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IT neurons are tolerant to identity-preserving transformations

Position Scale Context

Rust & DiCarlo, 2012



Selectivity and invariance

The geometry of selectivity and invariance. The three axes are three image dimensions (e.g., the values of three pixels in
an image). Real images require several thousand dimensions, but we use three for simple visualization. Any point in the
space corresponds to a different image. The gray surface represents a continuous subset, or manifold, of images of a
particular object. If a hypothetical neural population effectively encodes this object's identity, all object images from this
manifold will yield patterns of neural responses that are distinguishable from the patterns of responses induced by other
sets of images. Moving along the surface of the manifold changes the image itself but maintains the ability of the neural
population to discriminate the image from others. This is a direction of invariance. Moving away from, or orthogonal to,
the surface of the manifold changes the image in a way that prevents the population from effectively discriminating. This
is a direction of selectivity. The manifold shown here corresponds to a set of population responses that are selective for
proboscis monkeys, not just for image patches with similar color and texture, but are also invariant to changes in size
(near vs far) and context (face only vs face and body).

Freeman & Ziemba, 2011
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Response

Untangling object manifolds along the ventral visual stream
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The form processing pathway maintains an “equally distributed” representation of images
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Correlation of IT
activity and perceptual
State during binocular
rivalry (Sheinberg and
Logothetis, 1997)
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Correlation of IT activity and perceptual state during binocular rivalry (Logothetis, 1998)
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MST

Dorsal pathway Ventral pathway
Space, motion, action Form, recognition, memory

3

Ungerleider & Mishkin, 1982



Why motion?

GM

George Mather, Patrick Cavanagh, and others
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Figure 1

First demonstration of direction selectivity in macaque M'T/V5 by Dubner & Zeki (1971). (2) Neuronal
responses to a bar of light swept across the receptive field in different directions (modified from figure 1
of Dubner & Zeki 1971). Each trace shows the spiking activity of the neuron as the bar was swept in the
direction indicated by the arrow. The neuron’s preferred direction was up and to the right. (5) Oblique
penetration through MT (modified from figure 3 of Dubner & Zeki 1971) showing the shifts in preferred
direction indicative of the direction columns subsequently demonstrated by Albright et al. (1984). See

also Figure 4.




Vi MT

Hubel & Wiesel, 1968 Maunsell & Van Essen, 1983
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Center-surround interactions in MT
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Figure 6

Center-surround interactions in M'T. (4) Effect of contrast on center-surround interactions for one M'T’
neuron. When tested with high-contrast random dots (RMS contrast 9.8 cd/m?) the neuron responded
optimally to a circular dot patch 10° in diameter and was strongly suppressed by larger patterns. The
same test using a low-contrast dot pattern (0.7 cd/m?) revealed strong area summation with increasing
size. (B) Population of 110 M'T neurons showing the strength of surround suppression measured at both
high and low contrast. Surround suppression was quantified as the percent reduction in response between
the largest dot patch (35° diameter) and the stimulus eliciting the maximal response. Each dot represents
data from one neuron; the dashed diagonal is the locus of points for which the surround suppression was
unchanged by contrast. The circled dot is the cell from panel A. (C) Asymmetries in the spatial
organization of the suppressive surround (after Xiao et al. 1997). Different kinds of surround geometry
are potentially useful for calculating spatial changes in flow fields that may be involved in the
computation of structure from motion. Neurons whose receptive fields have circularly symmetric
surrounds (zop) are postulated to underlie figure-ground segregation. The first- (7ziddle) and second-order
(bottom) directional derivatives can be used to determine surface tilt (or slant) and surface curvature,
respectively (Buracas & Albright 1996). Panels 4 and B are from Pack et al. 2005.
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FIG. 5. Responses of a representative unit in MT to stimuli moving in its preferred direction at different speeds.
In this and all subsequent plots the speed axis is logarithmic. Bars indicate the standard errors of the mean for five
repetitions of each speed. A dashed line marks the background rate of firing. This unit, like most in MT, had a
sharp peak in its response curve. Summed response histograms in the lower half of the figure show that the peak
rate of firing closely follows the average rate of firing. Tic marks under each histogram denote times of stimulus
onset and offset. The receptive field was 15° across and each stimulus traversed 20°.



object

Movshon, Adelson, Gizzi & Newsome, 1985



Movshon, Adelson, Gizzi & Newsome, 1985



Gratings, plaids, and coherent motion




Predicted plaid response

Movshon, Adelson, Gizzi & Newsome, 1985



Grating responses Plaid responses

V1 cell

MT component cell

MT pattern cell

Movshon, Adelson, Gizzi & Newsome, 1985
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Normalized pattern correlation

MST also contains a high proportion of pattern cells

V1

pattern

n=33 ~ component

-2

O N B O O

'q=1Q3

O N B~ O O

-2

component

-202468

-2 0 2 4 6 8

MST

pattern

n=93 component

-2 0 2 4 6 8

Normalized component correlation

Khawaja, Tsui & Pack, 2009



Frequency (Hz)

160 |

140 |

120

100

80

60 |

40

20

Local field potentials may reveal stages in pattern computation
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Local field potentials may reveal stages in pattern computation
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MT pattern cell

Grating responses Plaid responses

Components of the optimal plaid Plaids containing the optimal grating

Movshon, Adelson, Gizzi & Newsome, 1985



O object

Simoncelli & Heeger., 1998

In search of a simple model

Lateral geniculate cells

Simple
cortical cell

Hubel & Wiesel, 1962



A simple and (mostly) feedforward model

: - —
« Linear Gain Output :  : Linear Gain Output :
« operator control nonlinearity ; « operator  control nonlinearity ;

Simoncelli & Heeger., 1998



1D motion stimuli: gratings
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2D motion stimuli: plaids
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2D motion stimuli: textures

SF



1D motion stimuli




V1 receptive field

V2 receptive field
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MT receptive field
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Is pattern motion computed globally?

Pseudoplaids

Small plaids

Small gratings
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Pseudoplaids

Small plaids

Small gratings
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Small gratings Small plaids Pseudoplaids

Pattern motion is computed
locally




How do local and global motion signals interact?

Global preferred Global preferred Global null Global null
Local preferred Local null Local preferred Local null

b)) dmdmtmm ey =

Hedges, Gartshteyn, Kohn, Rust, Shadlen, Newsome & Movshon, 2011



O
(=)

Firing rate (imp/s)

Q
(&

Global preferred
Local preferred

0.5

1.0

How do local and global motion signals interact?

Global preferred Global null

Global null
Local null Local preferred

Local null

=) ) ) =) ) S K K K K L Lo Lo RS e K K K K

vy

50

OMHH..M
0 0.5 1.0

Time (s)

5491009

Hedges, Gartshteyn, Kohn, Rust, Shadlen, Newsome & Movshon, 2011



How do local and global motion signals interact?

Global preferred Global preferred Global null Global null
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How do local and global motion signals interact?
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Proportion of cells

How do local and global motion signals interact?

0.15 1

0.10-

0.05 -

Purely global Purely local

! !

= 101

0.00 -

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Local dominance

Hedges, Gartshteyn, Kohn, Rust, Shadlen, Newsome & Movshon, 2011



MST

I
\
%

v
viviv
viviv
v ¥

Y
<
Vs
x
%
3"

v
v
v

o
“h
i
Tﬁl
M




A simple and (mostly) feedforward model

o . EEEEN I---'

Linear Gain Output Linear Gain Output

operator control nonllnearlty ; operator control nonlinearity
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Simoncelli & Heeger, 1998; Rust, Mante, Simoncelli & Movshon, 2006
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Direction-interaction:
Gratings
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Direction-interaction:
Plaids
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Direction-interaction:
One common component
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Direction-interaction:
Common axis
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Component cell

Pattern cell
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Recovered model elements

Data Model
V1 gain control MT linear weights
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Pattern direction selectivity arises from:
@ Broad convergence of excitatory inputs
@ Strong motion opponent suppression
@ Strong tuned gain control
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Limitations of the approach

4 I EEE N EEEEEEEEEEEEEENEYN

EEEEEEEEEEEEEEEEEEERD

MT receptive field
v

4EEEEEEEEEEEEEEEEEEEER




Spatial and spectral structure of motion-enhanced natural movies
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Nishimoto & Gallant, 2011






“Motion-enhanced” natural movies, and friends

Nishimoto & Gallant, 2011



Analysis of MT neurons using a “boosted” model
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Estimated spectral receptive fields of four MT neurons
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MT neurons vary in the degree to which their excitatory spectral
receptive fields form a ring within the optimal velocity plane.
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Min. Coverage of the velocity plane Max.

Nishimoto & Gallant, 2011



M TRENDS in Cognitive Sciences Vol.9 No.2 February 2005 Full text provided by www.sciencedirect.com

ELSEVIER

Two neural correlates of consciousness

Ned Block

Block’s conjecture
MT is “the core
phenomenal neural
correlate of consciousness
for the visual experiential
content as of motion”
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Local and global motion signals




