Image Statistics and
Efficient Sensory Coding
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Why 1image statistics?
® Engineering: compression, denoising, restoration,
enhancement/modification, synthesis, manipulation

® Science: optimality principles for neurobiology (evolution,
development, learning, adaptation)




Stimulus Neural response Behavior
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“Encoding” “Decoding”

Efficient coding theory =~ Optimal estimation/decision
[Barlow ’61] [Al Hazan, 1040; Helmholtz, 1866]

Both theories rely on statistical models of environment
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Possible Principles
Underlying the Transformations
of Sensory Messages

A wing would be a most mystifying structure if one did not know
that birds flew. One might observe that it could be extended a con-
siderable distance, that it had a smooth covering of feathers with
conspicuons markings, that it was operated by powerful muscles, and
that strength and lightness were prominent features of its construc-
tion. These are important facts, but by themselves they do not tell
us that birds fly. Yet withont knowing this, and without understand-
ing something of the principles of flight, a more detailed examination
of the wing itself would probably be unrewarding. I think that we
may be at an analogous point in our understanding of the sensory
side of the central nervous system. We have got our first batch of
facts from the anatomical, neurophysiological, and psychophysical
study of sensation and perception, and now we need ideas about what
operations are performed by the various structures we have examined.
For the bird’s wing we can say that it accelerates downwards the air
flowing past it and so derives an upward force which supports the
weight of the bird; what would be a similar summary of the most
important operation performed at a sensory relay?
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A mathematical theory of communication

CE Shannon - Bell System Technical Journal, v 27, 1948

... CE Shannon ... The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f(t) as in radio or telephony; (¢) A function of time
and other variables as in black and white television -- here the message may be ...
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Efficient Coding

[Attneave ’54; Barlow '61; Laughlin *81; Atick *90; Bialek etal ‘91]

(E Transform

Maximize information about stimulus in response,
subject to constraints (e.g., number of neurons,
spike rate, metabolic costs, wiring length)




Why should efficient coding of sensory
information matter to the brain?

® Incoming stimuli are highly redundant, and do not
span the full space of possible input signals

® Resources (for communicating / processing / storing)
are limited

® Not all incoming sensory information is behaviorally
relevant

Image statistics

Can’t characterize this directly, because
dimensionality is too high!




General methodology
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Observe (local)
Joint Statistics

Transform to
Optimal Representation
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“Onion peeling”

Canonical neural models - retina, 1gn, V1, MT, V2 ...
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LGN

fixed filter
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[Mante, Bonin, Carandini 2008

The normalization model of simple cells
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[Carandini, Heeger, and Movshon, 1996]
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Linear Gain Output
operator control nonlmeanty

Linear Gain Output
operator control nonlmeanty
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Simoncelli & Heeger, 1998; Rust, Mante, Simoncelli & Movshon, 2006; Nishimoto & Gallant, 2011

@ @ @ View-tuned cells

7
SYOLORS

4

DO SRDE @@@@ e B e

e+ + Complex cells

/ \ Composite features
) - @

4

®
S

Input image [Koch & Poggio, 1999;
cf. Fukishima, 1980;
Serre, Oliva, Poggio 2007; etc]




Original image

Pixel histograms
carry very little
information about
image content...
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Principal Components Analysis
(PCA)
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For Gaussian sources: guaranteed independence

PCA on images

® Translation-invariance => Fourier PCA

® Scale-invariance => power law spectrum

[(w) = AwP = I(sw) = AsPuwP

That is, the shape of the Fourier spectrum
does not change!




Spectral power

Logmspatiajfrequency (cyclesfimage)

Power law: fourier power falls as 1/f% a2

[Ritterman ’52; DeRiugin *56; Field *87; Tohurst 92; Ruderman/Bialek *94]

Coefficient
Image: Project onto: density:
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Most image processing engineering is based on this “classic” model




Efficient coding
in the retina?

[Srinivasan et. al. 82;
Atick & Redlich 90;
van Hateren 92]

Optimize RF to maximize
encoded information
information

... over Gaussian image model
... constrained by response
variance
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Optimal filters

S/N=10

depend on SNR
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Limitations

® Signal non-Gaussian

® Noise non-Gaussian, possibly correlated
® Transformations nonlinear

® Cone:RGC ratio is not 1:1

® Cone lattice irregular

® Ganglion cells irregular (shape and sampling)

Efficient coding in retina, redux
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image blur cone  retinal response

noise transform noise

[Doi et. al., J. Neuro 2012]




Measured W

® Macaque retina, 27 deg eccentricity

e full mosaics: ON/OFF Midget/
Parasol

® 145 RGCs, 665 cones [ratio = 4.6]

® receptive fields, as weights on
cones, determined by STA

® W contains receptive fields

[Gauthier et. al., 09]

RGCs

Theoretical W

Q00O

Solution based on:

® 1/f Gaussian model for images

® Human optical blur at 30 deg ecc [Navarro etal 93]
® 10 dB photoreceptor SNR

® 10 dB ganglion cell SNR [Borst & Theunissen 99]

[Doi et. al., J. Neuro 2012]




Information Maximization

(WHEH W7 + 62WW7 + 621,
lO’,%WWT -+ 0’%1]\/[‘

1
I(seh) = 5 log

(total power of responses is constrained)

Optimal solution is not unique - there is a whole family of
W’s that are equally good!

[Doi et. al., J. Neuro 2012]

Optimal RF solution is not unique...

optimally efficient also optimally efficient

GO

[Doi et. al., 2012]




Comparison to data

65.7% variance explained (34.3% error)

Physiological W

optimally efficient
solution manifold

16.6% variance (+/- 0.1%) explained (83.4% error)

[Doi et. al., J. Neuro 2012]

Parasol

theory
(closest to data)

[Doi et. al., J. Neuro 2012]
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[Doi, et. al., unpublished]

Retinal nonlinearities?

1) Assume a noisy L-N model
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Retinal nonlinearities?

RIONI=7/FS
1) Assume a noisy LN model —(i} o :Llft?-’
2) Optimize both L and N stages ... 3 7 32
0 1 e
e for information transmission n___ 32
* subject to constraint on mean response & o L iae
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[Karklin & Simoncelli, 2011]

Optimal nonlinearities are rectifying, and
population naturally separates into ON and OFF
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Receptive field populations
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[Karklin & Simoncelli, 2011]

[Gauthier et. al., 2009]
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Optimal Optimal PCA
noisy low-noise

Solution depends on noise level
Optimal solution transmits significantly more information than

optimal low-noise or whitening (PCA) solutions

[Karklin & Simoncelli, NIPS 2011]




Marginal densities

— Response histogram
— - Gaussian density

Probability

Filter Response

[Burt&Adelson 82; Field 87]

Probability

Marginal statistics

— Response histogram
~ - Gaussian density

Filter Response

[Burt&Adelson 82; Field 87; Mallat 89]




State Space
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[Field, “what is the goal of sensory coding”, 1994]

“Independent” Components Analysis
(ICA)

For Linearly Transformed Factorial sources:
guaranteed independence

(with some minor caveats)




Independent Component Analysis

Solve for a set of axes (not necessarily orthogonal)
along which the data are least Gaussian.
Examples:

e FOBI - simplest algorithm (Cardoso, 1989)

* Fast ICA - fixed-point algorithm with fast
convergence (Hyvarinen, 1997)

Closely related: Projection pursuit. Seek projections of data
that are non-Gaussian (Friedman & Tukey, 1974).
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SOURCE SEPARATION USING HIGHER ORDER MOMENTS

Jean-Francois Cardoso
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ABSTRACT

This communication presents a simple algebraic method
for the extraction of independent components in
multidimensional data. Since statistical independence is a
much stronger property than uncorrelation, it is possible, using
higher-order moments, to identify source signatures in array
data without any a-priori model for propagation or reception,
that is, without directional vector parametrization, provided
that the emitting sources be independent with different
probability distributions. We propose such a "blind"
identification procedure. Source signatures are directly
identified as covariance eigenvectors after data have been
orthonormalized and non linearily weighted. Potential
applications to Array Processing are illustrated by a simulation
consisting in a simultaneous range-bearing estimation with a
passive array.

INTRODUCTION

For a lot of reasons (of various kinds), the most common

Signal Processing methods deal with second-order statistics,

expressed in terms of covariance matrices. It is well known
that Gaussian stochastic processes are exhaustively described
by their second-order statistics. Nonetheless, when the
Gaussian assumption is not valid, some information is lost by
retaining only second-order statistics.

in Array Processing has been done within this framework
[6,7,8]. However, actual physical settings are often such that
source signatures (directional vectors) depart from the
assumed model. As expected, model-based methods are very
sensitive to such discrepancies. Multipath, unknown antenna
deformation are among the common causes of severe
performance degradation.

It is the purpose of this communication to present a simple
algebraic method allowing source identification when NO a
priori information about the propagation and the reception is
available. The key requirement is that the observed data
consist in a linear superimposition of statistically independent
components. It may seem strange that such a blind
identification procedure be possible, but it should be recalled
that statistical independence between sources is a much
stronger requirement than mere uncorrelation. The question of
blind separation of multidimensional components by taking
advantage of statistical independence has already been
adressed in recent litterature. A non-linear adaptive procedure
has been proposed in [9,10] while a direct solution using
explicitely cumulants was given for the case of two sources
and two sensors in [11]. In contrast, we propose here a simple
algebraic method to separate an arbitrary number of sources,
given measurements from a larger number of sensors.

THE SOURCE SEPARATION PROBLEM




ICA on image blocks
NREENINESENN

[Bell/Sejnowski *97]
[example obtained with FastICA, Hyvarinen]

Alt: Sparse representation

E(©) = ||# — Ba|)? + A\S,(d) [Olshausen & Field *95]
Sp(@) =D lexl?

® If p >=1, the objective function is convex
(and thus can solve with descent algorithms)

® The p=1 case is widely used Lass0 - Tibshirani, 1996]
[Basis Pursuit - Chen, Donoho, Sanders, 1998]

® Finding efficient solutions, and/or solutions

for p<1, has become a major research area

[e.g., Figueiredo&Nowak 01; Daubechies etal 03; Starck etal 03; Bect etal 04;
Elad etal 06; Chartrand 08]




Sparse basis for images
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Auditory nerve filters Optimized kernels
from Carney, McDuffy, and Shekhter, 1999 scale bar = | msec

- Smith & Lewicki, 2006
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For most filters, there’s a matching auditory nerve fiber!




Refinements

® Overcompleteness
[Olshausen/Field ‘97; Lewicki&Sejnowski ‘00]

® Complex cells
[Berkes& Wiskott 02; Hyvarinen&Hoyer ‘01, etc.]

® Nonlinearities
[Rao&Ballard ’99; Schwartz&Simoncelli *01]

Instead of focus on marginal distribution,
note that subbands are heteroskedastic
(they have variable local variance):

We can model this behavior using a

Gaussian scale mixture (GSM):
[Wainwright & Simoncelli 2000]

p(x)
I

p(x)




Estimate local stdev, and then divide

[

—_— >
{ sqr blur - sqrt\f

Output distribution is approximately Gaussian!

[eg, Ruderman & Bialek *94; Wainwright & Simoncelli *00; Fairhall et al ‘01]

Conditional densities

Lk

histo(L, | L,)

[Simoncelli *97; Schwartz&Simoncelli ‘01]




¥

-
‘M 1]

¥

\

. W AN .
i s e
Cat Speech White noise
x W
i
» W i
Al
w
R
.

[Schwartz & Simoncelli, 2001]

Modeling the Dependency

One filter:
var(Ly|Ly) = w L3 + o*

Generalized neighborhood:

var(Ly|[{Ln}) = Snwp L2 + 02 %%




Other Neurons

Divisive normalization reduces dependency

[Schwartz & Simoncelli, *01]

Divisive Normalization: Physiological Evidence

Steady-state neural responses = linear projection, rectification, and divi-
sion by the summed responses of other neurons [Heeger '92; Carandini/Heeger/Movshon
'97]

Such models can account for some nonlinear striate cortical behaviors.
Examples [Carandini et al. 1997]:

e Tuning curves independent of contrast

e Contrast saturation level depends on stimulus parameters

e Cross-orientation suppression

e Increasing phase lag at lower contrast




Methods

e Statistically-determined model:

1. Linear basis: multi-scale, oriented 3rd derivative operators
2. “Neuron”: vertical, optimal spatial frequency 0.125 cycle/pixel
3. Neighborhood: 2 scales, 4 orientations, 3 x 3 array

4. Weights: optimized (ML) for statistics of 10 images (faces, land-
scapes, and animals).

e Physiological simulations:
1. Compute linear responses of full neighborhood
2. Square

3. Divide chosen neuron response by weighted combination of squared
neighbor responses.

Parameter Optimization

Assume a Gaussian form for the conditional distribution:

PlEa [ {La)) = N(o; %wnk|Lk|2+02)

Maximize the likelihood over the image data:

_.L2n
25 far |Lk|2 + o2

A A 1
Wyk, 0 = ar max I1 7 =X
nK) gwnkﬂ i V’27r Xk Wnk |Lk|2 g




Cross-orientation Suppression

Cell Model
(Bonds, 1989)
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Surround Suppression

Cell Model
(Cavanaugh et al., 2000) Mask  Signal
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[Data: Miiller, Krauskopf, & Lennie.]
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