 1997b; Albrecht, 1995; Hawken et al., 1992; Reid et al., 1992; Dean and
Tolhurst, 1986; Holub and  Morton-Gibson, 1981).

The normalization model is intentionally based on a very simplified view of the cellular
physiology. As a consequence, it makes strong quantitative predictions with very few free
parameters. We have recently tested some of these predictions by recording from simple cells in the
primary visual cortex of paralyzed, anesthetized macaques, and presenting very large sets of visual
stimuli (Carandini et al., 1997b; Carandini and Heeger, 1994). We derived closed-form equations
for the model responses to such stimuli, and we found that these equations provide good fits to the
neural responses. The results of these tests are presented in Section 7.

We conclude the Chapter with a discussion of the biophysical plausibility of the normalization
model (Section 8). Is shunting inhibition really the mechanism underlying gain control in the
cortex? We tested the model using extracellular data, so we have no direct proof that the overall
conductance grows with stimulus contrast. Large membrane conductance increases have been
reported in some intracellular studies (Borg-Graham et al., 1998; Carandini et al., 1998) but not in
others (Ahmed et al., 1997; Ferster and  Jagadeesh, 1992; Berman et al., 1991). As a result, the true
biophysical substrate of gain control is uncertain. The main advantage of shunting inhibition is that
it constitutes the simplest possible way for the normalization pool to control both the gain and the
dynamics of a cell's response. Until further data are available the model should be considered to lie
between a phenomenological model and a true biophysical explanation.
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2 The Linear Model of Simple Cells

2.1 Visual Stimuli in Space-Time

 ** Figure 2 About Here **

As a visual stimulus is projected on the retina it can be described by its intensity distribution
I(x,y,t), that varies in the two spatial dimensions x,y and in time t. This representation ignores the
color of the stimulus and assumes monocular viewing, but is in all other respects complete.
Consider for example a stimulus consisting of a dark vertical bar drifting from left to right, on a
white background. Figure 2A shows the bar at a particular instant in time. Panel B shows that as the
bar drifts from left to right, it can be considered as a solid in the x-y-t space. Panel C shows a
snapshot of the volume taken from above, a space-time (x-t) plot that ignores the y dimension.

Different velocities result in different orientations in space-time (Adelson and  Bergen, 1985; van
Santen and  Sperling, 1985; Watson and  Ahumada, 1985; Fahle and  Poggio, 1981). For example,
if the bar in Figure 2A were going faster, its space-time (x-t) representation (Panel C) would have
been more tilted towards the horizontal. Had the bar been motionless, its x-t representation would
have been vertical. Had the bar been going from right to left, the orientation of its x-t representation
would have been opposite to the one in Figure 2C.

2.2 Spatiotemporal Weighting Functions

A defining property of linearity is that of superposition: if L1 is the response to stimulus I1, and L2

is the response to stimulus I2, then the response of a linear system to the sum of the stimuli I1+I2 is
just the sum of the responses, L1+L2. While the property of superposition may sound a little
abstract, there is an equivalent statement that will make it concrete: simple cells are linear if and
only if their responses are a weighted sum of the light intensities falling on their receptive fields.

Figure 2D-F shows a schematic of a spatiotemporal weighting function. Panel D shows a space-
space (x-y) section of the weighting function. Panel F shows the space-time (x-t) projection of the
weighting function, i.e. a snapshot of the weighting function taken from above. The relation
between the two is shown in Panel E. As we will see, real simple cell weighting functions don't
look too different from this idealization (Figure 6).

The response of a linear cell is simply obtained by weighting the stimulus intensity I at each
location and time by the value of the cell's weighting function W at that location and at that time,
and by summing the results:

(1) ( ) ( )∫∫∫ −= dxdydtTtyxITyxWtL ,,,,)(

The cell travels in time t from past to future (as we all do), while its retinal (x-y) location remains
fixed. The weighting function is zero for any time that lies in the future, because the responses of
the cell cannot depend on future events.
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The spatiotemporal weighting function W of a linear cell determines its selectivity (e.g., for
orientation or direction of motion). In particular, several researchers have pointed out that a linear
cell is direction selective if and only if the subregions of its weighting function are tilted along an
oblique axis in space-time (Adelson and Bergen, 1985; van Santen and Sperling, 1985; Watson and
Ahumada, 1985; Fahle and Poggio, 1981).

 ** Figure 3 About Here **

Figure 3 illustrates how this selectivity arises, by showing the responses of a linear cell with a
space-time oriented weighting function to a drifting grating stimulus. In Panels A-D the grating
drifts from left to right, and the resulting space-time orientation is very similar to the space-time
orientation of the weighting function. This results in strong responses (Panel A). In Panels E-H the
grating drifts in the opposite direction, and the resulting space-time orientation is almost orthogonal
to that of the weighting function. This results in very small responses (Panel E) because the
weighting function averages out the variations in intensity present in the stimulus.

 ** Figure 4 About Here **

If a linear cell's weighting function is not tilted along an oblique axis in space-time, then the cell
will not have a preference for direction of motion. Figure 4, for example, shows the space-time
projections of three different weighting functions. The weighting function in Panel A prefers
stationary objects, since it is vertical in the x-t plane. The weighting function in Panel B prefers
moving or flickering objects but has no preference for the direction of motion. These two weighting
functions cannot be direction selective because they are space-time separable, i.e. their weighting
functions W(x,y,t) can be expressed as the product of a function of space x,y and a function of time
t. The weighting function in Panel C is clearly tilted along an oblique axis in space-time, and is
direction selective. Note that it is not space-time separable.

2.3 A Nonlinearity: Light Adaptation

In characterizing simple cells as spatiotemporal linear neurons, we have neglected an important
nonlinearity: light adaptation in the retina (Shapley and  Enroth-Cugell, 1984). We can, however,
safely ignore light adaptation by restricting our choice of visual stimuli to luminance distributions
l(x,y,t) that modulate (transiently) about a fixed mean/background luminance m. Examples are
drifting grating patterns and drifting or briefly flashed bars that are either brighter or darker than the
mean. In these conditions the retina can be considered to be in a fixed state of adaptation, and its
output is proportional to the “local contrast” I(x,y,t) = [l(x,y,t)-m]/m of the stimulus (Shapley and
Enroth-Cugell, 1984).

To avoid confusion we (improperly) use the term intensity to refer to the local contrast, and we
reserve the term contrast for the maximum absolute value of the local contrast of a grating
stimulus. The maximum contrast of a grating is 1, which is attained when the lowest intensity is
zero and the highest intensity is twice the mean. Finally, we use the term local energy to denote the
variance of the stimulus over local space and recent time, and within a band of spatiotemporal
frequencies.
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2.4 Another Nonlinearity: Rectification

Spatiotemporal linear weighting functions are intended to be models of the intracellular responses
of simple cells. Most of the data discussed in this Chapter, however, consist of firing rates
(recorded extracellularly). To model this, one is forced to consider also the transformation of
membrane potentials into firing rates.

This transformation is bound to introduce a nonlinearity. The responses of a linear cell would
assume both positive and negative values. Likewise, the membrane potential fluctuates above and
below a cell's resting potential. Firing rates, on the other hand, are by definition positive. A linear
cell with a high maintained firing rate could encode the positive and negative values by responding
either more or less than the maintained rate. This is for example typical of retinal ganglion cells
(Enroth-Cugell and  Robson, 1966). Simple cells, however, have very little maintained discharge.
Since their negative responses cannot be encoded in their firing rate, simple cells cannot act truly
linearly.

 ** Figure 5 About Here **

As we discuss in Section 2.4, the transformation of membrane potential into spike rate can be
approximated by rectification, that is by a function that is zero for membrane potentials below a
threshold, and that grows linearly from there on. Figure 5 shows some examples of rectification.
The three solid lines depict cases in which the firing threshold is 0, 5 and 10 mV away from the
resting potential. Technically the first example of rectification, with a threshold at Vrest, is cases of
“half-rectification”. The other two are called “over-rectification”, since their threshold is above the
resting potential. We use the term “rectification” to include all these cases.

Rectification is a static nonlinearity, that is one that depends only on the instantaneous value of its
input and not on its past history. Adding rectification after a spatiotemporal linear weighting
function does not substantially alter the selectivity or other basic properties of the responses
(Heeger, 1992a). In the following, whenever we refer to the linear model of simple cells, we tacitly
assume it to be a spatiotemporal linear weighting function followed by rectification, as shown in
Figure 1A.

3  Some Linear Properties of Simple Cells

This Section describes some experimental results that provide strong evidence in favor of the linear
model of simple cells (see Heeger, 1993,1992a, for a more thorough review). Most of the
nonlinearities that are mentioned in this Section are explained by the rectification stage that
transforms intracellular responses into firing rates.

3.1 Responses to Impulses

 ** Figure 6 About Here **
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When Hubel and Wiesel (1962) first mapped the receptive fields of V1 cells, their stimuli were
bright flashing bars. Depending on whether a region responded positively to the onset or to the
offset of a bright bar, they termed that region an ON or an OFF subregion. The linear model
predicts the existence of these subregions (Heeger, 1992a; Emerson, 1988). This can be understood
by considering the full space-time representation of a flashed bar, which is shown in Figure 6A.
Since the bar does not change position in time, its space-time (x-t) projection is vertical. The top
and bottom ends of the rectangle are the times at which the bar is turned on and off. The responses
of a linear weighting function to such a stimulus are depicted in Figure 6B-C. Figure 6B shows the
case in which the bar is flashed in an OFF subregion. As the weighting function travels down in
time, the first subregion of the weighting function that hits the stimulus is inhibitory; this gives a
negative response. Later the stimulus overlaps both the excitatory and inhibitory subregions, so the
response is about zero. Finally, when the stimulus overlaps only the excitatory subregion (right
panel of Figure 6B) the weighting function gives a positive response. In sum, the response is
negative just after the bar is turned on and positive just after it is turned off. The opposite will
happen when the bar is flashed in and ON subregion (Figure 6C): the response is positive just after
the bar is turned on and negative just after it is turned off. After the responses in the left panels of
Figure 6B and C are passed through a rectification stage that shows only their positive parts
(shaded areas), they closely resemble the spike rate responses of a real simple cell.

 ** Figure 7 About Here **

Since Hubel and Wiesel's original work, the method for mapping a receptive field has been made
more quantitative by having a computer show sequences of bars in many different positions and
recording the correlation between firing rate and light intensity. Such a correlation depends on
space and time: for each location x,y and delay time T, one can measure the correlation between the
spike train R(t) and the sequence of stimulus intensities that occurred T seconds before at that x,y
location, I(x,y,t-T). The value of the correlation, which can be positive or negative, is taken as the
strength of the weighting function at that position and time, W(x,y,T) . This method is called reverse
correlation, and allows the measurement of full space-time (x-y-t) weighting functions (DeAngelis
et al., 1993b; DeAngelis et al., 1993a; Shapley et al., 1991; McLean and  Palmer, 1989; McLean
and  Palmer, 1988; deBoer and  Kuyper, 1968). Figure 7 shows the full space-time weighting
function of a simple cell, measured with the reverse correlation technique. The four upper panels
represent x-y snapshots of the weighting function measured at different times T in the past. A large
number of snapshots like these are stacked to build a full space-time weighting function, whose x-t
structure (averaged over the y axis) is shown at the bottom of the figure.

The reverse correlation method can be applied to any visual cell, linear or nonlinear, and it will
always give a result, i.e. a full space-time weighting function. For a linear cell, however, such a
weighting function could then be used to predict the cell's responses to any visual stimulus (using
Equation (1)). This property of linear systems can be used to test whether simple cells are linear.
For example, one can ask whether direction selectivity in simple cells is fully explained by an
underlying linear stage.

The linear model predicts that simple cells are direction selective only if their weighting functions
are oriented in space-time, and thus nonseparable (Figure 4). This prediction was tested by McLean
and Palmer (1989; 1988), Shapley, Reid and Soodak (1991), Emerson and Citron (1992) and
DeAngelis et al. (1993b). Their findings are mostly consistent with the linear model. They found
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simple cells with weighting functions tilted along an oblique axis (inseparable) in space-time, like
the one in Figure 6. These cells were all direction selective, and the preferred direction of motion
was always correctly predicted from the orientation of the weighting function. For example, the cell
of Figure 6 was highly direction selective and preferred stimuli moving from right to left in the x-y
plane. A number of simple cells were found to have space-time separable weighting functions, like
the ones depicted in Figure 4 A and B. Consistent with the linear model, most of these cells were
not direction selective*.

3.2 Responses to Drifting Gratings

The stimulus of choice for linear systems analysis of the visual system is a stimulus whose
luminance varies sinusoidally in space and time, the sine grating. There are many advantages to
using sine gratings (reviewed in Enroth-Cugell and  Robson, 1984), the most important being that
linear systems are guaranteed to respond to sinusoidal modulation with a sinusoid. For example,
had the modulation in luminance of the grating in Figure 3 been sinusoidal, the responses in Panels
A and E would have been perfect sinusoids. The deviation of the responses from pure sinusoids can
provide a quantitative measure of nonlinearity (Hochstein and  Shapley, 1976). Sine gratings were
first used to study the neurophysiology of the visual system by Enroth-Cugell and Robson (1966),
who demonstrated the linearity of cat retinal X ganglion cells. One of their tests of linearity
involved comparing the responses to gratings with the responses to luminance edges. The logic of
this experiment is straightforward: since an edge is composed of the sum of a number of gratings,
the responses of a linear cell to an edge would be predictable from its response to gratings.

 ** Figure 8 About Here **

A similar experimental paradigm was applied to the study of simple cells by Movshon et al.
(1978b). They measured the sensitivity of the cells to drifting gratings of different spatial
frequencies, and the sensitivity of different receptive field regions to flashing bars. Since a grating
is composed of the sum of a number of bars, the response of a linear cell to a grating is predictable
(via Fourier transform) from its response to bars. Likewise, since a bar can be thought of as the sum
of a number of gratings, the response to a bar is predictable (via inverse Fourier transform) from the
response to gratings. Movshon et al. found good agreement between the weighting function
predicted by inverse Fourier transform of the grating sensitivity and the weighting function
obtained from the flashing bar data (Figure 8). This supports the linear model of simple cell
responses.

Many other studies have compared grating responses to impulse responses (DeAngelis et al.,
1993b; Shapley et al., 1991; Tadmor and  Tolhurst, 1989; Jones and  Palmer, 1987a; Jones and
Palmer, 1987b; Jones et al., 1987; Field and  Tolhurst, 1986; Dean and  Tolhurst, 1983; Kulikowski
and  Bishop, 1981b; Kulikowski and  Bishop, 1981a; Glezer et al., 1980; Andrews and  Pollen,
1979; Maffei et al., 1979). In many cases, the inverse transform of the response to gratings gives a
weighting function with additional side bands beyond those measured directly. In addition, the
measured response to gratings is often more narrowly tuned for spatial frequency than predicted
from the Fourier transform of the response to impulses. This discrepancy between the grating
responses and the impulse responses can be explained by over-rectification, which conceals the
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impulse responses of the weaker receptive field regions, so it is consistent with the linear model
(Tolhurst and Heeger, 1997b; Heeger, 1992a; Tadmor and Tolhurst, 1989).

Some of the above mentioned studies, on the other hand, unveiled a serious failure of linearity: a
discrepancy between the predicted and actual sizes of the responses. For example, when Movshon
et al. (1978b) compared the observed and predicted weighting functions (Figure 8), they did so only
up to an arbitrary amplitude scaling factor. According to the linear model, this scaling factor should
not be necessary. We will see later on that the normalization model predicts this failure of linearity.
In particular, it predicts that the cell's gain is different when it is stimulated with flashed bars from
when it is stimulated with drifting gratings.

3.3 Responses to Contrast-Modulated Gratings

A contrast-modulated grating is a standing sine grating whose intensity is modulated sinusoidally
over time. Simple cell responses to drifting and contrast-modulated gratings are quite similar to
rectified sinusoids (see e.g. Figure 11A). This is obviously consistent with the linear model: the
spatiotemporal linear weighting function responds with a sinusoid and the rectification hides
everything that is below threshold.

 ** Figure 9 About Here **

A number of researchers (e.g. Reid et al., 1991; Tolhurst and  Dean, 1991; Reid et al., 1987;
Kulikowski and Bishop, 1981b; Movshon et al., 1978b; Maffei and Fiorentini, 1973) measured the
responses of simple cells while varying the spatial phase of contrast-modulated gratings. Because
these responses can be reasonably fit by a sinusoid, they can be described by just two numbers, the
amplitude and phase of the sinusoid. A useful way to display both response amplitude and response
phase at the same time is given by a polar plot like the one in Figure 9. Every point in the polar plot
corresponds to a sinusoid, whose amplitude is given by the distance from the origin, and whose
phase is given by the angle with the horizontal axis.

The linear model predicts that as the spatial phase of the contrast-modulated grating varies between
0o and 180o, the responses should describe a “wasp-waisted” ellipse in the polar plot (Movshon et
al., 1978b). In particular, for a linear cell a polar plot of the responses would be elliptical in shape.
Over-rectification distorts the ellipse, producing a wasp-waist: if the neuron has to reach a certain
level of excitation before any activity is seen, there will be a disproportionate decrease in small
responses (Tolhurst and Heeger, 1997a; DeAngelis et al., 1993b; Heeger, 1993; Albrecht and
Geisler, 1991). The physiological results are in line with this prediction. Figure 9, for example,
shows the responses of a simple cell to a contrast-modulated grating positioned at 8 different
phases over the receptive field, spanning the range from 0o to 180o. The raw data (filled symbols)
describe a wasp-waisted ellipse since the amplitudes near the minor axes are smaller than they
should be to fit an ellipse. When the distortion introduced by rectification is removed (in this case
assuming a resting “firing rate” of minus 8 spikes per second), the data fall on an ellipse (open
symbols).

Because of superposition, the responses of a linear cell to contrast-modulated gratings would be
easily predictable from the responses to drifting gratings, and vice versa. Several researchers tested
whether this was the case for simple cells. Ferster and collaborators performed intracellular in vivo
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recordings and found that the membrane potential responses were consistent with the output of a
spatiotemporal linear weighting function (Jagadeesh et al., 1997; Jagadeesh et al., 1993). Other
researchers performed extracellular recordings (Albrecht and Geisler, 1991; Reid et al., 1991;
Tolhurst and Dean, 1991; Reid et al., 1987). These studies are generally consistent with the linear
model in that a cell's preferred direction of motion for drifting gratings can be correctly predicted
from its responses to contrast-modulated gratings. They however uncovered two nonlinearities in
simple cell responses. First, the linear prediction from contrast-modulated grating responses
underestimates the degree of directional selectivity observed with drifting gratings. Second, the
linear prediction overestimates the responses to gratings drifting in the nonpreferred direction.
Albrecht and Geisler (1991) and Heeger (1993; 1991) showed that the first phenomenon can be
explained by the rectification stage (which acts as an expansive nonlinearity), so it is consistent
with the linear model of simple cells. The second phenomenon instead is not consistent with the
linear model, but it can in most cases be explained by a gain control mechanism like that postulated
by the normalization model. The normalization model predicts that the cells are less responsive in
the presence of drifting gratings than in the presence of contrast-modulated gratings of equal
contrast. This difference in gain can be shown to yield the observed discrepancy in the predicted
and actual responses to gratings drifting in the nonpreferred direction (Tolhurst and Heeger, 1997a;
Heeger, 1993).

3.4 Responses to Compound Stimuli

According to the linear model of simple cells, knowing a cell's responses to gratings would make it
possible to predict the responses to any visual stimulus. This is because any visual stimulus can be
expressed as the sum of many different gratings.

An important test of this prediction was performed by DeValois et al. (1979). They measured the
orientation tuning of cat simple cells using individual gratings as well as checkerboard stimuli. The
motivation for their use of checkerboards is very interesting. At the end of the 1970s the issue of
whether simple cells were better modeled as linear weighting functions or as all-or-none edge
detectors was the object of heated debate (see e.g. Schumer and  Movshon, 1984; Marr, 1982;
Maffei and Fiorentini, 1973). DeValois et al. (1979) reasoned that the two models made very
different predictions of a cell's response to checkerboards. In checkerboards the strongest sine
grating components are oriented along the diagonals, whereas the sharp edges are oriented along
the rows and columns. According to the linear model the cells will respond best when one of the
diagonals is oriented in the cell's preferred orientation for gratings. According to the edge-detector
model, on the other hand, a cell will respond best when either the rows or the columns are oriented
in the cell's preferred orientation for gratings. The results of DeValois et al. (1979) were consistent
with the linear model, and falsified the edge-detector model. The responses of the cells could be
predicted by having knowledge of the location and orientation of the main sine gratings that
compose the checkerboard. The precise location and orientation of the sharp edges was not relevant
in predicting the cells' responses.

A similar approach was followed by other researchers (e.g. Gizzi et al., 1990; Pollen et al., 1988;
De Valois et al., 1982b; Pollen and  Ronner, 1982; Maffei et al., 1979), who tested linearity by
comparing responses to single sine gratings with responses to sums of sine gratings of different
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spatial frequencies or orientations. All of these results are qualitatively explained by the linear
model (Heeger, 1992a).

The quantitative predictions of the linear model, however, are not always correct, and once again
the discrepancy points to the existence of a gain control mechanism. For example, Gizzi et al.
(1990) found that simple cell responses to plaids composed of two sine gratings with different
orientations were on average only 2/3 of the linear predictions based on the responses to the
individual gratings. As we will see, the normalization model explains this behavior because it
predicts that the gain of the cells is lower in the presence of plaids than in the presence of single
gratings.

4 Biophysics of the Linear Model

We have been considering the linear model as little more than a mathematical abstraction. This
Section describes how the model might be implemented physiologically.

4.1 Linearity of the LGN

Unless some complicated linearization mechanism is invoked, simple cells can only be as linear as
the inputs they get. Since the input to the visual cortex is constituted by the activity of LGN cells,
we must begin our task of modeling simple cell linearity by assuming that the responses of LGN
neurons are linear functions of the stimulus intensity distribution.

This assumption is a better approximation in the monkey than in the cat. In the cat there are no
LGN cells that are perfectly linear: the X cells are spatially and temporally linear, but they are
subject to a (retinal) contrast gain control mechanism, which violates linearity (Victor, 1987;
Enroth-Cugell et al., 1983; Enroth-Cugell and Robson, 1966). The Y cells are extremely nonlinear
(Victor, 1988; Troy, 1983; Hochstein and Shapley, 1976), but may not be contributing input to the
primary visual cortex (Ferster, 1990a; Ferster, 1990b).

In the monkey, on the other hand, there is a geniculocortical channel, the P pathway, which is
substantially linear. The other channel, the M pathway, is instead quite nonlinear, and its
nonlinearity might be due to a gain-control mechanism. The substantial linearity of the P pathway
and the nonlinearity of the M pathway have been observed in the responses of retinal ganglion cells
(Benardete and  Kaplan, 1997; Lee et al., 1994; Benardete et al., 1992), and are reflected in the
properties of LGN cells (Movshon et al., 1994; Carandini et al., 1993; Derrington and  Lennie,
1984; Sherman et al., 1984). Even though P cells constitute around 90% of the monkey LGN
(Dreher et al., 1976), many simple cells also receive M inputs (Malpeli et al., 1981). Indeed, while
the two streams are segregated in layer 4C (Blasdel and  Lund, 1983; Hendrickson et al., 1978;
Hubel and  Wiesel, 1972), they are not segregated at all in the upper layers (Nealey and  Maunsell,
1994; Yoshioka et al., 1994; Lahica et al., 1992). In particular, for those neurons that do receive M
input, the first 7-10 ms of activation are due exclusively to the M signal (Maunsell and  Gibson,
1992).

Besides the fact that monkey simple cells may receive some M input, there is another phenomenon
that makes our assumption of linearity of the geniculate input an imperfect approximation: at high
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contrasts the responses of LGN cells show evidence of rectification. Resting firing rates in the LGN
have been reported to be around 18 spikes/s in monkey, and around 6 spikes/s and 16 spikes/s in cat
X and Y LGN cells (Kaplan et al., 1987). An analysis of the 136 monkey LGN cells recorded by
Sherman et al. (1984) reveals that their average resting firing rate was only around 7 spikes/s. On
average the modulation in spike rate due to a 50% contrast grating was twice as large as the resting
firing rate for P cells (median: 2.1), and three times as large for M cells (median: 3.3). Rectification
in the input will be ignored in the following but should be considered in more detailed models of
the visual cortex.

4.2 Building Simple Cell Receptive Fields

In their 1962 paper, Hubel and Wiesel (1962) hypothesized that the receptive fields of simple cells
are the result of an orderly arrangement of LGN inputs. Geniculate cells have center-surround
receptive fields. When stimulated with a spot stimulus in their center they respond either to the
onset (ON-center cells) or to the offset (OFF-center cells) of the stimulus. According to the scheme
proposed by Hubel and Wiesel an ON subregion of a simple cell receptive field would result from
the sum of an aligned series of LGN ON-center inputs. Similarly, an OFF subregion would result
from the sum of an aligned series of OFF-center inputs. This arrangement has been recently
confirmed by Reid and Alonso (1995), who recorded simultaneously from simple cells and from
LGN cells.

If some of the LGN inputs reach a simple cell before some others, the resulting receptive field can
also display direction selectivity. In the cat LGN, for instance, there is evidence for the existence of
two classes of cells, “lagged” and “nonlagged”, whose responses have different latencies (Saul and
Humphrey, 1992; Saul and  Humphrey, 1990; Mastronarde, 1987). Figure 4 illustrates how the
outputs of these two classes of cells could be summed to yield a direction selective simple cell. The
weighting functions in Panels A and B were drawn to resemble those of idealized lagged and
nonlagged LGN cells. These functions are space-time separable and have the same center-surround
spatial structure, but slightly different spatial positions. They have different temporal structures,
which result in different response latencies. Panel C depicts the weighting function obtained by
summing the two LGN weighting functions. This weighting function is oriented in space-time, so it
is direction selective. It is similar to that of a direction selective V1 simple cell. In practice, V1
simple cell weighting functions would be the result of many, not just two, LGN inputs. In general, a
nonseparable (direction selective) weighting function can be obtained by simple addition of
separable (not direction selective) weighting functions (Adelson and Bergen, 1985; Watson and
Ahumada, 1985; Fahle and Poggio, 1981), as long as the latter differ in their temporal structure.

4.3 Push-Pull Arrangement of Inputs

The linear combination of LGN inputs involves both sums and subtractions. Indeed, besides
excitatory responses, simple cell receptive fields also exhibit inhibitory responses, elicited by the
onset of a light on an OFF region, or the offset of a light on an ON region. Hubel and Wiesel
(1962) pointed out that these inhibitory responses could originate either from the withdrawal of
excitation or from actual inhibition.



Matteo Carandini Page 14 08/04/98

There is now evidence that both mechanisms are at work. Ferster (1986) measured the selectivity of
the IPSPs and found it to be identical to that of the EPSPs. Moreover, he found that in ON regions a
light increase results in EPSPs and a light decrease results in IPSPs, while in OFF regions a light
decrease results in EPSPs and a light increase results in IPSPs (Ferster, 1988). In other words,
EPSPs and IPSPs are spatially overlapping. The inhibitory responses result from both withdrawal
of excitation and actual inhibition, just as the excitatory responses result from both withdrawal of
inhibition and actual excitation.

It is thus plausible that the inputs to a simple cell are arranged in push-pull, i.e. they come from
pairs of cells with opposite signed receptive fields, one of which provides excitation and the other
inhibition. For example, an ON subregion would be the result of excitatory ON-center inputs as
well as of inhibitory OFF-center inputs.

This complementary arrangement of excitation and inhibition is also consistent with extracellular
recording studies in cat V1 (Tolhurst and  Dean, 1990; Tolhurst and  Dean, 1987; Heggelund, 1986;
Glezer et al., 1982; Heggelund, 1981; Palmer and  Davis, 1981; Glezer et al., 1980). A similar
push-pull arrangement might also be used by ganglion cells to integrate bipolar signals (Gaudiano,
1992).

For reasons of simplicity we assume that both the excitation and the inhibition are contributed by
feed-forward connections. In this we differ from a number of recent models that consider
intracortical feedback crucial in sharpening the selectivity conferred by the inputs from the lateral
geniculate nucleus ( see also Carandini and  Ringach, 1997; Ben-Yishai et al., 1995; Douglas et al.,
1995; Somers et al., 1995; Suarez et al., 1995). While the feed-forward view is supported by recent
evidence (Ferster et al., 1996; Reid and Alonso, 1995), the linear model should not necessarily be
identified with a feed-forward arrangement inputs. A linear receptive field could, in principle, be
constructed with pure feed-forward connections, pure feed-back connections, or a combination of
feed-forward and feedback.

4.4 Linearity of Excitation and Inhibition

We now make the linking assumption that simple cell synaptic conductances depend linearly on the
responses of LGN neurons. Strictly speaking, this assumption is simplistic for at least two reasons.

First, synaptic transmission can be well approximated by a linear transformation of the presynaptic
firing rate into the postsynaptic conductance only in the absence of synaptic plasticity. In these
conditions each presynaptic spike results in a stereotyped postsynaptic conductance increase (Koch
and  Poggio, 1987; Jack et al., 1975), and synaptic transmission amounts to a linear transformation
(whose impulse response is given by the shape of an isolated postsynaptic conductance increase).
On the other hand, synaptic plasticity has been recently reported to be pervasive, and to have
nonlinear effects (Abbott et al., 1997; Markram and  Tsodyks, 1996).

Second, while there is evidence for direct geniculocortical excitation (Reid and Alonso, 1995;
Ferster and  Lindstrom, 1983), the anatomical evidence for direct geniculocortical is contradictory
(Einstein et al., 1987; Garey and  Powell, 1971), and the physiological evidence is overwhelmingly
against it (Reid and Alonso, 1995; Ferster and Lindstrom, 1983; Tanaka, 1983; Toyama et al.,
1977a; Toyama et al., 1977b; Watanabe et al., 1966). Most inhibitory inputs from the LGN to



Matteo Carandini Page 15 08/04/98

simple cells are disynaptic (Ferster and Lindstrom, 1983), so the linearity of inhibition would likely
require an inhibitory cortical interneuron that performs a linear integration of LGN inputs and
encodes them linearly into firing rate.

4.5 Simplified Model of a Cortical Cell

** Figure 10 About Here **

We adopt a very simplified model of a cortical cell (Figure 10): a single compartment circuit with
only passive conductances. In particular we consider a leak conductance gleak and two synaptic
conductances, one excitatory (ge) and one inhibitory (gi). The membrane potential of a model cell
then obeys

(2) ( ) ( ) ( )leakleakiiee VVgVVgVVg
dt
dVC −+−+−=−

where C is the membrane capacitance, and Vleak, Ve and Vi are the equilibrium potentials of the leak,
excitatory and inhibitory channels.

 ** Figure 11 About Here **

This view of the cellular physiology deliberately ignores many known aspects of neuronal
biophysics, such as voltage- and calcium-dependent channels, the possible nonlinear interactions
between inputs caused by the dendritic structure, and the possible effects of electrotonic distance
from the soma (Koch and  Segev, 1989). Our model of a cortical cell is however in many respects a
reasonable approximation. For example, Figure 11A shows the responses of an intracellularly
recorded cortical neuron to sinusoidal current injection at different temporal frequencies. The
membrane potential responses are dominated by their sinusoidal ( first harmonic) component. This
means that if the generation of spikes is ignored, the membrane of cortical neurons can be
reasonably modeled by passive conductances, which endow it with a linear behavior. In particular,
when the first harmonic responses are plotted against the temporal frequency of the stimulus (filled
circles in Figure 11B), they are well fit by the predictions of a single-compartment model of the cell
(dashed curve in Figure 11B).

4.6 Linear Integration of the Synaptic Inputs

The push-pull arrangement of the LGN inputs to a simple cell can lead (through a balance of
excitation and inhibition) to a perfectly linear integration of the synaptic conductances by the cell
membrane (Carandini and Heeger, 1994).

For the sake of simplicity, consider the steady-state behavior of the membrane (dV/dt=0). At steady
state Equation (2) can be rewritten as

(3) 
leakie

leakleakiiee

ggg
VgVgVg

V
++
++= .
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The push-pull arrangement (Section 4.3) guarantees that every increase in excitation will
correspond to a decrease in inhibition, and vice-versa. In particular, we assume that ge and gi are
balanced so that the total conductance of the cell is constant:

(4) 0)()( ggtgtg leakie =++ .

Equation (3) can then be rewritten as V = [ ge Ve + gi Vi + gleak Vleak ] / g0, which is a linear function
of ge and gi. In words, the membrane potential V is a linear function of the synaptic conductances.

If our model of the cell membrane as a single compartment is a good approximation, the exact
balance of excitation and inhibition expressed in Equation (4) is an essential condition for the linear
integration of the synaptic conductances. If, on the other hand, there is substantial electrotonic
distance between synaptic sites on the membrane, there are other conditions in which linear
integration of the synaptic inputs is possible. For example, Blomfield (1974), showed that if
inhibition is located on the soma, and excitation is electrotonically remote from it, there is a range
of synaptic activations in which the membrane potential will be approximately a linear combination
of the excitatory and inhibitory synaptic conductances. This approach would not require the strict
balance of excitation and inhibition (Equation (4)), but it would require additional assumptions
about the dendritic structure of the cell, the sites of the inputs, and the range of the synaptic
conductances.

4.7 Spike Rate Encoding

If simple cells integrate their synaptic inputs linearly, if those inputs depend linearly on LGN
activity, and if LGN activity is a linear function of the stimulus intensity distribution, then simple
cells will integrate the stimulus intensity distribution linearly. This Section discusses the final,
nonlinear stage of the model, which is responsible for the encoding of the input-driven membrane
potential responses into spike trains.

Many characteristics of firing rate encoding are consistent with the view that the firing rate
responses are a rectified copy of the membrane potential responses. An example of this can be seen
in Figure 11A. The spike responses closely mirror the membrane potential responses, and there is a
clear threshold below which no spikes are generated. Once above threshold, the firing rate grows
with the amplitude of the membrane potential modulation. There is in fact a large literature pointing
to a linear or bilinear relation between injected current and firing rate, once the current is above a
threshold level (see Stafstrom et al., 1984, and references therein).

There is however an additional experimental result that is not consistent with the view of firing rate
encoding as rectification: the spike rate encoder has notable dynamic properties (Carandini et al.,
1996). For example, cortical neurons typically exhibit spike frequency adaptation, meaning that the
firing rate response to steady depolarization decreases with time (Stafstrom et al., 1984). Dynamic
properties of spike encoding are also evident in Figure 11. Figure 11B illustrates the temporal
frequency tuning of the first harmonic of the spike train taken from records like the ones in Panel
A. It is clear that spike rate encoding is not at all independent of the temporal frequency of the
stimulus, as would be the case for rectification. The middle temporal frequencies are transmitted
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much better than the low temporal frequencies, and the very high temporal frequencies are
completely cut off.

Rectification cannot account for these behaviors because it is a static nonlinearity, i.e., it depends
only on the instantaneous value of its argument. Strictly speaking, then, rectification is incorrect,
because it would predict that the spike encoding properties would not depend on the past history of
stimulation. Hence, we are forced to adopt a slightly more complicated model of spike rate
encoding. In particular, we model the spike rate encoder as a band-pass filter followed by
rectification*.

The behavior of this spike encoder model is actually quite simple when incorporated into the linear
model of simple cells. In the full model, the spike rate encoder comes after a (synaptic) linear
spatiotemporal weighting function. Since a chain of linear systems is itself a linear system, we can
treat the band-pass (spike encoder) linear filter and the (synaptic) spatiotemporal linear weighting
function as a single linear system. The weighting function of this final system is partly due to the
synaptic inputs and partly to the band-pass properties of the firing rate encoder.

5 Some Nonlinear Properties of Simple Cells

Having described the linear model of simple cells, and having discussed its numerous successes
and its possible biophysical implementation, it is now the time to discuss its failures. We have
already encountered a number of occasions in which the linear model fails to yield precise
quantitative predictions. Indeed, the behavior of simple cells is in many ways nonlinear (see
Heeger, 1993, 1992b for a review). This Section describes some of these nonlinearities, which will
be discussed more quantitatively once we have introduced the normalization model.

5.1 Contrast Responses

 ** Figure 12 About Here **

Presented with a change in contrast, a linear neuron would scale its response by the same amount.
The responses of a simple cell, instead, are often not proportional to stimulus contrast. An example
of this is illustrated in the central column of Figure 12A, which shows the spike histograms of a
simple cell in response to a drifting grating. The different rows correspond to different contrasts. As
the contrast doubles from 50% to 100%, the response does not double. Instead it grows very little.
This phenomenon is known as response saturation (Sclar et al., 1990; Albrecht and  Hamilton,
1982; Dean, 1981; Maffei and Fiorentini, 1973). Cells can even exhibit “supersaturation”, in which
increasing the contrast of the stimulus reduces the amplitude of the responses (Bonds, 1991; Li and
Creutzfeldt, 1984).

Response saturation is not due to the high firing rates. This can also be seen in Figure 12. The three
columns in Panel A show the responses of a cell to three gratings of different spatial frequency.
Even though the left column and the right column stimuli elicit fewer spikes than the central
column stimulus, there clearly is response saturation. This phenomenon thus depends on the
contrast of the stimulus per se, not on the amplitude of the responses it elicits in the cell. This
property of the contrast responses can be more precisely observed in Panel B, which shows the
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amplitude of the responses shown in Panel A, as a function of contrast. In spite of the amplitude
saturation the three contrast responses are vertical shifts of each other. Since the vertical axis is
logarithmic, a vertical shift means that the ratio of the responses to any two different spatial
frequencies is constant, irrespective of the stimulus contrast.

 ** Figure 13 About Here **

Another way to express this property is to say that the shape of the spatial frequency tuning curve is
independent of the contrast at which it is measured. Changing the contrast of the stimuli just scales
the tuning curve. This has been observed for both spatial frequency tuning and orientation tuning
(Skottun et al., 1987; Li and Creutzfeldt, 1984; Albrecht and Hamilton, 1982; Sclar and  Freeman,
1982; Movshon et al., 1978a). An example of the contrast invariance of the orientation tuning is
shown in Figure 13.

The contrast independence of the tuning curve shapes would be easy to explain if the contrast
responses of simple cells were linear. The responses of a linear cell to two stimuli S1,S2 with the
same contrast c could be written as c L(S1) and c L(S2) . Their ratio would be L(S1)/L(S2),
independent of the contrast c. We have seen, however, that the contrast responses of real simple
cells are nonlinear, since they often saturate at high contrasts. The contrast independence of the
tuning curves is thus by no means a trivial property.

5.2 Nonspecific Suppression

The response to a preferred stimulus can be suppressed by superimposing an additional stimulus
that would not elicit any response when presented alone. This phenomenon is a violation of
superposition, a defining property of linearity. We call it nonspecific suppression, as it has been
found to be independent of direction of motion, largely independent of orientation and broadly
tuned for spatial and temporal frequency (Carandini et al., 1997b; DeAngelis et al., 1992; Geisler
and  Albrecht, 1992; Nelson, 1991; Bonds, 1989; Gulyas et al., 1987; De Valois et al., 1985; Kaji
and  Kawabata, 1985; Li and Creutzfeldt, 1984; De Valois et al., 1982b; Morrone et al., 1982;
Hammond and  MacKay, 1981; Dean et al., 1980; Bishop et al., 1973). After some debate, there is
now consensus that cross-orientation inhibition can be driven dichoptically (with one grating in
each eye), although monoptic suppression (with both gratings in the same eye) is typically stronger
than dichoptic suppression. (Walker et al., 1996; Sengpiel et al., 1995; Sengpiel and  Blakemore,
1994; DeAngelis et al., 1992; Freeman et al., 1987; Ohzawa and  Freeman, 1986; Ferster, 1981)

Suppression is absent in monkey P LGN and cat LGN (Movshon et al., 1994; Bonds, 1989), so its
origins are most likely cortical. The temporal properties of suppression are consistent with the view
that it originates from complex cells or from a large pool of simple cells. Indeed, the suppression
elicited by a drifting grating is not modulated in time (Bonds, 1989; Morrone et al., 1982), and the
suppression elicited by a contrast-modulated grating modulates at twice the frequency of the
stimulus (Morrone et al., 1982).

 ** Figure 14 About Here **

Figure 14 shows an example of nonspecific suppression. The stimulus was a plaid made of two
gratings. One (the “test”) drifted in the cell's preferred direction and evoked a large response when
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presented on its own. The other grating (the “mask”) drifted at right angles with the test grating,
and was ineffective in driving the cell. Its presence, however, clearly suppressed the responses. For
example, when the mask contrast was 50% the cell responded only when the test grating had high
contrast.

From Figure 14B one can see that the presence of the mask shifts the contrast response to the right
(Bonds, 1989). This corresponds to a scaling of contrast (Heeger, 1992b). We will see later that the
contrast responses shift to the right only when the cell is completely unresponsive to the mask. If
the cell gives even a minimal response to the mask the effect is more complicated than just a
rightward shift.

5.3 Temporal Nonlinearities

 ** Figure 15 About Here **

Simple cells display prominent temporal nonlinearities. Figure 15A provides a good example of
this. As the stimulus contrast increases, the responses occur earlier in time. This is called phase
advance (Carandini et al., 1997b; Albrecht, 1995; Carandini and Heeger, 1994; Dean and Tolhurst,
1986). It is a nonlinearity because for a linear cell scaling the input would just scale the output, not
change its timing. Phase advance is not entirely cortical in origin, but has a strong cortical
component. Phase advance in cat LGN (measured with 2-5 Hz stimuli) is on average less than 20
ms (Carandini et al., 1993), whereas phase advance in cat V1 (measured with 2 Hz stimuli) is on
average around 47 ms (Dean and Tolhurst, 1986). In the monkey LGN, phase advance is present in
M cells, but completely absent in P cells (Sherman et al., 1984).

Another temporal nonlinearity of simple cells was uncovered by Reid et al. (1992). They measured
the responses of cat simple cells to eight different stimuli and to the compound stimulus obtained
by summing the eight stimuli. They found that the responses to the compound stimulus occur
earlier in time than the linear prediction obtained from the responses to the individual stimuli. This
decrease in “integration time” is quite prominent, in the range of 5-60 ms, and there is evidence that
its origin is cortical (Reid et al., 1992).

Finally, a third temporal nonlinearity of simple cell responses is given by the contrast dependence
of their temporal frequency tuning (Holub and Morton-Gibson, 1981). In particular, increasing
stimulus contrast increases the cell's responsivity to the high temporal frequencies (Hawken et al.,
1992). An example of this is shown in Figure 15B. According to the linear model increasing the
contrast should just scale the responses, with no effect on their temporal frequency tuning. The
origins of this nonlinear behavior are partially subcortical, since it was observed in the cat retina
(Shapley and Victor, 1978) and in the monkey M LGN (Benardete et al., 1992). There is however
evidence that in the monkey this behavior is much stronger in V1 than in the LGN. Measurements
by M. J. Hawken et al. (1992 and personal communication) indicate that on average the high-cutoff
frequency of V1 cells changes from around 10 Hz at 8-16% contrast to around 30 Hz at 64%
contrast. By contrast, the average change in high-cutoff frequency of LGN cells is negligible.
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6 The Normalization Model of Simple Cells

We have now seen many cases in which the linear model is an inadequate description of simple
cells. Given its numerous successes, however, it would be unwise to dispense with the linear model
altogether. The linear model can be extended by endowing it with a mechanism that controls the
gain (sensitivity to input) and the time course of the cell responses (Carandini et al., 1997b;
Carandini and Heeger, 1994; Heeger, 1993; Heeger, 1992b; Albrecht and Geisler, 1991; Heeger,
1991; Robson, 1988). This mechanism ensures that the gain decreases when the contrast of a
stimulus is increased, or when another stimulus is superimposed to it.

This is done in the normalization model (Heeger, 1992b), depicted in Figure 1B. First comes a
spatiotemporal linear weighting function. This is followed by a normalization stage, where each
cell's linear response is divided by a quantity proportional to the pooled activity of a large number
of other cells (the normalization pool). The normalization stage is followed by rectification.

Normalization is a nonlinear operation; one input (a cell's underlying linear response) is divided by
another input (the activity of the normalization pool). The normalization pool is assumed to include
cells tuned to all orientations, spatial frequencies and temporal frequencies, so that its overall
response is uniform across these parameters. The effect of normalization is that the response of
each cell is rescaled with respect to local stimulus energy. The name “normalization” is due to the
assumption that the gain of every cell in the pool is rescaled by the same amount (“normalized”).

The normalization model explains all the nonlinearities described in the previous Section, while
retaining the main features of the linear model. According to the normalization model, a cell's
selectivity is attributed to summation (the linear stage) and its nonlinear behavior is attributed to
division (the normalization stage). For example the model explains cross-orientation inhibition
because a given cell is suppressed by many other cells including those with perpendicular
orientation tunings. It explains response saturation because the divisive suppression increases with
stimulus contrast.

The rest of this Section is devoted to the description of a biophysical implementation of the
normalization model. Once the details of the model are laid out, one can derive closed-form
equations for the responses of the model to some types of visual stimulus. Section 7 will show how
these closed-form equations perform in fitting the experimental data.

6.1 Shunting Inhibition

 ** Figure 16 About Here **

We hypothesize that normalization (division) acts by controlling the overall conductance of the
cell's membrane (Carandini et al., 1997b; Carandini and Heeger, 1994). Figure 16 shows the
biophysical structure of the model. The circuit depicted is identical to the linear model shown in
Figure 10, with the addition of a shunting synaptic conductance, gshunt. The shunting conductance
has the property that its equilibrium potential Vshunt is the same as the resting potential of the cell,
Vrest (Coombs et al., 1955; Fatt and  Katz, 1953). For ease of notation we pick this value as the
origin of the membrane potential measurements:
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(5) Vshunt = Vrest = 0

The membrane potential in the circuit shown in Figure 16 obeys the following equation:

(6) ( ) ( ) ( ) ( ) dleakleakshuntshuntiiee IgVVVgVVgVVgVVg
dt
dVC −=−+−+−+−=−

where g is the total conductance, and Id is what we call the driving current*:

leakleakshuntshuntiieed

leakshuntie

VgVgVgVgI
ggggg
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Since ge and gi are in push-pull arrangement (Equation (4), in Section 4.4), and the equilibrium
potential of the shunt is equal to the resting potential of the cell (Equation (5)), the above equations
can be rewritten as

leakleakiieed

shunt

VgVgVgI
ggg

++≡
+≡ 0

As a result, current and conductance are decoupled: the driving current Id is a linear function of the
excitatory and inhibitory inputs ge and gi and does not depend on the shunt conductance gshunt. The
overall conductance g of the cell does not depend on the excitatory and inhibitory inputs ge and gi
and is completely controlled by the shunt conductance gshunt.

6.2 Role of the Membrane Conductance

 ** Figure 17 About Here **

We now make a crucial hypothesis: that the shunt conductance gshunt grows with the activity of the
normalization pool. The exact relation that we hypothesize between the two is depicted in Figure
17A. This relation is entirely ad hoc: it was chosen so that it would allow us to solve the model
mathematically, and it is not based on experimental data. Its principal consequence is that the
conductance of a model cell will depend on the energy of the visual stimuli. Increasing the energy
of a stimulus, e.g. by increasing its contrast, will increase the activity of the cells belonging to the
normalization pool, and thus cause an increase in cell conductance.

The membrane conductance g, in turn, determines the cell's gain which is the relation between
input Id and output V. At steady state the gain is V/Id = 1/g , inversely proportional to the
conductance. The conductance also has an effect on the time course of the response. The membrane
capacitance takes time to charge and discharge, and this time is proportional to the membrane time
constant τ = C/g, which is also inversely proportional to the conductance. Figure 17B illustrates
these concepts. It shows the responses of the membrane to a current step, for three values of the
conductance g. If the conductance is very small, the response is slow and there is high gain (that is,
the voltage response to a given current is high). If the conductance g is very large (the membrane is
very leaky), it has small gain and it is fast in charging and discharging the capacitance.
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To summarize, increasing the stimulus energy increases the conductance of model cells. This has
two effects: (1) it provides divisive inhibition, by reducing the cell's gain; and (2) it shortens the
latency of the responses, by reducing the cell's time constant.

7 Testing the Normalization Model

The variables in the model depend on each other in a circular way: (1) each cell's firing rate
depends on its membrane potential (Figure 5); (2) each cell's membrane potential depends on its
driving current and on its conductance (Equation (6)); (3) each cell's conductance depends on the
firing rates of the cells in the normalization pool (Figure 17A). The model is a nonlinear neural
network (Grossberg, 1988), and is in general quite complicated because both the driving current
and the conductance vary over time. As a consequence,  to predict its responses one is often forced
to resort to computer simulations (Heeger, 1993; Heeger, 1992b).

For drifting sine grating and plaid stimuli, however, we were able to solve the model and derive
closed-form equations for its responses (Carandini et al., 1997b; Carandini and Heeger, 1994). In
fact the model was designed with these equations in mind. The advantage of closed-form equations
is that we can fit them to the data and see how the model performs.

7.1 Fitting the Grating Responses

We derived two equations for the first harmonic responses to drifting gratings, one for response
amplitude and one for response phase. These equations are detailed in (Carandini et al., 1997b),
which also contains a sketch of their derivation.

Here we concentrate on the expression for the response amplitude, which is:

(7) 
( )

n

cf

c
LamplitudeRamplitude













+
∝

22
)()(

σ
,

where c is the contrast of the grating, and f is its temporal frequency. The role of the quantities L,
σ(f), and n is easy to understand if one keeps in mind the structure of the model (Figure 1B). L(t) is
the output of the cell's linear weighting function (Equation 1) when the grating has unit contrast. It
is a sinusoid; here we are concerned only with its amplitude, which for a stimulus of contrast c is
[amplitude(L) c]. The normalization stage divides that by a quantity that depends on the activity of
a large number of neurons. In (Carandini et al., 1997b) we show that for drifting grating stimuli this

quantity is ( ) 22 cf +σ , where the function σ(f) is related to the low-pass properties of the cell
membrane. It grows with f, the temporal frequency of the stimulus. Finally, the exponent n is a
constant and is related to the rectification stage that encodes the membrane potentials into firing
rates.

Equation (7) is very similar to one that was empirically found to fit V1 contrast responses (Sclar et
al., 1990; Albrecht and Hamilton, 1982). The model however does more than that: it predicts the
dependence of the responses on all the other stimulus parameters, besides contrast: spatial
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frequency, temporal frequency and orientation. To test these predictions we used the model to fit
large data sets obtained by stimulating simple cells with drifting gratings of a variety of contrasts,
spatial frequencies, temporal frequencies and orientations (Carandini et al., 1997b; Carandini and
Heeger, 1994). Some of our results are shown in Figures 12, 13 and 15. We found that the model
provides good fits to the data, and accounts quantitatively for all the linear and nonlinear behaviors
described in this Chapter.

Figure 12 illustrates the dependence of the responses of a simple cell on contrast and spatial
frequency. The fits of the model capture the shape of the contrast responses and the fact that
changing the stimulus spatial frequency simply scales these responses. This means that when the
amplitude is plotted on a logarithmic scale, as in Panel B, changes in spatial frequency shift the
contrast responses vertically, without affecting their shape. Very similar results are obtained when
the gratings are varied in orientation instead of spatial frequency, as shown for example in Figure
13A (Section 5.1).

The reason for this behavior can be understood by considering the expression for the response
amplitude predicted by the model (Equation (7)). The expression can be seen as the product of two

factors, [ ]nLamplitude )(  and ( )
n

cfc 



 + 22/ σ . The first factor depends on L, the response of the

cell's linear receptive field to the grating at unit contrast. The second factor depends only on the
contrast c and on the temporal frequency f of the grating. For a fixed temporal frequency the shape
of the contrast responses is entirely controlled by the second factor; hence, varying stimulus
orientation or spatial frequency leads to a vertical shift of the contrast responses (Figs. 12B and
13A). Likewise, the shape of the orientation and spatial frequency tuning curves is entirely
controlled by the first factor, hence, varying stimulus contrast leads to a vertical shift of the
orientation and spatial frequency tuning curves (Fig. 13B).

Figure 13 shows that the normalization model also predicts the temporal nonlinearities of simple
cell responses (Section 5.3). Panel A shows that the model captures the phase advance behavior
observed with increasing stimulus contrast. Panel B shows that the normalization model correctly
predicts the dependence of the temporal frequency tuning on contrast. As the contrast increases the
cell is more responsive to the high temporal frequencies. The reason for the contrast-dependence of
response phase and of the cell's temporal frequency tuning can be understood in terms of the basic
properties of the normalization model (Figure 17). In model cells, increasing stimulus contrast
increases the membrane conductance, which decreases its time constant. A decreased time constant
leads to a shorter response latency, thus explaining phase advance. Decreasing the time constant
also enables the membrane potential to better follow the high temporal frequencies. This explains
the fact that at high contrast the cell responds to higher temporal frequencies than at low contrast.
This last argument can be made more quantitative by examining Equation (7). As a consequence of
the low-pass properties of the membrane, the quantity σ(f) grows with the temporal frequency f of
the stimulus (Carandini et al., 1997b). At low contrasts c, σ has a strong effect, considerably
scaling down the responses. At high contrasts, when c >> σ(f), the effect is much weaker, so the
high frequency responses are relatively enhanced.
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7.2 Fitting the Plaid Responses

Similar approximate equations can be derived for the amplitude and phase of the first harmonic
response to plaid stimuli (Carandini et al., 1997b). In particular, the expression for response
amplitude is
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where c1 and c2 are the contrasts of the two gratings, L1(t) and L2(t) are the sinusoidal responses of
the linear weighting function to the individual gratings at unit contrast, and the remaining symbols
have the same meaning as in the expression for the response to individual gratings (Equation (7)).
Since the spatiotemporal receptive field is linear, its response to the plaid is just a linear
combination of its responses to the individual gratings, c1 L1(t) + c2 L2(t). The normalization stage
divides that by a quantity that depends on the activity of a large number of neurons. For plaids

composed of two gratings this quantity is ( ) 2
2

2
1

2 ccf ++σ  (Carandini et al., 1997b). Finally, the
rectification stage is responsible for the exponent n (Figure 5).

We tested the predictions of the model by recording the responses of simple cells to stimuli
composed of two gratings whose contrasts c1 and c2 assumed a variety of different values
(Carandini et al., 1997b). The two gratings always had the same temporal frequency, but could
differ in orientation and/or in spatial frequency.

Figure 14 shows an example of our results. In this case we chose the gratings so that one of them
(the “test”) would strongly drive the cell, while the other (the “mask”) would not elicit any
response when presented alone. The Figure shows the responses of the cell for 5 different test
contrasts, and three different mask contrasts. The cell was actually tested with a wider variety of
conditions, and the predictions of the model (Equation (8) for response amplitude, and an equation
for response phase described in (Carandini et al., 1997b)) were fit to all the responses at once.
When we discussed nonspecific suppression (Section 5.2), we used this Figure as an example of the
rightward shift of the contrast responses that results from masking. It is clear from the quality of the
fits that the normalization model captures this behavior. Indeed, the effect of a mask on the
responses of a model cell can be seen directly in Equation (8). Let for example grating 2 be the
“mask”. If, as in Figure 14, the mask alone does not elicit any response (L2 ≈ 0), then the
suppressive effect of the mask is due to the fact that c2, the mask contrast, appears only in the
denominator. In these conditions, the effect of an increase of c2 in the denominator is to shift the
contrast response to the right (Heeger, 1992b).

** Figure 18 About Here **

Things become more complicated when both gratings that compose the plaid are able to drive the
cell (even minimally) when presented alone. In these conditions each component of the plaid acts
both as a “test” and as a “mask”. An example of this is shown in Figure 18. In this experiment, the
“mask” was not as effective as the “test” in driving the cell, but both component gratings did elicit
some spikes when presented alone. Panel B shows that depending on the contrast of the stimulus,
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increasing the contrast of the mask can either enhance or suppress the responses. This behavior is
predicted by the normalization model (continuous curves), as the contrasts of the two gratings, c1
and c2, appear both in the numerator and in the denominator of Equation (8). Increasing one of the
two can result either in an enhancement or in a reduction in the response, depending on the
amplitude and phases of L1 and L2, the responses of the linear receptive field to the individual
gratings, and on the size of the term σ(f) in the denominator.

In summary, masking will cause the rightward shift in the contrast responses shown in Figure 14
only if the mask elicits negligible responses when presented alone. The normalization model
predicts that in the general case masking will deform the contrast responses in more complicated
ways, like that shown in Figure 18. Some researchers have indeed reported that suppression shifts
the contrast responses downward on a logarithmic scale (Morrone et al., 1982; Dean et al., 1980),
which is in apparent contradiction with the rightward shift reported by others (Section 5.2). The
normalization model might explain this discrepancy: if the mask elicits even minimal
(subthreshold) responses when presented alone, it may very well cause a downward shift in the
contrast responses. The importance of “crosstalk” between different components of a stimulus has
been previously recognized (Bonds, 1992; Bauman and  Bonds, 1991), and the normalization
model may provide a quantitative framework to understand these interactions.

8 Biophysical Plausibility of the Normalization Model

The two models that we have described in this Chapter call for the existence of two different kinds
of inhibitory inputs to V1 simple cells. The linear model postulates hyperpolarizing inhibition with
the same selective tuning properties as the excitation. This inhibition is needed to ensure the
linearity of the simple cell responses (Section 4). The normalization model in addition postulates
shunting inhibition originating from a large number of cortical units. This nonselective shunting
inhibition is responsible for controlling the cell's gain (Section 6). While the existence of the first
(hyperpolarizing) kind of inhibition in the visual cortex is widely accepted, the evidence in favor of
the second (shunting) kind of inhibition is for now contradictory. This Section discusses the effects
of blocking inhibition in V1, the plausibility of nonselective inhibition, and the evidence in favor of
membrane conductance increases in the visual cortex.

8.1 Effects of Blocking Inhibition

The importance of intracortical inhibition in the normal operation of the primary visual cortex was
established by the work of Sillito and coworkers (Sillito, 1984; Sillito et al., 1980; Sillito, 1977;
Sillito, 1975). These authors blocked inhibition by iontophoresing a GABA antagonist on a region
of cortex in the vicinity of the recording electrode. Blocking GABA strongly enhances the
responses of V1 cells and dramatically broadens their orientation tuning curves. Based on these
results, it was concluded that the orientation tuning of a cell is substantially sharpened by cross-
orientation inhibition. This conclusion, however, appears to premature: blocking inhibition
simultaneously in a large number of cortical cells greatly increases the responsiveness of all those
cells, not just the one being recorded. This may bring that region of cortex close to epileptogenesis
(Chagnac-Amitai and  Connors, 1989). It is not entirely clear, therefore, how Sillito's results should
be interpreted in the context of the tuning of single V1 cells.
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A more focused blockade of inhibition was performed by Crook and Eysel (1992). These authors
found that in cat area 18 a block of inhibition from cross-orientation sites broadens the orientation
tuning, while a block of inhibition from iso-orientation sites increases response magnitude. This
suggests that under normal conditions the cells receive inhibitory inputs from sites tuned to a wide
variety of orientations. This nonspecific inhibition could be mediated by basket cells, which are
GABAergic, and are considered to provide inhibition to cells tuned for all orientations (Kisvárday
and  Eysel, 1993; Kisvárday et al., 1993).

Nelson et. al. (1994) have recently been able to perform an extremely focused blockade of
inhibition. They recorded intracellularly from a neuron while blocking inhibition to only that one
cell. Blocking inhibition under these circumstances does not lead to a substantial change in
orientation tuning. The normalization model is generally consistent with this result. According to
the normalization model, blocking inhibition in a simple cell would destroy both the underlying
linearity and the gain control (normalization), but it would not have much of an effect on
selectivity. This is because neither the shunting (normalization) inhibition nor the hyperpolarizing
(linear) inhibition are critical for selectivity.

Removing the shunting inhibition corresponds to setting gshunt=0 in the model. This would turn a
cell described by the normalization model into one described by the linear model. It would result in
the complete loss of the gain control mechanism. But the cell's selectivity would be largely
unaffected because the selectivity is set up by the underlying linear spatiotemporal weighting
function.

Removing the hyperpolarizing inhibition corresponds to setting gi=0. This would interfere with the
linearity of the cell. Indeed, in our model the exact balance of excitation and inhibition (Equation 4)
is an essential condition for the linear integration of the synaptic inputs. On the other hand,
removing the hyperpolarizing inhibition would have little influence on the cell's tuning curves.
Note that the excitatory inputs alone would still provide differential responses for stimuli in the ON
and OFF subregions of a simple cell's receptive field; flashing a light in an ON subregion would
evoke increased excitation and flashing a light in an OFF subregion would cause a withdrawal of
excitation. Instead of Equation 3 the membrane potential would obey V=(geVe+gleakVleak)/(ge+gleak),
which is a nonlinear (saturating) function of the synaptic excitation ge. The cell's tuning would be a
distorted version of that provided by the excitatory inputs. The distortion would only be noticeable
if the excitatory inputs were large enough to approach saturation. But even then the distortion
would be subtle; saturation would result in tuning curves with broader/flatter tops and steeper
flanks.

8.2 Evidence for Shunting Inhibition

Shunting inhibition is a widely cited proposal for how neurons might perform division (Koch and
Poggio, 1987; Coombs et al., 1955; Fatt and Katz, 1953). Its defining property is that it does not
introduce any current when the cell is at rest, thus affecting only the cell's overall conductance.
Shunting inhibition is usually thought to operate through GABAA synaptic channels, permeable to
Chloride ions, because the equilibrium potential of Chloride is close to the resting potential of a
typical cell.
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There is evidence that there are strong inhibitory circuits in the cortex, and that these circuits
operate through GABA-mediated shunting inhibition. A seminal study by Krnjevic and his
colleagues (Dreifuss et al., 1969) showed that electrical stimulation of the cortical surface produces
very large (up to 300%) increases in membrane conductance, and that similar effects are obtained
by iontophoretic application of GABA. In addition, Rose (1977) showed that iontophoresing
GABA over V1 cells yields divisive effects on their visual responses. Cortical neurons are known
to have GABAA receptors, which may be under a constant barrage of synaptic input originating
from nearby cortical cells (Salin and  Prince, 1996a; 1996b).

The normalization model predicts that a cell's conductance should increase with contrast. To
evaluate how substantial these increases would be, we measured responses of a sample of simple
cells for grating stimuli of a variety of temporal frequencies, contrasts and orientations and/or
spatial frequencies (Carandini et al., 1997b). We fit the data with the normalization model and used
the best-fit parameters to estimate the time constants predicted by the model for zero contrast
(uniform gray field) and full contrast gratings. The estimated time constants for a zero contrast
stimulus generally varied between 10 and 100 ms. These time constants were estimated to drop by
around a factor of four for a full contrast grating. A fourfold drop in time constant corresponds to a
fourfold increase in conductance. Even higher increases in conductance were predicted from other
data sets in which plaids or flickering noise masks were employed (Carandini et al., 1997b). These
large conductance increases are unlikely to be realistic.

Our estimates of the conductance changes are based on extracellular data, and are surely inflated by
our assumption that LGN cells are perfectly linear. As mentioned in Section 4.1, both cat LGN and
monkey M LGN cells exhibit a gain control that is in some ways similar to what we have been
ascribing entirely to simple cells. In addition, there is evidence for active, non-linear processing in
the dendrites (e.g. calcium spikes, Hirsch et al., 1995). Including these factors in the model would
most likely allows to fit the simple cell responses while requiring smaller, possibly more realistic
conductance increases.

Intracellular in vivo studies have yielded conflicting for large conductance increases in V1 cells.
Berman et al. (1991) reported visually-driven conductance increases of less than 20%. These results
were confirmed by Ferster and Jagadeesh (1992), who measured the conductance with synaptic
current rather than with injected current. Ahmed et al. (1997) explicitly studied the dependence of
conductance on stimulus contrast, and found conductance increases of up to 30%. Large
conductance increases, as large as 300%, were reported only recently, by Borg-Graham et al.
(1998) using a voltage-clamp approach, and by Carandini et al. (1998) using steady current
injections in the current-clamp technique. The findings of this latter study are however only
partially in agreement with the normalization model, as membrane conductance was found to
depend on stimulus orientation as well as contrast, being maximal for optimal orientations. This is
at odds with the normalization model, which predicts that conductance would not depend on
stimulus contrast.

9 Conclusions

The ultimate goal of this research is to develop detailed, quantitative, predictive models of neural
function in visual cortex. We will have succeeded when we can record from a neuron while
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presenting a basic set of visual stimuli (to measure model parameters) and then be able to hope to
understand the neural basis of perceptual appearance.

We have presented two models of V1 simple cells. The first, the linear model, accounts for the
cells' selectivity but fails when the stimulus energy (or contrast) is varied. The second, the
normalization model, overcomes this limitation by endowing the linear model with a feedback gain
control mechanism. According to the normalization model the gain of each cell is rescaled by a
quantity that grows with the overall activity of a pool of cortical neurons. This effectively
normalizes the outputs with respect to stimulus energy. We have recently tested the normalization
model, using grating and plaid stimuli, with encouraging results (Carandini et al., 1997b; Tolhurst
and Heeger, 1997a; Tolhurst and Heeger, 1997b).

Response normalization may be one of the primary roles of short-range suppression in cat and
monkey V1. V1 neurons have a limited dynamic range, a limit to how strong an output signal they
can generate and, thus, a limit to the range of contrasts over which they can respond differentially.
The normalization operation preserves essential features of the neurons' responses (spatiotemporal-
frequency tuning, orientation, and direction-selectivity in V1) while limiting the dynamic range of
their outputs. For example, the response curves (for preferred and non-preferred stimuli) in Figures
12B and 13A are vertically shifted copies of one another; since the data are plotted on a logarithmic
response scale, this means that the ratio of responses is about the same at all stimulus contrasts,
even in the face of response saturation. This invariance, which we attribute to normalization, is
critical for encoding visual information (e.g., about motion, orientation, binocular disparity, etc.)
independent of contrast.

The issue of limited dynamic range is, of course, not restricted to V1 neurons. Gain control has
been measured and modeled in a variety of other neural systems including: turtle photoreceptors
(Baylor and  Hodgkin, 1974), the vestibulo-ocular reflex (Lisberger and  Sejnowski, 1992), and the
velocity-selective neurons in the middle temporal (MT) area of the primate cortex (Simoncelli and
Heeger, 1998). In particular, the normalization model of simple cell responses is analogous to
models of retinal adaptation/normalization (Grossberg, 1988; Shapley and Enroth-Cugell, 1984;
Tranchina et al., 1984; Sperling and  Sondhi, 1968), in which the stimulus intensity at a particular
point is normalized with respect to the mean stimulus intensity. This makes the retinal response
largely independent of the overall level of illumination, and allows the brain to proceed to process
visual information without having to attend to the overall light level. Similarly, the normalization
mechanism that we propose for V1 simple cells allows the brain to process visual information
without having to attend further to contrast; the perceived orientation or motion direction of a
stimulus is indeed largely invariant with respect to contrast.

A limitation of the normalization model is that it is local in space. It was not designed to account
for the strong surround inhibition displayed by many cortical cells (Levitt and  Lund, 1996 and
references therein; DeAngelis et al., 1994; Li and  Li, 1994; Born and  Tootell, 1991; De Valois et
al., 1985; Blakemore and  Tobin, 1972). While surround suppression could in principle result from
the same mechanism that provides masking, it is not clear that its nature is divisive. Indeed, there is
evidence that in the cat divisive gain control is highly spatially selective (DeAngelis et al., 1992).
In addition some V1 neurons exhibit center-surround phenomena that are significantly more
complicated than divisive normalization: for some very specific stimulus configurations,
introducing a stimulus in the surrounding field can facilitate a neuron's response (Polat et al., 1998;
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Gilbert et al., 1996; Kapadia et al., 1995; Sillito et al., 1995; Gilbert and  Wiesel, 1990; van Essen
et al., 1989; Nelson and  Frost, 1985; Maffei and  Fiorentini, 1976). These issues are currently
under investigation in our laboratory (Cavanaugh et al., 1997).

Another limitation of the model is that it is local in time: it does not take into consideration the
phenomenon of adaptation. To some extent, adaptation can be framed within the context of the
normalization model: it can be treated as masking by assuming that gain control has a long memory
(Heeger, 1992b). It is however unlikely that adaptation operates through the same mechanism that
provides masking. First, adaptation was shown in the cat to result from a tonic hyperpolarization
(Carandini and  Ferster, 1997b), which is not observed during masking (Carandini and  Ferster,
1997a). Second, there are some adaptation results that cannot be explained simply by changing a
cell's gain. In particular, after long exposure to a high contrast grating, the response to that grating
is often reduced more than its response to other gratings, both in cats (Saul and  Cynader, 1989a;
Saul and  Cynader, 1989b; Albrecht et al., 1984; Movshon and  Lennie, 1979) and in monkeys
(Carandini et al., 1997a). It may very well be that there are additional neural circuits mediating
these phenomena.
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11 Footnotes

• Page 9. Some cells, however, are direction selective even though they have space-time
separable weighting functions (McLean et al., 1994; Emerson and Citron, 1992; McLean and
Palmer, 1989). The behavior of these cells cannot be accounted for by models like those
advocated in this Chapter, in which direction selectivity is due to an underlying spatiotemporal
linear stage.

• Page 17. An even better model for the spike rate encoder of visual cortical cells is given by the
opposite arrangement, in which rectification is followed by a band-pass linear filter (Carandini
et al., 1996). This arrangement however would make the model very hard to deal with
analytically. The two arrangements give identical first harmonic responses to sinusoidal
stimulation at a fixed temporal frequency.

• Page 21. The driving current depends on the cell's synaptic inputs, but it is independent of V,
the cell's membrane potential. The driving current could only be measured by voltage clamping
the cell. It is not the actual synaptic current, which depends on the membrane potential V.



Matteo Carandini Page 31 08/04/98

12 References

Abbott, L. F., Varela, J. A., Sen, K. and Nelson, S. B. (1997). Synaptic depression and
cortical gain control. Science, 275: 220-4.

Adelson, E. H. and Bergen, J. R. (1985). Spatiotemporal energy models for the perception
of motion. J. Opt. Soc. Am. A, 2: 284--299.

Ahmed, B., Allison, J. D., Douglas, R. J. and Martin, K. A. C. (1997). An intracellular study
of the contrast-dependence of neuronal activity in cat visual cortex. Cerebral Cortex, 7: 559-570.

Albrecht, D. G. (1995). Visual cortex neurons in monkey and cat: effect of contrast on the
spatial and temporal phase transfer functions. Vis. Neurosci., 12: 1191-1210.

Albrecht, D. G., Farrar, S. B. and Hamilton, D. B. (1984). Spatial contrast adaptation
characteristics of neurones recorded in the cat's visual cortex. J. Physiol. (London), 347: 713--739.

Albrecht, D. G. and Geisler, W. S. (1991). Motion sensitivity and the contrast-response
funtion of simple cells in the visual cortex. Vis. Neurosci., 7: 531-546.

Albrecht, D. G. and Hamilton, D. B. (1982). Striate cortex of monkey and cat: contrast
response function. J. Neurophysiol., 48: 217-237.

Andrews, B. W. and Pollen, D. A. (1979). Relationship between spatial frequency
selectivity and receptive field profile of simple cells. J. Physiol. (London), 287: 163--176.

Bauman, L. A. and Bonds, A. B. (1991). Inhibitory refinement of spatial frequency
selectivity in single cells of the cat striate cortex. Vision Research, 31: 933-944.

Baylor, D. A. and Hodgkin, A. L. (1974). Changes in time scale and sensitivity in turtle
photoreceptors. J. Physiol. (London), 242: 729--758.

Benardete, E. A. and Kaplan, E. (1997). The receptive field of the primate P retinal
ganglion cell. I: linear dynamics. Vis. Neurosci., 14: 169-185.

Benardete, E. A., Kaplan, E. and Knight, B. W. (1992). Contrast gain in the primate retina:
P cells are not X-like, some M cells are. Vis. Neurosci., 8: 483-486.

Ben-Yishai, R., Or, R. L. B. and Sompolinsky, H. (1995). Theory of orientation tuning in
the visual cortex. Proc. Natl. Acad. Sci., 92: 3844-3848.

Berman, N. J., Douglas, R. J., Martin, K. A. C. and Whitteridge, D. (1991). Mechanisms of
inhibition in cat visual cortex. J. Physiol. (London), 440: 697--722.

Bishop, P. O., Coombs, J. S. and Henry, G. H. (1973). Receptive fields of simple cells in the
cat striate cortex. J. Physiol. (London), 231: 31--60.



Matteo Carandini Page 32 08/04/98

Blakemore, C. and Tobin, E. A. (1972). Lateral inhibition between orientation detectors in
the cat's visual cortex. , 15: 439-440.

Blasdel, G. G. and Lund, J. S. (1983). Termination of afferent axons in macaque striate
cortex. J. Neurosci., 3: 1389-1413.

Blomfield, S. (1974). Arithmetical operations performed by nerve cells. Br. Res., 69: 115-
124.

Bonds, A. B. (1989). Role of inhibition in the specification of orientation selectivity of cells
in the cat striate cortex. Vis. Neurosci., 2: 41--55.

Bonds, A. B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate
cortex. Vis. Neurosci., 6: 239-255.

Bonds, A. B. (1992). Spatial and temporal nonlinearities in receptive fields on the cat striate
cortex. In R. B. P. a. B. Nabet (Ed.), Nonlinear vision, .

Borg-Graham, L. J., Monier, C. and Frégnac, Y. (1998). Visual input evokes transient and
strong shunting inhibition in visual cortical neurons. Nature, In press.

Born and Tootell. (1991). Single-unit and 2-deoxyglucose studies of side inhibition in
macaque striate cortex. Proc. Natl. Acad. Sci., 88: 7071-7075.

Carandini, M., Anderson, J. and Ferster, D. (1998). Tuning of membrane conductance
changes in simple cells of the cat striate cortex. Soc. Neurosci. Abs., 24.

Carandini, M., Barlow, H. B., O'Keefe, L. P., Poirson, A. B. and Movshon, J. A. (1997a).
Adaptation to contingencies in macaque primary visual cortex. Proc. R. Soc. Lon. B, 352: 1149-
1154.

Carandini, M. and Ferster, D. (1997a). Intracellular correlates of adaptation and masking in
cat simple cells. Inv. Opht. and Vis. Sci., 38/4: S16.

Carandini, M. and Ferster, D. (1997b). A tonic hyperpolarization underlying contrast
adaptation in cat visual cortex. Science, 276: 949-952.

Carandini, M. and Heeger, D. J. (1994). Summation and division by neurons in visual
cortex. Science, 264: 1333-1336.

Carandini, M., Heeger, D. J. and Movshon, J. A. (1993). Amplitude and phase of contrast
responses in LGN and V1. Soc. Neurosci. Abs., 19: 628.

Carandini, M., Heeger, D. J. and Movshon, J. A. (1997b). Linearity and normalization in
simple cells of the macaque primary visual cortex. J. Neurosci., 17: 8621-8644.

Carandini, M., Mechler, F., Leonard, C. S. and Movshon, J. A. (1996). Spike train encoding
in regular-spiking cells of the visual cortex. J. Neurophysiol., 76: 3425-3441.



Matteo Carandini Page 33 08/04/98

Carandini, M. and Ringach, D. L. (1997). Predictions of a recurrent model of orientation
selectivity. Vis. Res., 37: 3061-3071.

Cavanaugh, J., Bair, W. and Movshon, J. (1997). Orientation-selective setting of contrast
gain by the surrounds of macaque striate cortex neurons. Soc. Neurosci. Abstr., .

Chagnac-Amitai, Y. and Connors, B. W. (1989). Horizontal spread of synchronized activity
in neocortex and its control by   GABA-mediated inhibition. J. Neurophysiol., 61: 747-758.

Coombs, J. S., Eccles, J. C. and Fatt, P. (1955). The inhibitory suppression of reflex
discharges from motoneurones. J. Physiol. (London), 130: 396-413.

Crook, J. M. and Eysel, U. T. (1992). GABA-induced inactivation of functionally
characterized sites in cat visual cortex (area 18): effects on orientation tuning. J. Neurosci., 12:
1816-1825.

De Valois, K. K., De Valois, R. L. and Yund, E. W. (1979). Responses of striate cortex cells
to grating and checkerboard patterns. J. Physiol. (London), 291: 483--505.

De Valois, R. L., Albrecht, D. G. and Thorell, L. G. (1982a). Spatial frequency selectivity
of cells in macaque visual cortex. Vis. Res., 22: 545--559.

De Valois, R. L., Thorell, L. G. and Albrecht, D. G. (1985). Periodicity of striate-cortex-cell
receptive fields. J. Opt. Soc. Am. A, 2: 1115--1123.

De Valois, R. L., Yund, E. W. and Hepler, N. (1982b). The orientation and direction
selectivity of cells in macaque visual cortex. Vis. Res., 22: 531--544.

Dean, A. F. (1981). The relationship between response amplitude and contrast for cat striate
cortical neurones. J. Physiol. (London), 318: 413--427.

Dean, A. F., Hess, R. F. and Tolhurst, D. J. (1980). Divisive inhibition involved in direction
selectivity. J. Physiol. (London), 308: 84p--85p.

Dean, A. F. and Tolhurst, D. J. (1983). On the distinctness of simple and complex cells in
the visual cortex of the cat. J. Physiol. (London), 344: 305--325.

Dean, A. F. and Tolhurst, D. J. (1986). Factors influencing the temporal phase of response
to bar and grating stimuli for simple cells in the cat striate cortex. Exp. Br. Res., 62: 143--151.

DeAngelis, G. C., Freeman, R. D. and Ohzawa, I. (1994). Length and width tuning of
neurons in the cat's primary visual cortex. J. Neurophysiol., 71: 347-374.

DeAngelis, G. C., Ohzawa, I. and Freeman, R. D. (1993a). Spatiotemporal organization of
simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal
development. J. Neurophysiol.,  69: 1091-1117.



Matteo Carandini Page 34 08/04/98

DeAngelis, G. C., Ohzawa, I. and Freeman, R. D. (1993b). Spatiotemporal organization of
simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial
summation. J. Neurophysiol.,  69: 1118-1135.

DeAngelis, G. C., Robson, J. G., Ohzawa, I. and Freeman, R. D. (1992). The organization
of supression in receptive fields of neurons in cat visual cortex. J. Neurophysiol., 68: 144-163.

deBoer, E. and Kuyper, P. (1968). Triggered correlation. IEEE Trans. Biomed. Eng., 15:
169-179.

Derrington, A. M. and Lennie, P. (1984). Spatial and temporal contrast sensitivities of
neurons in lateral geniculate nucleus of macaque. J. Physiol. (Lond.), 357: 219-240.

Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. and Suarez, H. H. (1995).
Recurrent excitation in neocortical circuits. Science, 269: 981-985.

Dreher, B., Fukuda, Y. and Rodieck, R. W. (1976). Identification, classification and
anatomical segregation of cells with X-like and Y-like propoerties in the LGN of old world
monkeys. J. Physiol. (Lond.), 258: 433-452.

Dreifuss, J. J., Kelly, J. S. and Krnjevic, K. (1969). Cortical inhibition and gamma-
amminobutirric acid. Exp. Br. Res., 9: 137-154.

Einstein, G., Davis, T. L. and Sterling, P. (1987). Ultrastructure of synapses from the A-
laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex. J. Comp. Neurol., 260:
63-75.

Emerson, R. C. (1988). A linear model for symmetric receptive fields: Implications for
classification test with flashed and moving images. Spatial Vision, 3: 159--177.

Emerson, R. C. and Citron, M. C. (1992). Linear and nonlinear mechanims of motion
selectivity in simple cells of the cat's striate cortex. In R. B. Pinter and B. Nabet (Eds.), Nonlinear
Vision: Determination of Neural Receptive  Fields, Function and Networks, (pp. 75-89). Boca
Raton: CRC PRess.

Enroth-Cugell, C. and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells
of the cat. J. Physiol. (Lond.), 187: 517-552.

Enroth-Cugell, C. and Robson, J. G. (1984). Functional characteristics and diversity of cat
retinal ganglion cells. Inv. Opht. and Vis. Science, 25: 250-267.

Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E. and Watson, A. B. (1983). Spatio-
temporal interactions in cat retinal ganglion cells showing linear   spatial summation. J. Physiol.
(London), 341: 279--307.

Fahle, M. and Poggio, T. (1981). Visual hyperacuity: spatiotemporal interpolation in human
vision. Proc. Roy. Soc. Lon. B, 213: 451--477.



Matteo Carandini Page 35 08/04/98

Fatt, P. and Katz, B. (1953). The effect of inhibitory nerve impulses on a crustacean muscle
fiber. J. Physiol. (Lond.), 121: 374-389.

Ferster, D. (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of the
cat visual cortex. J. Physiol. (London), 311: 623--655.

Ferster, D. (1986). Orientation selectivity of synaptic potentials in neurons of cat primary
visual cortex. J. Neurosci., 6: 1284-1301.

Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat
visual cortex. J. Neurosci., 8: 1172--1180.

Ferster, D. (1990a). Binocular convergence of synaptic potentials in cat visual cortex. Vis.
Neurosci., 4: 625-629.

Ferster, D. (1990b). X- and Y-mediated current sources in area 17 and 18 of cat visual
cortex. Vis. Neurosci., 4: 135-145.

Ferster, D., Chung, S. and Wheat, H. S. (1996). Orientation selectivity of thalamic input to
simple cells of cat visual cortex. Nature, 380.

Ferster, D. and Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied
with in vivo whole-cell patch recording. Journal of Neuroscience, 12: 1262-1274.

Ferster, D. and Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical
connectivity in area 17 of   the cat. J. Physiol. (London), 342: 181--215.

Field, D. J. and Tolhurst, D. J. (1986). The structure and symmetry of simple-cell receptive
field profiles in the   cat's visual cortex. Proceedings of the Royal Society of London, B, 228: 379--
400.

Freeman, R. D., Ohzawa, I. and Robson, J. G. (1987). A comparison of monocular and
binocular inhibitory processes in the visual   cortex of cat. J. Physiol. (London), 396: 69p.

Garey, L. J. and Powell, T. P. S. (1971). An experimental study of the termination of the
lateral geniculo-cortical pathway in the cat and monkey. Proc. R. Soc. Lon. B, 179: 41--63.

Gaudiano, P. (1992). A unified neural network model of spatiotemporal processing in X and
Y retinal ganglion cells I: Analytical results. biocyb, 67: 11-21.

Geisler, W. S. and Albrecht, D. G. (1992). Cortical neurons: isolation of contrast gain
control. Vis. Res., 8: 1409--1410.

Gilbert, C. D., Das, A., Ito, M., Kapadia, M. and Westheimer, G. (1996). Spatial integration
and cortical dynamics. Proc. Natl. Acad. Sci., 93: 615-622.

Gilbert, C. D. and Wiesel, T. N. (1990). The influence of contextual stimuli on the
orientation selectivity of cells   in primary visual cortex of the cat. Vis. Res., 30: 1689--1701.



Matteo Carandini Page 36 08/04/98

Gizzi, M. S., Katz, E., Schumer, R. A. and Movshon, J. A. (1990). Selectivity for
orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J.
Neurophysiol., 63: 1529-1543.

Glezer, V. D., Tscherbach, T. A., Gauselman, V. E. and Bondarko, V. E. (1980). Linear and
nonlinear properties of simple and complex receptive fields in   area 17 of the cat visual cortex.
Biological Cybernetics, 37: 195--208.

Glezer, V. D., Tscherbach, T. A., Gauselman, V. E. and Bondarko, V. E. (1982). Spatio-
temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics, 43: 35--
49.

Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms and architectures.
Neural Networks, 1: 17-61.

Gulyas, B., Orban, G. A., Duysens, J. and Maes, H. (1987). The suppressive influence of
moving textured backgrounds on responses of cat striate neurons to moving bars. J. Neurophysiol.,
57: 1767--1791.

Hammond, P. and MacKay, D. M. (1981). Modulatory influences of moving textured
backgrounds on responsiveness of simple cells in feline striate cortex. J. Physiol. (London), 319:
431--442.

Hawken, M. J., Shapley, R. M. and Grosof, D. H. (1992). Temporal frequency tuning of
neurons in macaque V1: effects of luminance contrast and chromaticity. Inv. Opht. and Vis. Sci.
(Suppl.), 33: 955.

Heeger, D. J. (1991). Nonlinear model of neural responses in cat visual cortex. In M. L. a. J.
A. Movshon (Ed.), Computational Models of Visual Processing, (pp. 119--133). Cambridge, MA.

Heeger, D. J. (1992a). Half-squaring in responses of cat simple cells. Vis. Neurosci., 9: 427-
-443.

Heeger, D. J. (1992b). Normalization of cell responses in cat striate cortex. Vis. Neurosci.,
9: 181-197.

Heeger, D. J. (1993). Modeling simple cell direction selectivity with normalized, half-
squared, linear operators. J. Neurophysiol., 70: 1885-1897.

Heggelund, P. (1981). Receptive-field organization of simple cells in cat striate cortex. Exp.
Br. Res., 42: 89--98.

Heggelund, P. (1986). Quantitative studies of the discharge fields of single cells in cat
striate   cortex. J. Physiol. (London), 373: 277--292.

Hendrickson, A. E., Wilson, J. R. and Ogren, M. P. (1978). The neuroanatomical
organization of pathways between the dorsal lateral   geniculate nucleus and visual cortex in Old
World and New World   primates. J. Comp. Neurol., 182: 123-136.



Matteo Carandini Page 37 08/04/98

Hirsch, J. A., Alonso, J. M. and Reid, R. C. (1995). Visually evoked calcium action
potentials in cat striate cortex. Nature, 378: 612-616.

Hochstein, S. and Shapley, R. M. (1976). Quantitative analysis of retinal ganglion cell
classifications. J. Physiol. (Lond.), 262: 237-264.

Holub, R. A. and Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat
to moving sinusoidal gratings: Response-contrast functions and spatiotemporal interactions. J.
Neurophysiol., 46: 1244--1259.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex. J. Physiol. (Lond.), 160: 106-154.

Hubel, D. H. and Wiesel, T. N. (1972). Laminar and columnar distribution of geniculo-
cortical fibers in macaque monkeys. J. Comp. Neurol., 146: 421-450.

Jack, J. J. B., Noble, D. and Tsien, R. W. (1975). Electric current flow in excitable cells. , .

Jagadeesh, B., Wheat, H. S. and Ferster, D. (1993). Linearity of summation of synaptic
potentials underlying direction selectivity in simple cells of the cat visual cortex. Science, 262:
1901-1904.

Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. W. and Ferster, D. (1997).
Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J. Neurophysiol.,
78: 2772-2789.

Jones, J. P. and Palmer, L. A. (1987a). An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex. J. Neurophysiol., 58: 1233-1258.

Jones, J. P. and Palmer, L. A. (1987b). The two-dimensional spatial structure of simple
receptive fields in cat striate cortex. J. Neurophysiol., 58: 1187--1211.

Jones, J. P., Stepnoski, A. and Palmer, L. A. (1987). The two-dimensional spectral structure
of simple receptive fields in cat striate cortex. J. Neurophysiol., 58: 1212--1232.

Kaji, S. and Kawabata, N. (1985). Neural interactions of two moving patterns in the
direction and orientation domain in the complex cells of cat's visual cortex. Vis. Res., 25: 749--753.

Kapadia, M. K., Ito, M., Gilbert, C. D. and Westheimer, G. (1995). Improvement in visual
sensitivity by changes in local context: Parallel   studies in human observers and in V1 of alert
monkeys. Neuron, 15: 843-856.

Kaplan, E., Purpura, K. and Shapley, R. (1987). Contrast affects the transmission of visual
information through the   mammalian lateral geniculate nucleus. J. Physiol. (London), 391: 267--
288.

Kisvárday, Z. and Eysel, U. T. (1993). Functional and structural topography of horizontal
inhibitory connections in cat visual cortex. Eur. J. Neurosci., 5: 1558-1572.



Matteo Carandini Page 38 08/04/98

Kisvárday, Z. F., Beaulieu, C. and Eysel, U. T. (1993). Network of GABA-ergic large
basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J. Comp. Neurol.,
327: 398-415.

Koch, C. and Poggio, T. (1987). Biophysics of computation: neurons, synapses and
membranes. In G. M. E. a. W. E. G. a. W. M. Cowan (Ed.), Synaptic function, .

Koch, C. and Segev, I. (1989). Methods in Neuronal modeling. , .

Kulikowski, J. J. and Bishop, P. O. (1981a). Fourier analysis and spatial representation in
the visual cortex. Experimentia, 37: 160--163.

Kulikowski, J. J. and Bishop, P. O. (1981b). Linear analysis of the responses of simple cells
in the cat visual cortex. Experimental Brain Research, 44: 386-400.

Lahica, E. A., Beck, P. D. and Casagrande, V. A. (1992). Parallel pathways in macaque
monkey striate cortex: Anatomically defined   columns in layer III. Proc. Natl. Acad. Sci., 89:
3566-3570.

Lee, B. B., Pokorny, J., Smith, V. C. and Kremers, J. (1994). Responses to pulses and
sinusoids in macaque ganglion cells. Vis. Res., 34: 3081-3096.

Levitt, J. B. and Lund, J. S. (1996). Contrast dependence of modulatory surround effects in
macaque striate   neurons. Inv. Opht. and Vis. Sci. (Suppl.), 37: S482.

Li, C. and Creutzfeldt, O. (1984). The representation of contrast and other stimulus
parameters by single neurons in area 17 of the cat. Pflugers Archives, 401: 304--314.

Li, C. and Li, W. (1994). Extensive integration beyond the classical receptive field of cat's
striate cortical neurons - classification and tuning properties. Vision Research, 34: 2337-2356.

Lisberger, S. G. and Sejnowski, T. J. (1992). Motor Learning in a recurrent network model
based on the vestibulo-ocular reflex. Nature, 360: 159-161.

Maffei, L. and Fiorentini, A. (1973). The visual cortex as a spatial frequency analyzer. Vis.
Res., 13: 1255--1267.

Maffei, L. and Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive
fields. Vision Res., 13: 1255-1267.

Maffei, L., Morrone, C., Pirchio, M. and Sandini, G. (1979). Responses of visual cortical
cells to periodic and nonperiodic stimuli. J. Physiol. (London), 296: 27--47.

Malpeli, J. G., Schiller, P. H. and Colby, C. L. (1981). Response properties of single cells in
monkey striate cortex during   reversible inactivation of individual lateral geniculate laminae. J.
Neurophysiol., 46: 1102-1119.



Matteo Carandini Page 39 08/04/98

Markram, H. and Tsodyks, M. (1996). Redistribution of synaptic efficacy between
neocortical pyramidal neurons. Nature, 382: 807-10.

Marr, D. (1970). A theory for cerebral neocortex. Proceedings of the Royal Society B, 176:
161-234.

Marr, D. (1982). Vision. San Francisco.

Mastronarde, D. (1987). Two classes of single-input X-cells in cat lateral geniculate
nucleus. I. Receptive-field properties and classification of cells. J. Neurophysiol., 57: 357-380.

Maunsell, J. H. R. and Gibson, J. R. (1992). Visual response latencies of striate cortex of the
macaque monkey. J. Neurophysiol., 68: 1332-1344.

McLean, J. and Palmer, L. A. (1988). Contribution of linear mechanisms to direction
selectivity of simple cells in area 17 and 18 of the cat. Annual Spring Meeting Of The Association
For Research In Vision And Ophthalmology, Sarasota, Florida, Usa, May, (1988).

McLean, J. and Palmer, L. A. (1989). Contribution of linear spatiotemporal receptive field
structure to velocity selectivity of simple cells in area 17 of the cat. Vision Res., 29(6): 675-679.

McLean, J., Raab, S. and Palmer, L. A. (1994). Contribution of linear mechanisms to the
specification of local motion by simple cells in areas 17 and 18 of the cat. Vis. Neurosci., 11: 295-
306.

Morrone, M. C., Burr, D. C. and Maffei, L. (1982). Functional implications of cross-
orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. Lon. B,
216: 335-354.

Movshon, J. A., Hawken, M. J., Kiorpes, L., Skoczenski, A. M., Tang, C. and O'Keefe, L.
P. (1994). Visual Noise Masking in Macaque LGN Neurons. Inv. Opht. and Vis. Sci. (Suppl.), 35:
1662.

Movshon, J. A. and Lennie, P. (1979). Pattern-selective adaptation in visual cortical
neurones. Nature, 278: 850-852.

Movshon, J. A., Thompson, I. D. and Tolhurst, D. J. (1978a). Spatial and temporal contrast
sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. (Lond.), 283: 101-
120.

Movshon, J. A., Thompson, I. D. and Tolhurst, D. J. (1978b). Spatial summation in the
receptive fields of simple cells in the cat's striate cortex. Journal of Physiology (London), 283: 53-
77.

Nealey, T. A. and Maunsell, J. H. (1994). Magnocellular and parvocellular contributions to
the responses of neurons in   macaque striate cortex. J. Neurosci., 14: 2069-79.



Matteo Carandini Page 40 08/04/98

Nelson, J. I. and Frost, B. (1985). Intracortical facilitation amoung co-oriented, co-axially
aligned simple cells in cat striate cortex. Exp. Br. Res., 6: 54-61.

Nelson, S., Toth, L., Sheth, B. and Sur, M. (1994). Orientation selectivity of cortical
neurons during intracellular blockade of inhibition. Science, 265: 774-777.

Nelson, S. B. (1991). Temporal interactions in the cat visual system I. Orientation-selective
suppression in visual cortex. J. Neurosci., 11: 344--356.

Nestares, O. and Heeger, D. J. (1997). Modeling the apparent frequency-specific
suppression in simple cell responses. Vis. Res., 37: 1535-1543.

Ohzawa, I. and Freeman, R. D. (1986). The binocular organization of simple cells in the
cat's visual cortex. J. Neurophysiol., 56: 221-242.

Palmer, L. A. and Davis, T. L. (1981). Receptive-field structure in cat striate cortex. J.
Neurophysiol., 46: 260--276.

Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. and Norcia, A. M. (1998). Collinear
stimuli regulate visual responses depending on cell's contrast threshold. Nature, 391: 580-4.

Pollen, D. and Ronner, S. (1982). Spatial computation performed by simple and complex
cells in the visual cortex of the cat. Vision Research, 22: 101--118.

Pollen, D. A., Gaska, J. P. and Jacobson, L. D. (1988). Responses of simple and complex
cells to compound sine-wave gratings. Vision Research, 28: 25--39.

Reid, R. C. and Alonso, J. M. (1995). Specificity of monosynaptic connections from
thalamus to visual cortex. Nature, 378: 281-284.

Reid, R. C., Soodak, R. E. and Shapley, R. M. (1987). Linear mechanisms of direction
selectivity in simple cells of cat striate cortex. Proc. Natl. Acad. Sci. USA, 84: 8740-8744.

Reid, R. C., Soodak, R. E. and Shapley, R. M. (1991). Directional selectivity and
spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J. Neurophysiol., 66:
505-529.

Reid, R. C., Victor, J. D. and Shapley, R. M. (1992). Broadband temporal stimuli decrease
the integration time of neuron in cat   striate cortex. Vis. Neurosci., 9: 39--45.

Robson, J. G. (1988). Linear and nonlinear operations in the visual system. Inv. Opht. and
Vis. Sci. (Suppl.), 29: 117.

Rose, D. (1977). On the arithmetical operation performed by inhibitory synapses onto the
neuronal soma. Exp. Br. Res., 28: 221-223.

Salin, P. A. and Prince, D. A. (1996a). Electrophysiological mapping of GABA-A receptor-
mediated inhibition in adult rat somatosensory cortex. J. Neurophysiol., 75: 1589-1599.



Matteo Carandini Page 41 08/04/98

Salin, P. A. and Prince, D. A. (1996b). Spontaneous GABA-A receptor-mediated inhibitory
currents in adult rat somatosensory cortex. J. Neurophysiol., 75: 1573-1588.

Saul, A. B. and Cynader, M. S. (1989a). Adaptation in single units in visual cortex: The
tuning of aftereffects in the spatial domain. Visual Neurosci., 2: 593-607.

Saul, A. B. and Cynader, M. S. (1989b). Adaptation in single units in visual cortex: The
tuning of aftereffects in the temporal domain. Visual Neurosci., 2: 609-620.

Saul, A. B. and Humphrey, A. L. (1990). Spatial and temporal response properties of lagged
and nonlagged cells in cat lateral geniculate nucleus. J. Neurophysiol., 64: 206-224.

Saul, A. B. and Humphrey, A. L. (1992). Evidence of input from lagged cells in the lateral
geniculate nucleus to simple cells in cortical area 17 of the cat. J. Neurophysiol., 68: 1190-1208.

Schiller, P. H., Finlay, B. L. and Volman, S. F. (1976). Quantitative studies of single-cell
properties in monkey striate cortex.   I. Spatiotemporal organization of receptive fields. J.
Neurophysiol., 39: 1288--1319.

Schumer, R. A. and Movshon, J. A. (1984). Length summation in simple cells of cat striate
cortex. Vis. Research, 24: 565-571.

Sclar, G. and Freeman, R. D. (1982). Orientation selectivity in the cat's striate cortex is
invariant with stimulus contrast. Exp. Brain Res., 46: 457-461.

Sclar, G., Maunsell, J. H. R. and Lennie, P. (1990). Coding of image contrast in central
visual pathways of the macaque monkey. Vision Res., 30: 1-10.

Sengpiel, F. and Blakemore, C. (1994). Interocular control of neuronal responsiveness in cat
visual cortex. Nature, 368: 847-850.

Sengpiel, F., Blakemore, C. and Harrad, R. (1995). Interocular suppression in the primary
visual cortex: a possible neural   basis of binocular rivalry. Vision Research, 35: 179-196.

Shapley, R., Reid, R. C. and Soodak, R. (1991). Spatiotemporal receptive fields and
direction selectivity. In M. L. a. J. A. Movshon (Ed.), Computational Models of Visual Processing,
(pp. 109--118). Cambridge, MA.

Shapley, R. M. and Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls.
Prog. Retinal Res., 3: 263-346.

Shapley, R. M. and Victor, J. D. (1978). The effect of contrast on the transfer properties of
cat retinal ganglion   cells. J. Physiol., 285: 275-298.

Sherman, S. M., Schumer, R. A. and Movshon, J. A. (1984). Functional cell classes in the
macaque's LGN. Soc. Neurosci. Abs., 10: 296.



Matteo Carandini Page 42 08/04/98

Sillito, A. M. (1975). The contribution of inhibitory mechanisms to the receptive field
properties   of neurones in the cat's striate cortex. J. Physiol. (London), 250: 304--330.

Sillito, A. M. (1977). Inhibitory processes underlying the directional specificity of simple,
complex, and hypercomplex cells in the cat's visual cortex. J. Physiol. (London), 271: 699--720.

Sillito, A. M. (1984). Functional considerations of the operation of GABAergic inhibitory
processes   in the visual cortex. In E. G. J. a. A. Peters (Ed.), Cerebral Cortex. vol 2. Functional
Properties of Cortical Cells, (pp. 91--117). New York.

Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. and Davis, J. (1995). Visual cortical
mechanisms detecting focal orientation discontinuities. Nature, 378: 492-496.

Sillito, A. M., Kemp, J. A., Milson, J. A. and Berardi, N. (1980). A re-evaluation of the
mechanisms underlying simple cell orientation selectivity. Brain Res., 194: 517-520.

Simoncelli, E. P. and Heeger, D. J. (1998). A model of neuronal responses in visual area
MT. Vision Res, 38: 743-61.

Skottun, B. C., Bradley, A., Sclar, G., Ohzawa, I. and Freeman, R. (1987). The effects of
contrast on visual orientation and spatial frequency discrimination:  a comparison of single cells
and behavior. J. Neurophysiol., 57: 773-786.

Somers, D. C., Nelson, S. B. and Sur, M. (1995). An emergent model of orientation
selectivity in cat visual cortical simple cells. J. Neurosci., 15: 5448-5465.

Sperling, G. and Sondhi, M. M. (1968). Model for visual luminance discrimination and
flicker detection. J. Opt. Soc. Am. A, 58: 1133--1145.

Stafstrom, C. E., Schwindt, P. C. and Crill, W. E. (1984). Repetitive firing in layer V
neurons from cat neocortex in vitro. J. Neurophysiol., 52: 264-277.

Suarez, H. H., Koch, C. and Douglas, R. J. (1995). Modeling direction selectivity of simple
cells in striate visual cortex   within the framework of the canonical microcircuit. J. Neurosci., 15:
6700-6719.

Tadmor, Y. and Tolhurst, D. J. (1989). The effect of threshold on the relationship between
the receptive-field   profile and the spatial-frequency tuning curve in simple cells of the cat's
striate cortex. Vis. Neurosci., 3: 445--454.

Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in
cats. J. Neurophysiol., 49: 1303--1318.

Tolhurst, D. J. and Dean, A. F. (1987). Spatial summation by simple cells in the striate
cortex of the cat. Exp. Br. Res., 66: 607--620.

Tolhurst, D. J. and Dean, A. F. (1990). The effects of contrast on the linearity of spatial
summation of simple cell in the cat's striate cortex. Exp. Br. Res., 79: 582-588.



Matteo Carandini Page 43 08/04/98

Tolhurst, D. J. and Dean, A. F. (1991). Evaluation of a linear model of directional
selectivity in simple cells of the cat's striate cortex. Vis. Neurosci., 6: 421-428.

Tolhurst, D. J. and Heeger, D. J. (1997a). Comparison of contrast-normalization and
threshold models of the responses of simple cells in cat striate cortex. Visual Neurosci., 14: 293-
310.

Tolhurst, D. J. and Heeger, D. J. (1997b). Contrast normalization and a linear model for the
directional selectivity of simple cells in cat striate cortex. Visual Neurosci., 14: 19-26.

Toyama, K., Kimura, M., Shiida, T. and Takeda, T. (1977a). Convergence of retinal inputs
onto visual cortical cells: II. A study of the cells disynaptically excited from the lateral geniculate
body. Br. Res., 137: 221--231.

Toyama, K., Maikawa, K. and Tanaka, T. (1977b). Convergence of retinal inputs onto
visual cortical cells: I. A study of the cells monosynaptically excited from the lateral geniculate
body. Br. Res., 137: 207--220.

Tranchina, D., Gordon, J. and Shapley, R. M. (1984). Retinal light adaptation --- evidence
for a feedback mechanism. Nature, 310: 314-316.

Troy, J. B. (1983). Spatial contrast sensitivities of X and Y type neurones in the cat's dorsal
lateral geniculate nucleus. J. Physiol. (Lond.), 344: 399-417.

van Essen, D., DeYoe, E. A., Olavarria, J. F., Knierim, J. J., Sagi, D., Fox, J. M. and Julesz,
B. (1989). Neural responses to static and moving texture patterns in visual cortex of   the macaque
monkey. In D. M. K. L. a. C. D. Gilbert (Ed.), Neural Mechanisms of Visual Perception, (pp. 137-
156). Woodlands, Texas.

van Santen, J. P. H. and Sperling, G. (1985). Elaborated Reichardt detectors. J. Opt. Soc.
Am. A, 2: 300--321.

Victor, J. (1987). The dynamics of the cat retinal X cell centre. J. Physiol. (London), 386:
219-246.

Victor, J. (1988). The dynamics of the cat retinal Y cell subunit. J. Physiol. (London), 405:
289-320.

Walker, G. A., Ohzawa, I. and Freeman, R. D. (1996). Interocular transfer of cross-
orientation suppression in the cat's visual   cortex. Inv. Opht. and Vis. Sci. (Suppl.), 37: S484.

Watanabe, S., Konishi, M. and Creutzfeldt, O. D. (1966). Postsynaptic potentials in the cat's
visual cortex following electrical stimulation of afferent pathways. Exp. Br. Res., 1: 272--283.

Watson, A. B. and Ahumada, A. J. (1985). Model of human visual-motion sensing. J. Opt.
Soc. Am., 2: 322-341.



Matteo Carandini Page 44 08/04/98

Yoshioka, T., Levitt, J. B. and Lund, J. (1994). Independence and merger of thalamocortical
channels within macaque monkey   primary visual cortex: anatomy of interlaminar projections. Vis.
Neurosci., 11: 467-489.



Matteo Carandini Page 45 08/04/98

Figure Captions

1 The two models of simple cell function discussed in this Chapter. A: The linear model,
composed of a linear spatiotemporal weighting function and of a rectification stage. The cell
performs a weighted average of the light intensities over local space and recent time. The
rectification stage converts the output of this linear stage into firing rate. Note that rectification is a
nonlinearity, so the “linear model” is not entirely linear. B: The normalization model, which
extends the linear model by adding a divisive stage. The output of each cell's linear stage is divided
by the pooled output of a large number of other cells.

2 Space-time representations of a stimulus and of a receptive field. A: A vertical bar translating to
the right. B: The space-time (x-y-t) volume of stimulus intensities corresponding to motion of the
bar. C: An x-t slice through the space-time volume. Orientation in the x-t slice represents motion of
the bar in the x direction. D: x-y section of a spatiotemporal weighting function. Dark areas
represent locations where the weighting function is negative, bright areas represent locations where
it is positive. E: The same x-y section together with a projection of the weighting function on the x-t
plane. F: The x-t projection, which ignores the y dimension. The receptive field travels in time t,
from past to future. Panels A-C are based on an illustration by Adelson and Bergen (1985).

3 Direction selectivity in a linear cell. A: Response to a grating drifting in the preferred direction.
B-D: space time representation of weighting function and stimulus at three instants in time. When
the central excitatory region of the weighting function is aligned with a dark bar (B), the response is
negative. When it is aligned with a bright bar, the response is positive (C), and so on. E: Response
to a grating drifting in the opposite direction.. F-H: space time representation of weighting function
and stimulus at three instants in time. At any given time, each bar of the grating is covering both
excitatory and inhibitory subregions of the weighting function. The resulting response is smaller
than with the grating with the preferred direction. The filled areas in A and E show the parts of the
responses that is visible after rectification.

4 Contour plots of three spatiotemporal weighting functions, averaged across one spatial
dimension. Continuous curves: positive contours. Dashed curves: negative contours. A: A space-
time separable weighting function, the product of a center-surround spatial weighting function and
of a monophasic temporal weighting function. B: Another space-time separable weighting function,
spatially displaced with respect to A and with a biphasic temporal weighting function that is less
delayed than the one in A. C: Non-separable weighting function obtained by summing the ones in
A and B. The result is a space-time oriented weighting function resembling that of the direction
selective cell in Figure 6.

5 Three possible transformations of membrane potential into firing rate. For simplicity the resting
potential is assigned the value Vrest=0. The continuous lines represent rectification with threshold
Vthresh. The thick, intermediate and thin lines represent the cases in which the threshold is Vthresh = 0,
5 and 10 mV. The dashed lines represent approximations to rectification. These approximations are
useful to simplify the mathematics of the normalization model (Heeger, 1992a). They are power
functions of the positive deviation from resting potential, for different exponents n. The exponent n
is 2 for the thicker dashed curve, 3 for the thinner dashed curve. After (Carandini et al., 1997b).



Matteo Carandini Page 46 08/04/98

6  Responses of a linear cell to a flashed bar stimulus. A: Spatiotemporal structure of a flashed
bar stimulus. The x-t projection of a flashed bar is a vertical rectangle. B: Response of a linear cell
when the bar is flashed on an OFF subregion of the receptive field. The response is negative when
the bar is turned on, positive when it is turned off. The left panel shows the responses as a function
of time, before rectification. The other three panels represent receptive field and stimulus at three
instants in time. C: as in B, except that the bar is flashed on an ON subregion of its receptive field.
The filled areas in the leftmost panel in B and C show the parts of the responses that would be
visible after rectification.

7 The full space-time receptive field of a simple cell, as obtained with the reverse correlation
method. The four upper panels represent x-y snapshots of the receptive field measured at different
times T in the past. Gray levels indicate the correlation between the appearance of a bar and the
firing rate T ms later. Zero correlation is indicated by mid-gray. Lighter grays indicate points of
positive correlation with the appearance of a bright bar. Darker grays indicate points of positive
correlation with the appearance of a dark bar. A large number of snapshots like these are stacked to
build a full space-time receptive field, whose space-time projection is shown at the bottom. This
previously unpublished Figure is courtesy of Greg DeAngelis. Cell is part of sample published in
(DeAngelis et al., 1993a).

8 Linearity of spatial summation in four cat V1 simple cells. Spatial weighting functions as
measured with flashing bars (histograms) and as predicted by inverse Fourier transformation of the
spatial frequency tuning curves (continuous curves). For a linear cell the two would be identical.
Plots show one spatial dimension (e.g. x), and collapse all information about the other two
dimensions (y and t). Both the observed and predicted weighting functions were independently
rescaled. Positive values in each weighting function represent incremental responses to the
introduction of a bright bar; negative values represent incremental responses to the introduction of a
dark bar. Insets: The spatial frequency tuning curves used to compute each predicted weighting
function. The abscissa of these insets is spatial frequency (in cycles/degree) and the ordinate is
contrast sensitivity, the inverse of the threshold contrast value for each spatial frequency. Reprinted
with permission from (Movshon et al., 1978b).

9 Linearity of spatio-temporal summation in a cat V1 simple cell. The polar plot shows the cell's
responses to standing gratings whose contrasts were modulated sinusoidally in time at different
spatial phases. The amplitude of the first harmonic sinusoid of each response is represented
radially, while the angular coordinate indicates the temporal phase of each response. Units of sec-1

correspond to spikes/s. The filled symbols represent the unaltered data from the experiment; the
open symbols and the ellipse fitted to them represent the same data corrected for a resting “firing
rate” of -8 spikes/s. Reprinted with permission from (Movshon et al., 1978b).

10 Simplified model of a cortical cell, and possible biophysical implementation of the linear
model. The cell membrane is modeled as a single compartment with passive properties and two
classes of synaptic inputs, excitatory and inhibitory. In the central excitatory subregion of the
receptive field the excitation is provided by ON-center cells and the inhibition by OFF-center cells
with superimposed receptive fields. The flanking inhibitory subregions are obtained by the opposite
arrangement of excitation and inhibition (not shown). This push-pull arrangement of excitation and
inhibition ensures the linearity of the membrane potential V. The membrane potential is encoded



Matteo Carandini Page 47 08/04/98

into firing rate by a rectifier. See text for explanation of symbols. After (Carandini and Heeger,
1994).

11 Encoding of input current in a visual cortical cell in vitro. Responses of an intracellularly
recorded regular spiking neuron in a slice of guinea pig cortex to sinusoidal current injection (0.8
nA). A: Time course of the responses for five different frequencies of stimulation (1, 2, 4, 8 and 16
Hz). The traces are dominated by their first harmonic. This means that apart from the presence of
the spikes the membrane is acting linearly. B: Temporal frequency tuning of spike rate and
membrane potential. Filled symbols: Amplitude of the first harmonic of the membrane potential
obtained by fitting a sinusoid to the raw membrane potential traces in A. Scale is on left axis. The
dashed line is the prediction of a single compartment with only passive conductances. Open
symbols: Amplitude of the first harmonic of the firing rate, obtained by fitting a sinusoid to the
spike train. Scale is on right axis. Data from (Carandini et al., 1996).

12 Responses of a monkey V1 simple cell to a drifting sine grating for three different spatial
frequencies and three different contrasts. The curves are fits of the normalization model. A: Spike
histograms of one period of the responses, averaged over many presentations. The three columns
show the responses to drifting gratings with a spatial frequency of 1, 0.6 and 0.4 cycles/degree
(cpd). Each row corresponds to one of three different contrasts: 25, 50 and 100%. B: Amplitude of
the responses as a function of contrast. The ordinate represents the amplitude of the first harmonic
of the responses in A. Error bars indicate the standard error of the mean (N=3). The number next to
each curve specifies the spatial frequency of the stimulus. After (Carandini et al., 1997b).

13 Responses of a monkey V1 simple cell to a drifting sine grating for different stimulus
orientations and contrasts. The curves are fits of the normalization model. Error bars indicate the
standard error of the mean (N=3). A: Contrast responses for two different stimulus orientations.
Changing the orientation of a grating shifts the contrast responses up and down on a logarithmic
scale. B. Effect of contrast on the orientation tuning. Data for 40o and 80o are the same as those in
panel A. The responses peaked at an orientation between 80 and 120 degrees (not shown). Tuning
width is invariant with contrast. Dashed lines join the predictions of the normalization model at the
three orientations for which data were acquired. After (Carandini et al., 1997b).

14 Responses of a monkey V1 simple cell to a plaid composed of two drifting gratings (“test” and
“mask”), for different contrasts of the two gratings. Test and mask drifted in orthogonal directions.
The curves are fits of the normalization model. A: Spike histograms of one period of the responses,
averaged over many presentations. Rows correspond to a fixed test contrast, columns to a fixed
mask contrast. The mask does not elicit any overt response when presented alone (top row) and
strongly inhibits the responses to the test (second and third columns). B: Amplitude of the
responses as a function of contrast. The ordinate represents the amplitude of the first harmonic of
the responses in A. Error bars indicate the standard error of the mean (N=3). The white, gray and
black circles refer to mask contrasts of 6, 25 and 50%. After (Carandini et al., 1997b).

15 Responses of a monkey V1 simple cell to drifting sine gratings of different contrasts and
temporal frequencies. The curves are fits of the normalization model. A: Spike histograms of one
period of the responses, averaged over many presentations. Each panel corresponds to a different
contrast of the stimulus. Note the prominent phase advance with increasing contrast. B: Amplitude
of the responses as a function of contrast and temporal frequency. The ordinate represents the



Matteo Carandini Page 48 08/04/98

amplitude of the first harmonic responses such as those in A. Data points are joined by dashed
lines, model predictions are solid curves. The temporal frequency tuning is strongly dependent on
contrast: at low contrasts the high frequencies are more attenuated than at high contrasts. After
(Carandini et al., 1997b).

16 A possible biophysical implementation of the normalization model. The diagram is identical to
the one for the linear model (Figure 10), except for the presence of a shunting conductance gshunt.
The equilibrium potential for the shunt is Vshunt=Vrest. In the normalization model the shunting
conductance grows with the activity of a large number of cortical cells, the normalization pool. The
shunt conductance is assumed to be the same for all the neurons in the pool. See Sections 6.1 and
6.2 for details. After (Carandini and Heeger, 1994).

17 A. Dependence of the shunt conductance on the activity of the normalization pool, as postulated
by the normalization model. The ordinate represents the conductance increase gshunt/g0, the abscissa
represents the overall firing rate of the normalization pool Σ R. The model postulates that the two
are related by 11/1/ 0 −Σ⋅−= Rkgg shunt , where k is a constant. This function is entirely ad hoc
and does not have any experimental support. It was chosen so that the model would be
mathematically tractable and yield the desired equations. B: Effect of the membrane conductance
on the size and time course of the membrane potential responses. The three curves show the
membrane potential responses of a model cell to a current step for three different values of the total
conductance g. The current steps up at time 0. The arrows point to twice the time constant of the
cell. Increasing the conductance of the cell reduces both the gain and the latency. After (Carandini
et al., 1997b).

18 Responses of a monkey V1 simple cell to a plaid composed of two drifting gratings (“test” and
“mask”), for different contrasts of the two gratings. Test and mask drifted in orthogonal directions.
The curves are fits of the normalization model. Error bars indicate the standard error of the mean
(N=3). A: Dependence of the response amplitude on the test contrast, for three different values of
the mask contrast (white: 6%, gray: 25%, black: 50%). Data points to the left of ordinate
correspond to test contrasts of zero. They indicate that the mask alone was able to elicit some
responses. In these conditions the normalization model correctly predicts that increasing mask
contrast does not simply shift the contrast responses to the right, as was the case in Figure 14, but it
also changes their shape. B: Dependence of the response amplitude on the mask contrast, for four
different values of the test contrast (white: 1%, light gray: 6%, dark gray: 12% black: 50%). At low
test contrasts the mask resulted in visual responses around 5 spikes/s. At intermediate test contrasts
the mask exerted a suppressive effect. At the highes test contrasts the mask did not much affect the
responses. The prediction of the model for the data point in the lower right of B is off by 2 spikes/s.
After (Carandini et al., 1997b).
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