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Relating MT responses to visual discrimination
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MT responses depend on motion coherence
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MT cells are as sensitive as monkeys to visual motion
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MT cell firing does not require the observer to make a decision
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MT cell firing is correlated with behavioral choice
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MT cell firing is correlated with behavioral choice
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MT cell firing is correlated with behavioral choice
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Correlation of activity to choice is not accidental
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Choice-related activity has a “forward” time course
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The most sensitive neurons are most correlated to choice



LETTERS

Decision-related activity in sensory neurons reflects
more than a neuron’s causal effect
Hendrikje Nienborg1 & Bruce G. Cumming1

During perceptual decisions, the activity of sensory neurons cor-
relates with a subject’s percept, even when the physical stimulus is
identical1–9. The origin of this correlation is unknown. Current
theory proposes a causal effect of noise in sensory neurons on
perceptual decisions10–12, but the correlation could result from
different brain states associated with the perceptual choice13 (a
top-down explanation). These two schemes have very different
implications for the role of sensory neurons in forming decisions14.
Here we use white-noise analysis15 to measure tuning functions of
V2 neurons associated with choice and simultaneously measure
how the variation in the stimulus affects the subjects’ (two maca-
ques) perceptual decisions16–18. In causal models, stronger effects of
the stimulus upon decisions, mediated by sensory neurons, are
associated with stronger choice-related activity. However, we find
that over the time course of the trial these measures change in
different directions—at odds with causal models. An analysis of
the effect of reward size also supports this conclusion. Finally, we
find that choice is associated with changes in neuronal gain that are
incompatible with causal models. All three results are readily
explained if choice is associated with changes in neuronal gain
caused by top-down phenomena that closely resemble attention19.
We conclude that top-down processes contribute to choice-related
activity. Thus, even forming simple sensory decisions involves com-
plex interactions between cognitive processes and sensory neurons.

Considerable progress has been made in explaining the neuronal
mechanisms underlying decision making12, which is a major goal in
systems neuroscience. For simple perceptual decisions, recent theory
proposes that sensorimotor areas accumulate sensory evidence about
the physical world, delivered by sensory neurons10,11,20–22. Noise in the
sensory neurons causes variability in the behavioural response10–12,
resulting in a covariation between the neuronal activity and the
behaviour1–9. (We note that this causal effect of noise in the sensory
representation has only been invoked for sensory areas, not for
sensorimotor areas.) However, this covariation could also result from
top-down effects13 in which brain states23 that are associated with one
behavioural response also alter the response of the sensory neurons. A
third (bottom-up) possibility is that sensory neurons that themselves
have no causal effect on the decision are correlated with sensory neu-
rons that do have a causal effect. These schemes have markedly
different implications for the role of sensory neurons in forming
decisions. Sensory neurons either only encode the physical stimulus
or simultaneously form an integral part of the mechanism used by the
brain to decode the sensory information. To distinguish between these
views, we combined the measurement of choice-related activity in
disparity selective V2 neurons in a disparity-discrimination task, with
a stimulus that permitted the use of white-noise analysis. This allowed
the simultaneous application of ‘subspace mapping’15, to describe
how disparity affects the neuronal response (‘disparity subspace
map’), and ‘psychophysical reverse correlation’16–18, to extract a kernel

describing how disparity affects the subjects’ perceptual choices. This
comprehensive data set enables us to differentiate among these
schemes.

Two macaque monkeys performed a coarse disparity-discrimination
task (Fig. 1) while we recorded extracellularly from disparity-selective
neurons in their visual areas V2. The stimulus, a circular random dot
stereogram, contained a spatially uniform binocular disparity that
varied randomly on each video frame. At the end of each trial the
monkeys reported in a forced choice task whether the stimulus
appeared near (‘near’ choice) or far (‘far’ choice). We exploited this
random variation to perform psychophysical reverse correlation16–18,
and simultaneously to measure neuronal subspace maps15 for disparity.

First we examined how the monkeys weight the disparity signal in
the stimulus to form their decision16. We calculated the difference
between the average stimulus preceding the monkeys’ ‘near’ choices

1Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, Maryland 20892, USA.
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Figure 1 | Methods. a, Sketch of the sequence of events during one trial.
b, Example time series of the stimulus. c, Probability mass distributions of
the stimuli for one experiment (probability as a function of disparity), with
signal disparities of 20.3u and 0.15u. Each plot depicts one signal condition
(negative percentages indicate near signal disparities). d, The monkey’s
performance for this experiment (in percentage ‘near’ choices as a function
of percentage added signal).
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and the average stimulus preceding the monkeys’ ‘far’ choices. This
‘psychophysical kernel’ measures the relative probability with which
the disparity on any given frame occurred before the monkeys’ ‘near’
choice. The amplitude of the kernel decreased substantially over the
course of the trial (Fig. 2a, b). (The Supplementary Information
discusses the shape of the psychophysical kernel and shows that this
linear analysis adequately captures the monkeys’ behaviour.) This
means that the monkeys relied predominantly on the stimulus
disparities at the start of the trial and progressively less so towards
its end. If one considers neurons representing this sensory evidence,
their activity early in the trial should have a stronger effect on the
decision than activity late in the trial. Thus, if the choice-related
activity reflected only the causal effect of the neuronal firing on the
choice, the size of the choice-related activity should also decrease over
time. This prediction follows directly from the fact that, in the causal
explanation, choice-related activity is the effect of noise in the sensory
evidence that is used to make a decision.

To test this prediction, we quantified the choice-related signal as
‘choice probability’3. (Choice probabilities were corrected for the
stimulus-induced component; see Supplementary Information.) The
time course of the choice-related signal in our data (Fig. 2c) is different
from that predicted from the time course of the psychophysical data in
the causal-only scheme. Choice probabilities were measured for 76
neurons that had been recorded while the data for the psychophysical

kernel were gathered. For 57 of the 76 neurons, for which the choice
probability was .0.5, we examined the mean choice probability as a
function of time (Fig. 2c). Consistent with previous findings4, the
choice probability plateaus after about 500 ms, which is quite unlike
the statistically significant decrease in amplitude of the psychophysical
kernel over time (correlation coefficient, r 5 20.81; P , 10223

between amplitude and time, over the second half of the trials).
Although choice-probability time courses for individual neurons are
noisy, we addressed the possibility that some neurons behave as if they
play a causal role by computing the correlation coefficient, R, between
the time course of the choice probability for each individual neuron
and the time course of the average psychophysical kernel amplitude
(Fig. 2d). We found a significant negative correlation between these
coefficients and a neuron’s choice probability (r 5 20.28, P , 0.05),
indicating that neurons with high choice probabilities tended to show a
negative correlation with the time course of the psychophysical kernel
amplitude, as expected from the average data (Fig. 2b). This and other
features of individual time courses (Supplementary Discussion) are at
odds with the causal model.

The fact that the results in Fig. 2 are incompatible with the causal-
only account, suggests that choice probabilities are at least partly of
non-causal, possibly top-down, origin. We therefore sought a
signature of possible top-down mechanisms at the level of individual
neurons. This could employ a mechanism, similar to attention, that
characteristically alters the gain of sensory neurons19. To test this
possibility, we designed our disparity-varying stimulus such that it
permitted the measurement of subspace maps for disparity (Methods).

These subspace maps quantify the effect of each disparity (in the
stimulus with no added signal) on the neuron. Calculating subspace
maps separately for stimuli associated with ‘near’ and ‘far’ choices
quantifies any effects of choice on the neuronal response. Choice-
related activity itself implies some difference between these subspace
maps. If the difference is caused by a change in neuronal gain, the two
subspace maps should be scaled versions of each other. Example
subspace maps for one neuron (Fig. 3a, b) show that the gain of this
neuron increased by 84%, whereas the additive change was close to 0
(20.032 spikes per frame). A second example shows a more typical
gain increase (18%; y offset, 0.005 spikes per frame; Fig. 3c, d).

The distribution of relative gain change as a function of choice
probability demonstrates that choice probabilities are associated with
choice-related changes in neuronal gain (n 5 76, r 5 0.44, P , 1024

(monkey 1: n 5 42, r 5 0.54, P , 0.001; monkey 2: n 5 34, r 5 0.32,
P , 0.07); Fig. 3e). The geometric mean of the relative gains was 1.16
(1.17 and 1.15 for monkeys 1 and 2, respectively), which is signifi-
cantly different from 1 (P , 0.001, by resampling). Conversely, there
was no systematic relationship between the y offset and the choice
probability (r 5 0.03, P 5 0.77 (monkey 1: r 5 20.18, P 5 0.25;
monkey 2: r 5 0.18, P 5 0.31); mean offset, 20.03 spikes per frame;
Fig. 3f). Thus, it is the choice-dependent change in response gain that
explains the difference in mean response rate between preferred and
null choices. A modest gain change could arise, even in the causal
account of choice probability, from the firing properties of cortical
neurons (for example Poisson spiking24). A shuffling technique
showed that this effect was too small to account for the observed gain
changes (Supplementary Information).

The gain change suggests the operation of a mechanism similar to
feature-selective attention19, but which varies from trial to trial. This
could arise in several ways. First, as the decision is formed, a signal
altering the neuronal gain may be sent back to those neurons support-
ing this decision. Alternatively, this gain change may implement a
perceptual working memory25, or a perceptual bias/expectation:
attending to near features increases the response gain of near-prefer-
ring neurons and thus makes a ‘near’ response more likely.

An additional feature of our data provides evidence that at least the
latter mechanism operates. The reward size depended systematically
on the animals’ performance (Methods). This performance was better
in trials for which a large reward was available (Fig. 4a and
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Figure 2 | Psychophysical kernel and choice-related signal have different
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n 5 17,200 trials; two monkeys) as a function of disparity and time. Colour
represents amplitude (in occurrences per frame). b, Normalized amplitude
of the psychophysical kernels decreases over time. c, Averaged choice-related
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Choice probability for depth discrimination in V2
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Decoding MT neurons for visual motion discrimination
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Decoding MT neurons for visual motion discrimination
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Decoding MT neurons for visual motion discrimination
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Where is sensory activity converted into decision and actions?



LIP receives projections from MT and projects to areas that are 
known to contribute to the generation of saccadic eye movements
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Responses in a reaction-time version of the direction discrimination task

Mike Shadlen
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Momentary evidence
e.g.,
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µ = kC

C is motion strength (coherence)
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Responses in a reaction-time version of the direction discrimination task
are well described by the “race” model of integration to a decision boundary
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Where is sensory activity converted into decision and actions?
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