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Macaque V1 patches and V2 stripes. A montage prepared from tissue sections cut tangentially to the cortical 
surface reveals characteristic patterns of endogenous metabolic activity when processed for CO. (Bottom) In V1 a 
fine array of patches is visible. (Top) In V2 a more irregular pattern is present, consisting of pale, thin (arrows) and 
thick (brackets) stripes arranged in repeating cycles.



Cytochrome oxidase labelled 
stripes in a flattened section 
of macaque monkey area V2.



Segregation of V1-to-V2 projections. 
(A) Single CO-stained section from 
layer 4 in V2, showing the stripe 
pattern (brackets, thick stripes; 
arrows, thin stripes). One of the thin 
stripes splits to form a “Y”; such 
stripe bifurcations occasionally 
interrupt the regular stripe sequence. 
Blue arrowheads indicate the 
location of a CTB-Au injection in a 
pale stripe (left) and a WGA-HRP 
injection in a thin stripe (right). (B) A 
section more superficial to the one 
shown in (A), processed for both 
tracers. Black box is the area where 
cells are plotted and shown at higher 
power below. (C) Cells counted in 
box are superimposed onto the CO 
pattern from an adjacent section. 
Neurons projecting to the thin stripe 
(green, n = 703) were located in CO 
patches, whereas those projecting to 
the pale stripe (red, n = 2058) were 
situated in the interpatches. Of the 
2761 cells in this single section, 3 
were double-labeled (blue, arrows), 
demonstrating the high degree of 
segregation between these two 
pathways. 
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Parallel visual pathways reconsidered
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Cross-talk within V1 V1-V2 projections not segregated
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functional terms, an additional level within the V2
organizational hierarchy, and at a finer grain than the
view of V2 as a collection of CO stripes.

The subcompartments for color and luminance seen
in color stripes seen in optical imaging undoubtedly
intermesh with the also observed representation of

Fig. 10. Subcompartments for color, orientation and disparity within stripes of V2. The three optical images were obtained from different animals.
(A) Color-preferring and luminance-preferring subcompartments within a single thin stripe. (B) Pseudo-color coded image of orientation selectivity
in V2, showing domains of orientation (blue arrows indicate zones containing pale and thick stripes, large patches of saturated colors), separated
by regions of little apparent organization for orientation (thin stripes, lacking patches of saturated color). Color code: blue=horizontal, red=45°,
yellow=vertical, green=135°. (C) Patches of tuned excitatory disparity cells (white patches, left blue arrow) within thick stripes. Also patches
of color cells (the dark patches, right blue arrow) can be seen within thin stripes of V2. Note the similarity of the geometry of the
subcompartments, 0.7–1.5 mm in size, regardless of functional type, whereas subcompartments for color (blobs) or (iso)orientation in V1 are
smaller than those in V2, at !0.2 mm in size.

Functional compartments in V2 (T’so et al 2001)



Functional compartments in V2 (Lu et al 2010)

Figure 1. Functional Architecture in Macaque Visual Cortex V1 and V2 (Case #1, Monkey M1, Anesthetized)
(A) Illustration of a macaque brain and the approximate location of imaging area. L.S., location of lunate sulcus.

(B) Surface blood vessel pattern of the imaging area.

(C) Ocular dominance map (left-eye minus right-eye stimulation) reveals ocular dominance columns in V1 and lack thereof in V2. The imageable area of V2 is

located between the V1/V2 border and the lunate sulcus.

(D) Retinotopic mapping (subtraction of two stationary phase-shifted vertical squarewave gratings) reveals cortical representation of vertical lines in the visual

field. Left side of the image is closer to the fovea and has higher cortical magnification.
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A Direction Map in V2
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(A) Illustration of a macaque brain and the approximate 
location of imaging area. L.S., location of lunate sulcus.
\(B) Surface blood vessel pattern of the imaging area.
(C) Ocular dominance map (left-eye minus right-eye 
stimulation) reveals ocular dominance columns in V1 and 
lack thereof in V2. The imageable area of V2 is located 
between the V1/V2 border and the lunate sulcus.
(D) Retinotopic mapping (subtraction of two stationary 
phase-shifted vertical squarewave gratings) reveals 
cortical representation of vertical lines in the visual field. 
Left side of the image is closer to the fovea and has higher 
cortical magnification.
(E) Orientation vector map. Different colors represent 
different orientation preferences 
(F) Orientation map (45-135 deg gratings) reveals 
locations of orientation-selective domains corresponding 
to thick/pale stripe locations in V2 (indicated by cyan bars 
in top panel of J).
(G) Color map (isoluminant red/green minus luminance 
gratings) reveals blobs in V1 and color preference 
domains corresponding to thin stripe locations in V2 
(indicated by green arrowheads in middle panel of J).
(H) Motion direction map (rightward minus leftward drifting 
random dots). Red arrowheads: areas in V2 with 
directional response preference. No directional preference 
domains are seen in V1 and other parts of V2. (I) Enlarged 
view of (H).
(J) f, g, and h: Enlarged view of boxed regions of V2 
shown in (F), (G), and (H), respectively.
Strong blood vessel noise overlying large vessel in lunate 
sulcus is replaced with even gray (top portion of each 
panel). Thick/pale stripes (indicated by cyan bars) contain 
orientation preference domains (f). Thin stripes (indicated 
by green arrowheads) contain color preference domains 
(g). Note that color preference regions (green arrowheads 
in g) occur in regions with poor orientation selectivity (even 
gray zones aligned with spaces between cyan bars in f) 
and interdigitate with orientation-selective regions. 
Directional domains (h, red arrow- heads) fall within thick/
pale stripe zones and avoid thin stripe zones. Maps (C)–
(J) are displayed using the gray scale shown on the lower-
right corner (SD: standard deviation of pixel distributions 
for each individual maps).
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Figure 7. Visual acuity across the lower visual field of monkeys 857 and 9102. Acuity was measured at 2” intervals in monkey 857, and with 1” 
spacing in monkey 9 102. The vertical axis corresponds to the vertical meridian of the visual field, and the horizontal axis is 1” below the horizontal 
meridian. The highest acuity was at the origin of the axes, and it was approximately the same in monkey 857 and in monkey 9102. Successive 
contour lines represent about a 10% decrease from this acuity. Dotted lines show the location of inadvertent damage to cortical area Vl, and dashed 
lines damage to area V2. The circles represent the location and approximate extent of the test locations for contrast sensitivity and orientation of 
lines of dots or texture elements. 

it provides. V2 is the first, and largest, cortical visual area that 
can be lesioned without removing most of the input to later 
stages. Because Vl sends direct projections to V3, MT, and V4, 
ablation of V2 leaves some routes to higher visual cortex intact. 
The effects of the V2 lesions were dramatically different than 
those of Vl lesions, causing no change in acuity, and little or 
no change in contrast sensitivity. 

The survival of acuity and contrast sensitivity after V2 lesions 
is consistent with the notion that these functions can be me- 
diated without the involvement of extrastriate cortical visual 
areas. It is also possible that the other extrastriate projections 
from VI, to V3, MT, and V4, can support these functions. 

Whether low-level visual functions require extrastriate visual 
cortex remains a basic and important question about how visual 
cortex works. 

Despite the fairly complete sparing of basic psychophysical 
thresholds, we do not know if the appearance of the test stimuli 
was altered by the lesion. Since we used an orientation discrim- 
ination (Katz and Merigan, 1988; Pasternak and Olson, 1992) 
rather than a detection task (Miller et al., 1980) to test both 
acuity and contrast sensitivity, we know that the monkey could 
still discriminate orientation after the lesion. Other features of 
the stimulus, especially those contributed by area V2 or its 
projections, might have changed. One example of such an ap- 

Effects of V2 lesions (Merigan et al 1993)
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Figure 8. Contrast sensitivity of monkeys 857 and 9102 in control 
and V2 lesion locations (see Fig. 5 for visual field locus) for four types 
of Gabor stimuli. Luminance sensitivity was measured with stationary, 
1 cycle/degree grating patches; Co/or sensitivity with stationary, 1 cycle/ 
degree isoluminant red-green grating patches; Detection with 10 Hz, 
rightward drifting, 1 cycle/degree grating patches; and Direction with 
identical grating patches that drifted either right or left. The value shown 
for Color is chromatic contrast sensitivity (sum of the modulation of 
middle- and long-wavelength cones), and for the other tests is Michael- 
son contrast (L,, - L,JL,,. + Lmi.). The only significant difference 
was color contrast sensitivity for monkey 857 (t = 22, df = 1, p > 0.05). 
Error bars are +SEM. 

pearance change has been reported when grating stimuli were 
made to exceed the Nyquist sampling frequency for human 
observers (Brainard et al., 1992). The grating appearance was 
so degraded by such presentation that, although their orientation 
could be discriminated, it was not possible to distinguish spatial 
frequency from contrast changes. We know from portions of the 
present study that, after V2 lesions, monkeys were not able to 
discriminate patterns on the basis of groups of details. It is 
possible that even more fundamental features of the visual stim- 
uli, for example, spatial phase, uniformity, and so on, were also 
obscured by the lesions, and that such a change of appearance 
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Figure 9. The number of background dots that brought the discrim- 
ination illustrated above the data to threshold performance. Results are 
shown for both monkeys in control and V2 lesion locations. On each 
trial only a single stimulus was presented. The stimulus shown to the 
left above the data has two horizontal lines of dots masked by seven 
background dots and indicated that a left response was correct. That to 
the right has two vertical lines of dots masked by seven background 
dots and indicates that a right response was correct. Stimuli indicating 
left and right responses are shown in the same way in Figures 10-l < 
Error bars are t-SEM. The lesion effect was significant for monkey 857 
(t = 15,df= 1,~ > 0.05). 

might have caused the transitory disruption of acuity by V2 
lesions that was seen in monkey 857 in this study. 

The present failure to find dramatic changes in either acuity 
or contrast sensitivity contrasts sharply with the results of Hor- 
ton and Hoyt (199 1 b), who found dense visual field loss below 
the horizontal meridian in human patients with cortical lesions. 
They felt that the sharp demarcation of the field loss along the 
horizontal meridian suggested that the source of the loss was 
damage to an extrastriate area, such as V2 or V3, that had a 
separated representation of the upper and lower visual field. 
Damage to area Vl was considered less likely to be the source 
of the loss because upper and lower visual field representations 
are contiguous in V 1, and it would require an unusual lesion to 
produce such a sharp horizontal border of field loss. The present 
results suggest that V2 or V3 lesions are probably not the basis 
of this field loss if the human visual cortex is similar to that of 
the macaque. A more likely basis would be damage to extra- 
striate projections of the lower visual field coursing superiorly 
from area V 1. Such a lesion would be quite different from that 
studied here, which appeared from myelin stains to damage only 
cortical neurons and not cortical pathways, and would therefore 
have left intact projections from area Vl to all extrastriate areas 
except for V2 and portions of V3. 

Performance with colinear dots 

The detection of colinearity is thought to be an important basis 
for many visual grouping abilities (Lowe, 1985). Its presumed 
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observers (Brainard et al., 1992). The grating appearance was 
so degraded by such presentation that, although their orientation 
could be discriminated, it was not possible to distinguish spatial 
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discriminate patterns on the basis of groups of details. It is 
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uli, for example, spatial phase, uniformity, and so on, were also 
obscured by the lesions, and that such a change of appearance 
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trial only a single stimulus was presented. The stimulus shown to the 
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background dots and indicated that a left response was correct. That to 
the right has two vertical lines of dots masked by seven background 
dots and indicates that a right response was correct. Stimuli indicating 
left and right responses are shown in the same way in Figures 10-l < 
Error bars are t-SEM. The lesion effect was significant for monkey 857 
(t = 15,df= 1,~ > 0.05). 

might have caused the transitory disruption of acuity by V2 
lesions that was seen in monkey 857 in this study. 

The present failure to find dramatic changes in either acuity 
or contrast sensitivity contrasts sharply with the results of Hor- 
ton and Hoyt (199 1 b), who found dense visual field loss below 
the horizontal meridian in human patients with cortical lesions. 
They felt that the sharp demarcation of the field loss along the 
horizontal meridian suggested that the source of the loss was 
damage to an extrastriate area, such as V2 or V3, that had a 
separated representation of the upper and lower visual field. 
Damage to area Vl was considered less likely to be the source 
of the loss because upper and lower visual field representations 
are contiguous in V 1, and it would require an unusual lesion to 
produce such a sharp horizontal border of field loss. The present 
results suggest that V2 or V3 lesions are probably not the basis 
of this field loss if the human visual cortex is similar to that of 
the macaque. A more likely basis would be damage to extra- 
striate projections of the lower visual field coursing superiorly 
from area V 1. Such a lesion would be quite different from that 
studied here, which appeared from myelin stains to damage only 
cortical neurons and not cortical pathways, and would therefore 
have left intact projections from area Vl to all extrastriate areas 
except for V2 and portions of V3. 

Performance with colinear dots 

The detection of colinearity is thought to be an important basis 
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Figure 10. Percent correct performance for the two monkeys in control 
and V2 lesion locations for the discrimination task illustrated above 
the data. The stimulus to the right has a vertical row of right-oblique 
lines, and that to the left has a horizontal row. The monkey was required 
to identify the orientation of the row of differently oriented segments. 
Error bars are ?SEM. Both lesion effects were significant (t = 21, 23; 
df = 1; p > 0.05). 

importance derives from the consideration that one task of the 
visual system is to determine the 3-D shape of objects from 2-D 
retinal images and that colinearity is one of the few features of 
3-D images that survives projection onto a 2-D plane (Lowe, 
1985). Thus, it is likely that the perception of colinearity is 
important to shape perception. It is not necessary to invoke 
complex grouping phenomena to account for orientation dis- 
crimination with colinear dots when they are presented with no 
background dots. Under these conditions, the task is similar to 
a vertical-horizontal discrimination of line or grating stimuli, 
it can presumably be mediated by any linear, orientation-tuned 
mechanism, and it is not disrupted by V2 lesions (see above). 
As background dots are added, the signal-to-noise ratio for the 
discrimination by a linear oriented mechanism is gradually re- 
duced, until it becomes very unfavorable for large numbers of 
dots. It has been proposed that when there is high background 
masking, perceptual grouping processes, such as detection of 
colinearity, may aid discrimination (Lowe, 1985). According to 
this analysis, the present finding may suggest that the high level 
grouping response of collinearity detection has been disrupted 
by V2 lesions. An alternative account, which cannot be rejected 
by the present data, is that V2 lesions simply increase the mask- 
ing effect of background dots. 

Discriminating the orientation of a group of texture element 
Texture segmentation can often be accomplished by linear 
grouping or filtering operators (Bergen and Adelson, 1988; 
Nothdurft, 1990), if the linear operator that does the segmen- 
tation responds to the difference between texture elements in 
the regions to be segregated. However, when the texture is so 
constructed that the operator involved in segmentation cannot 
see a difference between texture elements (e.g., Fig. lo), then a 
more complex nonlinear operation must be invoked to segment 
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Figure II. Percent correct performance on a discrimination used to 
determine if the monkey could detect differently oriented line segments. 
Performance is shown for both control and V2 lesion locations. Error 
bars are ?SEM. The effect of the lesion was significant for monkey 857 
(t= ll,df= l,p>O.O5). 

the texture (Sutter et al., 1989). For the stimulus shown in Figure 
10, this could involve a local analysis of the orientation of each 
texture element followed by a rectifying stage or other process 
that preserves the sign of response, and an integrating stage that 
sums the rectified signal. Such processes have been termed sec- 
ond order or nonlinear (Bergen and Adelson, 1988) and the 
present experiment indicates that they are disrupted by V2 le- 
sions. 

Several control experiments were used to rule out other ex- 
planations for the observed deficit. A first possibility was that 
the local orientation analysis was disrupted by damage to area 
V2. The experiment illustrated in Figure 11 shows that local 
orientation contrast could be detected despite a V2 lesion. This 
suggests that the basis for the disrupted perception was not an 
interference with local orientation processing. A second possi- 
bility is that the global analysis of the orientation of the group 
ofthree texture elements was disrupted by the V2 lesion, perhaps 
masked by the presence of other texture elements. This account 
was contradicted by the second control condition (Fig. 12), in 
which the overall orientation discrimination could be made 
despite the surrounding texture, if a luminance cue was added 
to the segmented stimulus. This stimulus requires only a simple 
linear filtering operation to reveal the correct orientation. Fi- 
nally, we wanted to determine if the improvement from the 
stimuli shown in Figure 10 to that shown in Figure 12 was 
confined to adding luminance cues, or if other visual stimuli 
that could be detected by linear filtering would also result in 
such an improvement. To examine this, we made the basis for 
the texture segmentation the color of the texture elements, and 
then checked that varying the intensity around a calculated iso- 
luminance did not disrupt the discrimination. After the mon- 
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visual system is to determine the 3-D shape of objects from 2-D 
retinal images and that colinearity is one of the few features of 
3-D images that survives projection onto a 2-D plane (Lowe, 
1985). Thus, it is likely that the perception of colinearity is 
important to shape perception. It is not necessary to invoke 
complex grouping phenomena to account for orientation dis- 
crimination with colinear dots when they are presented with no 
background dots. Under these conditions, the task is similar to 
a vertical-horizontal discrimination of line or grating stimuli, 
it can presumably be mediated by any linear, orientation-tuned 
mechanism, and it is not disrupted by V2 lesions (see above). 
As background dots are added, the signal-to-noise ratio for the 
discrimination by a linear oriented mechanism is gradually re- 
duced, until it becomes very unfavorable for large numbers of 
dots. It has been proposed that when there is high background 
masking, perceptual grouping processes, such as detection of 
colinearity, may aid discrimination (Lowe, 1985). According to 
this analysis, the present finding may suggest that the high level 
grouping response of collinearity detection has been disrupted 
by V2 lesions. An alternative account, which cannot be rejected 
by the present data, is that V2 lesions simply increase the mask- 
ing effect of background dots. 
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Texture segmentation can often be accomplished by linear 
grouping or filtering operators (Bergen and Adelson, 1988; 
Nothdurft, 1990), if the linear operator that does the segmen- 
tation responds to the difference between texture elements in 
the regions to be segregated. However, when the texture is so 
constructed that the operator involved in segmentation cannot 
see a difference between texture elements (e.g., Fig. lo), then a 
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the texture (Sutter et al., 1989). For the stimulus shown in Figure 
10, this could involve a local analysis of the orientation of each 
texture element followed by a rectifying stage or other process 
that preserves the sign of response, and an integrating stage that 
sums the rectified signal. Such processes have been termed sec- 
ond order or nonlinear (Bergen and Adelson, 1988) and the 
present experiment indicates that they are disrupted by V2 le- 
sions. 

Several control experiments were used to rule out other ex- 
planations for the observed deficit. A first possibility was that 
the local orientation analysis was disrupted by damage to area 
V2. The experiment illustrated in Figure 11 shows that local 
orientation contrast could be detected despite a V2 lesion. This 
suggests that the basis for the disrupted perception was not an 
interference with local orientation processing. A second possi- 
bility is that the global analysis of the orientation of the group 
ofthree texture elements was disrupted by the V2 lesion, perhaps 
masked by the presence of other texture elements. This account 
was contradicted by the second control condition (Fig. 12), in 
which the overall orientation discrimination could be made 
despite the surrounding texture, if a luminance cue was added 
to the segmented stimulus. This stimulus requires only a simple 
linear filtering operation to reveal the correct orientation. Fi- 
nally, we wanted to determine if the improvement from the 
stimuli shown in Figure 10 to that shown in Figure 12 was 
confined to adding luminance cues, or if other visual stimuli 
that could be detected by linear filtering would also result in 
such an improvement. To examine this, we made the basis for 
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To UNDERSTAND VISION in physiological terms represents a formidable prob- 
lem for the biologist. I t am0 unts to learning how the nervous system handles 
incoming messages so that form, color, movement, and depth can be per- 
ceived and interpreted. One approach, perhaps the most direct, is to stimu- 
late the retina with patterns of light while recording from single cells or 
fibers at various points along the visual pa thway. For each cell the optimum 
stimulus can be determined, and one can note the charac teristics common 
to cells at 
the next. 

each level in the visual pathway, and compare a given level with 

From studies carried out in the cat it is clear that visual messages under- 
go considerable modification, within the retina and the lateral geniculate 
body, and especially within the striate cortex (16, 12, 10, 13). Retinal- 
ganglion and geniculate cells respond optimally to an appropriately placed 
spot of light of just the right size; a smaller or larger spot is less effective. 
Cells at these levels therefore register not simply the illumination of a region 
on the retina, but also the difference in illumination between a region and 
its surround. In the striate cortex cells are far more complex and diverse in 
their response properties. The great majority respond best to straight-line 
stimuli: for a given cell the optimum stimulus may be a white or dark line, 
or an edge separating light from dark. A line stimulus is effective only when 
shone in an orientation that is characteristic for the cell; there is typically 
no response when the stimulus is shone at 90’ to the optimum orientation, 
and the range of orientations over which a response is evoked may be 30’ 
or even less. Some cells prefer one inclination, others another, and we have 
no evidence that any one orientation, such as vertical or horizontal, is more 
common than another. For some cells, termed “simple,” the exact position 
of the stimulus is critical: even a slight displacement of the line to a new 
position, without changing its orientation, produces a dramatic decrease in 
the response. These properties of simple cells are dictated by the arrange- 
ment of excitatory and inhibitory regions of the receptive field, as mapped 
with small-spot stimulation (10). The simplest assumption is that each of 

1 This work was supported in part by Research Grants NB-02260-05 and NB-02253-06 
from the National Institutes of Health, and in part by Research Grant AF-AFOSR-62-76 
from the U.S. Air Force. 
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FIG. 38. Wiring diagrams that might 
account for the properties of hypercomplex 
cells. A: hypercomplex cell responding to 
single stopped edge (as in Figs. 8 through 
11) receives projections from two complex 
cells, one excitatory to the hypercomplex 
cell (E), the other inhibitory (I). The ex- 
citatory complex cell has iti receptive field 
in the region indicated by the left (con- 
tinuous) rectangle; the inhibitory cell has 
its field in the area indicated by the right 
(interrupted) rectangle. The hypercomplex 
field thus includes both areas, one being the 
activating region, the other the antagonistic. 
Stimulating the left region alone resulti in 
excitation of the cell, whereas stimulating 
both regions together is without effect. & 
scheme proposed to explain the properties 
of a hypercomplex cell responding to a 
double-stopped slit (such as that described 
in Figs. 16 and 17, except for the difference 
in orientation, or the hypercomplex cell with 
small spikes in Fig. 27). The cell receives 
excitatory input from a complex cell whose 
vertically oriented field is indicated to the 
left by a continuous rectangle; two addi- 
tional complex cells inhibitory to the hyper- 
complex cell have vertically oriented fields 
flanking the first one above and below, 
shown by interrupted rectangles. In an al- 
ternative scheme (C), the inhibitory input is 

supplied by a single cell with a large field indicated by the entire interrupted rectangle. In 
either case (13 or C), a slit covering the entire field of the hypercomplex cell would be in- 
effective. Scheme C requires that a slit covering but restricted to the center region be too 
short to affect the inhibitory cell. 

its field stopped at only one end, is given in Fig. 38A; the cell could be the 
one illustrated in Figs. 8 through 11, Only two afferent cells are shown, an 
excitatory and an inhibitory, but there might be many of each type. In Fig. 
38, B and C, two possible arrangements are suggested to account for the 
properties of a double-stopped hypercomplex cell (see Figs. 16 through 20, 
and 27). Figure 38B requires two inhibitory cells, or sets of cells, both com- 
plex, with their fields covering the two flanking areas. In an alternative 
scheme (Fig. 38C), the hypercomplex cell receives an excitatory input from a 
complex cell whose field covers the activating center, as before, and an 
inhibitory input from a single complex cell with a field having the same size 
and position as the entire hypercomplex field, both center and flanks. This 
arrangement could only work efficiently if the inhibitory afferent gave a good 
response to a long slit, but little or no response to a stimulus confined to 
the activating area. This was true for the complex cell (large spikes) of 
Fig. 27, which responded well to a large slit, but not to a small one. Except 
for the difference in ocular dominance, one might imagine that the two 
simultaneously recorded cells in Fig. 27 were interconnected, the complex 
cell sending inhibitory connections to the hypercomplex one. 

Orientation selectivity in V1



combinations of line components that form angles, but
not necessarily to each of the components alone. This
implies some sort of nonlinear interactions in the inputs
from V1. This is reminiscent of the response of MT
neurons to moving ‘plaid’ stimuli constructed from two
moving sinusoidal gratings: some MT cells were found to
respond only to the components of the plaid, while others
responded to the overall motion of the pattern [13]. 

Although the results of Ito and Komatsu [9] are
apparently consistent with a very simple model for V2
cells, more is undoubtedly going on between V1 and
V2. For example, when applied to the set of stimuli
used by Hegdé and Van Essen [7], a randomly selected
population of model V2 neurons show a weaker selec-
tivity to curved arcs than do actual V2 neurons. 

It is not easy choosing stimuli to study a poorly
understood visual area like V2. It is reasonable to
choose stimuli based on guesses at what are funda-
mental components of a visual scene for performing
tasks such as object recognition or contour segrega-
tion. This is particularly true for visual areas relatively
high up in the processing stream, such as area V4 or
the inferotemporal cortex (IT), which benefit from a
large amount of previous neuronal processing. Area V2,
however, may lie too early in the visual hierarchy to
make substantially sophisticated computations.

On the other hand, the location of V2 in the
hierarchy does have the advantage that area V1, from
which V2 receives its predominant input, is reasonably
well understood. It therefore makes sense to consider
how a V2 neuron could be built from V1 neurons when
choosing stimuli for an experiment. The angled lines
used by Ito and Komatsu [9] are an excellent example;
the seemingly complex pattern of their results can at
least be partially explained by a simple model in which

V2 neurons are summing the response from two
orientation selective V1 simple cells.
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Figure 1. The selectivity of a V2 neuron
can be explained by two V1 inputs.
(A) Angle stimuli, consisting of two line
segments, used by Ito and Komatsu [9] to
study the selectivity of V2 neurons. The
orientation of one line segment varies
along the rows and the orientation of the
other line segment varies along the
columns. (B) The pattern of responses for
an example neuron. Circles surround the
stimulus that evoked the maximal
response, and stimuli that evoked more
than half this maximum are shaded in
gray. (C) Our model V2 neuron sums the
responses from two orientation-selective
V1 neurons that sum the inputs from LGN
cells with center-surround receptive fields
[11]. (D) Predicted response from our
model neuron to the stimulus set. Like the
example V2 neuron, the model neuron
responds to angle stimuli containing ori-
ented line segments that match the pre-
ferred orientation of either of the two V1
input neurons. 
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Another RF (Fig. 1c) consisted of a central region tuned to B251
flanked by two regions tuned to B1101.

Some nonuniform RFs showed more moderate and gradual shifts in
preferred orientation. For instance, the preferred orientation of the RF
shown in Figure 1d shifted gradually from about 401 on one side of the
RF to 901 on the other.

We also encountered RFs with bimodal tuning (Fig. 1e). Apparent
bimodal tuning might arise if the stimulus patch fell on the border
between two segregated regions of unimodal tuning. However, that was
unlikely to account for the RF in Figure 1e because bimodal tuning
locations were not necessarily in between unimodal tuning regions.
As preferred orientations of unimodal tuning locations generally
matched with peak orientations of bimodal tuning, bimodal tuning
was likely to be the result of spatially overlapping excitatory inputs
tuned to different orientations.

In V1, neurons showed minimal variations in orientation tuning
across the RF. The largest maximum difference in preferred orientation
between pairwise locations within the RF we encountered in V1 was
301 (Fig. 1f).

As in V2, RFs of most V3 neurons were uniform (Fig. 1g) but
others were nonuniform (Fig. 1h,i). Nonuniform RFs of some V3
neurons appeared to have contour-like structure; the RF shown in
Figure 1i included two regions tuned to orientations around 1501
that were separated by another region tuned to around 401 in a
U-shaped configuration.

Variations in preferred orientation across the RF
To characterize various RFs quantitatively, we identified locations
having S/N exceeding 2 and conducted modality tests13 to determine
the number of modes in the tuning at each location. No tuning
curve showed more than two significant peaks. We then fitted to

each tuning curve a von Mises function14 or a
sum of two von Mises functions, depending
on the number of modes, to estimate the
preferred orientation(s).

Distributions of preferred orientations are
shown in Figure 2. A scatter plot of preferred
orientations for two locations that had the
largest orientation difference within each V2
RF (Fig. 2a) showed data points mostly scat-

tered along the unity line, indicating that most V2 neurons had only
small differences in preferred orientation within their RFs. However,
some neurons showed orientation differences near ±901. This is more
evident in the histogram of differences in preferred orientation
(Fig. 2b), which was bimodal (test for unimodality, P o 0.01; test for
bimodality, P4 0.99). Although the largest difference among randomly
(uniformly) distributed orientation preferences is expected to be ±901,
that was not the reason for the cluster around ±901. A scatter plot of all
pairwise combinations of preferred orientations within each V2 RF
having a maximum orientation difference exceeding ±301 (Fig. 2e)
showed data points still concentrated around 0 and ±901 rather than
being random. This was confirmed by the histogram of orientation
differences (Fig. 2f), which was bimodal (test for unimodality, Po 0.01;
test for bimodality, P4 0.99) with peaks around 01 and ±901. That is, if
a pair of locations within an RF is chosen randomly from our sample,
the difference in preferred orientations between the two locations is
most likely to be around either 01 or ±901.

These results indicate that orientation selective V2 neurons can be
divided into two groups: one with uniform RF structure and another
with nonuniform structure. Of the 100 V2 RFs included in this analysis
(excluding 18 RFs with poor fits), we classified 70 (70%) as having
uniform RFs because they showed at most a ±301 difference in
preferred orientation, and the remaining 30 (30%) we classified as
nonuniform. We subjectively classified approximately one-third (11) of
nonuniform RFs as bipartite (two subregions), another one-third (9) as
containing bimodally tuned regions, one-sixth (5) as tripartite, and
one-tenth (3) as having a gradual change in preferred orientation; two
nonuniform RFs were unclassified.

We also found nonuniform RFs in 7 of 18 (39%) V3 neurons. The
scatter plot and the histogram of largest differences in preferred
orientation within the RF for V3 neurons (Fig. 2c,d) were qualitatively
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Figure 1 Examples of space-orientation RF
maps for neurons in early visual cortical areas.
Responses (filled blue curves) of neurons relative
to the baseline (mean) firing rates (red circles)
are plotted in polar coordinate as a function of
stimulus orientation at 19 positions arranged in
hexagonal arrays in space (x and y). Gray circles,
locations and the size of stimulus patches used
to obtain orientation tuning. Value in spikes per
second at the lower right corner of each map
indicates maximum firing rate as represented
by the radius of the gray circle at each location.
Orientation increases counterclockwise from 01 at
the 3 o’clock position on each gray circle. Results
for the orientation range between 01 and 1801
were repeated to complete the polar plot in full
circle. Solid and dashed black circles, subregions
tuned to different orientations. (a–e) Maps from
V2 neurons with uniform (a) and nonuniform
(b–e) RF structures. (f) Map from a V1 neuron.
(g–i) Maps from V3 neurons with uniform (g) and
nonuniform (h,i) RF structures.
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orientation selectivity similar to that of an orientation-selective V1
neuron. When the optimal combination is a particular pair of dissim-
ilar orientations, the neuron would be excited by certain angles and
curves and may be inhibited by uniform orientations. This may explain
why some V2 neurons respond to complex stimuli10–12,18 despite the
lack of neurons showing more than one peak in orientation tuning
when tested with large gratings8 or bars9.

The visual system integrates collinear line segments to achieve
contour perception19–21. V2 neurons that encode combinations of
collinear orientations may have a part in this process. On the other
hand, noncollinear orientation combinations are useful cues for surface
segmentation. For example, L and T junctions are necessary for
perceiving amodal surface completion and illusory contours22. V2
neurons that convey signals about these junctions may initiate a
contour completion process22 that may in turn spread among neurons
encoding collinear orientations to enclose surfaces. V2 neurons
that encode combinations of local orientations may thus provide
important underpinnings for the analysis of surfaces23 and ultimately
object recognition24.

Our results suggest the following picture for mechanisms that may
underlie RFs of orientation-selective V2 neurons. First of all, inter-
actions described by TSIs around 1 (Fig. 5c,d) suggest that some V2
neurons combine orientation-selective V1 inputs additively (Fig. 7a).
If V1 subunits shared the same orientation preference, the space-
orientation RFs of these V2 neurons would be uniform (Fig. 7a,
left), whereas the RFs would be nonuniform if the subunits were
tuned to different orientations (Fig. 7a, right). The output nonlinearity
of V2 neurons is assumed to be a half-rectification in these models. If,
instead, the nonlinearity takes an expansive form, the models predict an
amplitude reduction of orientation tuning for orthogonal condition-
ing, and moderate TSI values (Figs. 3h–j and 4d–f). Although the
amplitude reduction could be accounted for by divisive nonlinearity
(for example, response normalization25) or orientation-tuned

inhibition, such mechanisms involve more complicated circuitries
than the models depicted here.

Models of neurons that show flat tuning for orthogonal conditioning
(Fig. 5g,h) must incorporate an inhibitory mechanism (Fig. 7b). The
inhibition might be of V2 intracortical origin (Fig. 7b, top), such as
mutual inhibition between V2 neurons tuned to orthogonal orienta-
tions at a given location in the RF (orientation domain push-pull),
or of V1 intracortical origin (Fig. 7b, bottom), such as a combi-
nation of end5,26 and side26,27 inhibition28 arranged in a spatially
complementary manner (the classical RF of the end-inhibitory neuron
overlaps with the surround of the side-inhibitory neuron and
vice versa).

Finally, to account for the disinhibitory effect manifested by tuning
shape inversion (Fig. 5k,l), we propose models that consist of a pair of
either end- or side-inhibitory V1 neurons29 that are spatially com-
plementary (Fig. 7c, left). As a special case, the double end– and double
side–inhibition models are combined (Fig. 7c, right) so that the space-
orientation RF shows bimodal tuning.

Our suggestion that end- and/or side-inhibitory V1 neurons are
likely to be involved in construction of some V2 RFs is based on our
observation that the tuning shown in Figure 5k,l is unimodal, whereas
single-patch tuning curves (Fig. 5j) are bimodal. This indicates that the
inhibition was acting on one peak: that is, the inhibition must have
taken place before the convergence of excitatory inputs tuned to
different orientations. End-inhibitory V1 neurons have been implicated
for curvature processing5,30. We take this notion one step further by
proposing that V2 neurons encode combinations of orientations using
end- and/or side-inhibitory V1 inputs.

Finally, the architecture laid out here for encoding combinations
of orientations can be easily extended to other visual attributes
such as motion, binocular disparity and spatial frequency to create
neurons that signal combinations of two inputs. For instance,
adding direction selectivity to V1 subunits of end- and side-
inhibition models (Fig. 7b,c) would yield V2 neurons that
respond to pattern motion, which could provide an intermediate
computational stage for the recent model of pattern motion–selective
MT neurons31.

METHODS
General procedures. We used sixteen monkeys (Macaca fascicularis). All
surgical and experimental procedures complied with the guidelines set by the
US National Institutes of Health and were approved by Animal Studies
Committee at Washington University School of Medicine. The animal was
under anesthesia (propofol 2–4.5 mg h–1 per kilogram body weight plus
sufentanil citrate 4–36 mg kg–1 h–1) and was positioned on a stereotaxic frame
during the entire procedure. In an aseptic condition, we made a craniotomy of
about 1.5 cm long and 1 cm wide approximately 2 cm anterior to the occipital
bone ridge and 7 mm lateral from the midline. Duratomies of 1–2 mm in
diameter were made just posterior to the lunate sulcus. We mounted a
recording chamber over the craniotomy, filled with mineral oil and sealed to
minimize cerebral pulsation. The animal was paralyzed (gallamine triethiodide,
10 mg kg–1 h–1) before recording sessions began. Oxygen-permeable contact
lenses were placed on both corneas, and eyes were refracted and corrected
with additional lenses. Pupils were dilated, and an artificial pupil placed in
front of each eye.

We inserted an epoxy-coated tungsten electrode (A-M Systems) into the
cortex through the duratomy, and attempted extracellular recordings on single
units in the visual area V2. The electrode traveled from the superficial cortex
near the V1/V2 border, down through the posterior bank of the lunate sulcus at
the angles of about 5–251 anterior and 5–201 medial. Occasionally, the
electrode would enter the V1 side of the V1-V2 border or reach V3 after a
long penetration, in which case we collected data from some cells in these
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Figure 7 Hypothetical neural circuitries underlying orientation selective V2
RFs. Ellipses, RFs of V2 neurons; letters U, N, and Nb, space-orientation
RFs that are uniform, nonuniform, and nonuniform with bimodal orientation
tuning, respectively. Hatched circles, RFs of V1 subunits. Solid and dashed
circles, classical RF of the subunit and inhibitory surround of the classical
RF, respectively; orientation of the hatches, preferred orientation for the
classical RF and the most suppressive orientation for the surround. Black and
gray circles, RF locations in space; RFs in the same shade occupy a common
region of visual space. Small open and filled circles, excitatory and inhibitory
synapses, respectively. (a) Excitation models. (b) Inhibition models.
(c) Disinhibition models.
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Structure of V2 receptive fields

Anzai, Peng & Van Essen, 2007



V2 responses to nonconventional form stimuli (Hegde and Van Essen, 2002)



Hegde & Van Essen, 2007
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Stuff



OH BOY!  IT'S ICE CREAM!

Seeing things and stuff

Adelson  (2001)

People see stuff



OH BOY!  IT'S A SPOON!

Seeing things and stuff

Adelson  (2001)

Machines see things



What makes natural images special?
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the assumption of translation invariance implies that images may be decorrelated
by transforming to the frequency (Fourier) domain. The two-dimensional power
spectrum can then be reduced to a one-dimensional function of spatial frequency
by performing a rotational average within the two-dimensional Fourier plane. Em-
pirically, many authors have found that the spectral power of natural images falls
with frequency, f, according to a power law, 1/fp, with estimated values for p typ-
ically near 2 [see Tolhurst (1992) or Ruderman & Bialek (1994) for reviews]. An
example is shown Figure 4.
The environmental causes of this power law behavior have been the subject of

considerable speculation and debate. One of the most commonly held beliefs is
that it is due to scale invariance of the visual world. Scale invariance means that the
statistical properties of images should not change if one changes the scale at which
observations are made. In particular, the power spectrum should not change shape
under such rescaling. Spatially rescaling the coordinates of an image by a factor of
↵ leads to a rescaling of the corresponding Fourier domain axes by a factor of 1/↵.
Only a Fourier spectrum that falls as a power law will retain its shape under
this transformation. Another commonly proposed theory is that the 1/f2 power
spectrum is due to the presence of edges in images, because edges themselves

Figure 4 Power spectrum of a natural image (solid line) averaged over all orientations,
compared with 1/f2 (dashed line).
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What makes natural images special?
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What makes natural images special?



Natural
image

“V1 model”

Iterative
synthesis

Filtered noise

“Naturalistic” image

“V2 model” ?

Iterative
synthesis

Correlations
across position, 

orientation,
scale

Portilla & Simoncelli (1999, 2000)

Texture analysis and synthesis



Portilla & Simoncelli (1999, 2000)

Texture analysis and synthesis

Let us say that to the extent that visible objects are different and far apart, they are forms. 
To the extent that they are similar and congregated they are a texture. A man has form; a 
crowd has man-texture. A leaf has form; an arbor has leaf texture, and so on. 

Lettvin, 1976



Freeman & Simoncelli (2011)

Why V2?
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responses (both simple and complex) and averaging these products 
over local regions, yielding local correlations. Correlations have been 
shown to capture important features of naturalistic texture images and 
have been used to explain some aspects of texture perception17,26,27. 
Correlations across orientations at different positions yield selec-
tivity to angles and curved contours, as suggested by physiological  
studies of area V2 (refs. 28–32). Correlations across frequencies encode 
features with aligned phase or magnitude (for example, sharp edges 
or lines)17,33, and correlations across positions capture periodicity.  
Finally, local correlations are compatible with models of cortical com-
putation that propose hierarchical cascades of linear filtering, point 
nonlinearities and pooling5–9,25,34,35 (see Online Methods).

We must specify the pooling regions over which pair-wise pro-
ducts of V1 responses are averaged. Receptive field sizes in the 
ventral stream grow approximately linearly with eccentricity, and 
the slope of this relationship (that is, the ratio of receptive field 
 diameter to eccentricity) increases in successive areas (see Fig. 1 and 
Supplementary Analysis). In our model, pooling is performed by 
weighted averaging, with smoothly overlapping functions that grow 
in size linearly with eccentricity, parameterized with a single scal-
ing constant (see Online Methods and Supplementary Fig. 1).

Generation of metameric stimuli
If our model accurately describes the information captured (and dis-
carded) at some stage of visual processing, and human observers can-
not access the discarded information, then any two images that produce 
matching model responses should appear to be identical. To directly 
test this assertion, we examined perceptual discriminability of syn-
thetic images that were as random as possible while producing identi-
cal model responses17. Model responses (Fig. 2a) were computed for a 
full-field photograph (for example, Fig. 2b). Synthetic images were then 
generated by initializing them with samples of Gaussian white noise 
and iteratively adjusting them (using a variant of gradient descent) 
until they matched the model responses of the original image (see  
Online Methods).

Synthetic images were identical to the original near the intended 
fixation point, where pooling regions were small, but features in the 
periphery were scrambled, and objects were grossly distorted and 
generally unrecognizable (Fig. 2c,d). When generated with the cor-
rect scaling constant, and viewed with proper fixation, however, the 
two images appeared to be nearly identical to the original and to 
each other.

Perceptual determination of critical scaling
To test the model more formally and to link it to a specific ventral 
stream area, we measured the perceptual discriminability of synthetic 

images as a function of the scaling constant used in their generation. 
If the model, with a particular choice of scaling constant, captures the 
information represented in some visual area, then model-generated 
stimuli will appear to be metameric. If the scaling constant is made 
larger, then the model will discard more information than the 
associated visual area and model-generated images will be readily 
 distinguishable. If the model scaling is made smaller, then the model 
discards less information and the images will remain metameric. 
Thus, we sought the largest value of the scaling constant at which 
the stimuli appeared to be metameric. This critical scaling should 
correspond to the scaling of receptive field sizes in the area in which 
the information is lost.

As a separate control for the validity of this procedure, we examined 
stimuli generated from a V1 model that computes pooled V1 complex-
cell responses36 (that is, local spectral energy, see Supplementary 
Fig. 2). The critical scaling estimated for these stimuli should match 
the receptive field sizes of area V1. As the mid-ventral model includes 
a larger and more complex set of responses than the V1 model, we 
know a priori that the critical scaling for the mid-ventral model will 
be as large, or larger, than for the V1 model, but we do not know  
by how much.

For each model, we measured the ability of human observers to 
distinguish between synthetic images generated for a range of scaling 
constants (Fig. 2e and Online Methods). All four observers exhibited 
monotonically increasing performance as a function of scaling con-
stant (Fig. 3). Chance performance (50%) indicates that the stimuli 
are metameric and, roughly speaking, the critical scaling is the value 
at which each curve first rises above chance.

To obtain an objective estimate of the critical scaling values, we 
derived an observer model that used the same ventral stream repre-
sentation as was used to generate the matched images. The inputs to 
the observer model were two images that were matched over region 
sizes specified by scaling s. If we assume that the observer computes 
responses to each of these images with receptive fields that grow in 
size according to a fixed (but unknown) critical scaling s0, then their 
ability to discriminate the two images will depend on the difference 
between the two sets of responses. We derived a closed-form expres-
sion for the dependency of this difference on s (see Online Methods). 
This expression is a function of the observer’s scaling parameter, s0, 
as well as a gain parameter, 0, which controls their overall perform-
ance. We used signal detection theory37 to describe the probability 
of a correct answer and fit the parameters (s0, 0) to the data of each 
subject by maximizing their likelihood.

The observer model provided an excellent fit to individual observer 
data for both the V1 and mid-ventral experiments (Fig. 3). Critical 
scaling values (s0) were highly consistent across observers, with most 

Figure 1 Physiological measurements of 
receptive field size in macaque. (a) Receptive 
field size (diameter) as a function of the 
distance between the receptive field center and 
the fovea (eccentricity) for visual areas V1, V2 
and V4. Data were adapted from refs. 11 and 
12, the only studies to measure receptive fields 
in all three macaque ventral stream areas with 
comparable methods. The size-to-eccentricity 
relationship in each area is well described by 
a ‘hinged’ line (see Supplementary Analysis 
for details and an analysis of a larger set of ten physiological datasets). (b) Cartoon depiction of receptive fields with sizes based on physiological 
measurements. The fovea is at the center of each array. The size of each circle is proportional to its eccentricity, based on the corresponding scaling 
parameter (slope of the fitted line in a). At a given eccentricity, a larger scaling parameter implies larger receptive fields. In our model, we used 
overlapping pooling regions (linear weighting functions) that uniformly tiled the image and were separable and of constant size when expressed in polar 
angle and log eccentricity (Supplementary Fig. 1).
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Why V2?

Jeremy Freeman
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Freeman, Ziemba et al (2013)



“Naturalness” modulates responses in V2 but not V1 neurons
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“Naturalness” enhances responses in 63% of V2 but only 15% of V1 neurons
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Differences between naturalistic and noise responses first emerge in human V2
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Perception of border ownership. A, Rubin's vase (Rubin, 1915). This well 
known ambiguous figure demonstrates the tendency of the visual system to 
interpret contrast borders as occluding contours and to assign them to one of the 
adjacent regions. In this example, figure-ground cues have been carefully 
balanced, but the black and white regions are generally not perceived as 
adjacent; instead, perception switches back and forth, and the borders belong 
either to the vase or to the faces. B, Isolated regions of contrast are generally 
perceived as "figures", that is, objects seen against a background. C, This 
display is generally perceived as two overlapping rectangles rather than a 
rectangle adjacent to an L-shaped object.

Border ownership signals in macaque V2 (Zhou et al, 2000)



V1

V2

V1 and V2 responses to real and anomalous contours (Von der Heydt and Peterhans, 1989)



V1 and V2 responses to real and anomalous contours (Von der Heydt and Peterhans, 1989)



V1 and V2 responses to real and anomalous contours (Von der Heydt and Peterhans, 1989)



Border ownership signals in macaque V2 (Zhou et al, 2000)

Standard tests for determining the effect of border 
ownership on edge responses.
On the left: in A and B, identical contrast edges are 
presented in the receptive field (ellipses), but in A, 
the edge is the right side of a dark square, in B, it is 
the left side of a light square. The relation is 
analogous between C and D, with reversed contrasts. 
E, The hatched region indicates the neighborhood of 
the receptive field in which displays A and B (or C 
and D) are identical.

On the right: Overlapping figure test. In each of these 
displays two regions of approximately the same area 
are presented on either side of the receptive field 
(ellipses).



Border ownership signals in macaque V2 (Zhou et al, 2000)

Size invariance of border-ownership coding. The same V2 cell. Rows A and B show the 
stimuli, with pairs of locally identical stimuli juxtaposed. Conventions as in Figure 4. 
Bar graphs below show mean firing rates and SEs of the corresponding responses. 
Square sizes: 1 and 2, 4°; 3 and 4, 10°; 5 and 6, 15°. For each size, and for either 
contrast polarity, the responses were stronger when the square was located on the left 
side of the receptive field.

Example of border-ownership coding in a cell of area V2. 
The stimuli are shown at the top, and event plots of the 
corresponding responses are shown at the bottom. The 
ellipses indicate the location and orientation of the receptive 
field, and the crosses show the position of the fixation target. 
In the event plots, small vertical lines represent the times of 
action potentials, relative to the moment of lever pulling 
(which generally indicated the beginning of fixation). Small 
squares indicate the times of target flip (end of fixation). 



Border ownership signals in macaque V2 (Zhou et al, 2000)

Example of simultaneous coding of border-ownership and edge-
contrast polarity. This cell of area V2 was color-selective with a 
preference for dark, reddish colors (see Fig. 8). Brown and gray were 
used for the test. Conventions are the same as for Figure 4. The cell 
responded to the top edge of a brown square (C), but hardly at all to 
the bottom edge of a gray square (D), although in both cases the same 
gray-brown color boundary was presented in the receptive field. The 
cell did not respond at all to edges of the reversed contrast (A, B). 
Square size, 4°; length of minimum response field, 1.4°; location in 
visual field (1.4°, 3.0°).

The distributions of the types of contour responses found in 
cortical areas V1, V2, and V4. Classification based on two-factor 
ANOVA. Ownership, Responses modulated according to side of 
ownership; contrast, responses modulated according to local 
contrast polarity; ownership & contrast, modulation by either 
factor; none, no modulation. In V2 and V4, more than half of the 
cells showed border-ownership modulation.



Persistence of border-ownership signals in V2 (O’Herron & von der Heydt, 2009)



Transfer of border ownership across saccades (O’Herron & von der Heydt, 2013)



Transfer of border ownership across saccades: population response 
(O’Herron & von der Heydt, 2013)



present on a given side of the edge, then these neurons
should also respond to the presence, in stereograms, of
“near” figures on the same side. By systematically com-
paring responses to figural occlusion and disparity cues,
these authors showed that this convergence indeed oc-
curred in a significant number of V2 neurons, but only
rarely in V1.

So far, most studies addressing the ordering of sur-
faces in depth have studied the simple situation of a single
figure on a background, with three notable exceptions.
Zhou et al. (350) showed that about half the edge cells in
V2 and V4 (plus a small proportion in V1) that signal
border ownership for a single figure can also signal border
ownership for overlapping figures. Bakin et al. (14)
showed that the neural basis for contour completion, that
is, the facilitation of neural responses to stimuli located
within the RF by contextual lines lying outside the RF, is
blocked by an orthogonal line intersecting the contour,
but is recovered when the orthogonal line is placed in a
“near” depth plane. This recovery was observed more
frequently in V2 than in V1. Sugita (299) showed that V1
neurons do not respond to an optimal moving bar when it
is partially occluded by a small patch. Response was
restored by adding crossed disparity to the patch so that
it appeared to be in front of the bar, while adding un-
crossed disparity had no effect. Notice that this type of
completion is very different from that observed in IT

(140), where the addition of disparity is not necessary for
neurons to complete the shape.

C. Segmentation of Moving Planes in MT/V5

Objects are generally opaque; thus occlusion is the
rule between objects at different depths. A moving object
near the observer will therefore dynamically occlude
other objects at greater distance from the observer.
Hegde et al. (93) have suggested in a psychophysical
study that second-order or non-Fourier motion stimuli
such as contrast modulated moving stimuli may signal
dynamic occlusion. Thus the response of MT/V5 neurons
to these non-Fourier motion stimuli (3, 196) might signal
the dynamic occlusion of one object by another, even
when the objects are not distinguished from one another
by luminance differences.

Full transparency is relatively rare in natural scenes.
Exceptions include shadows and to some extent foliage,
especially fine foliage. To disentangle moving shadows
from moving objects, the visual system should be able to
process transparent motion signals. Snowden et al. (288)
compared responses of V1 and MT/V5 neuron responses
to moving random dots or to transparent motion in which
two sets of random dots moved in opposite directions. V1
neurons responded equally well to random dot and trans-
parent motion, while MT/V5 neurons responded less

FIG. 7. Edge neurons and border ownership selec-
tivity. A: response of a surface and an edge neuron (V2)
as a function of the position of a square figure. [From
Friedman et al. (71), with permission from Blackwell
Publishing.] B: schematic indication of four types of
neurons (stripes indicate RF) signaling the direction of
the figure with respect to the edge (b) or not (a) and
signaling the polarity of the figure (c) or not (d). C:
distribution of contrast polarity discrimination (c-d)
and side of ownership discrimination (b-a) in V1, V2,
and V4. [Modified from Zhou et al. (350).]
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V1–V4 responses to border ownership
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~ 7.7 cm2  (in each hemisphere)!
~ 8% of neocortex  (~ 15% of visual cortex) 
~ 90 million neurons
Subregions: (PIT, CIT, AIT)    (TEO, TE) 

ITV4
Perirhinal Cx
Parahippocampal Cx
Amygdala

Prefrontal Cx
Frontal Eye Field Cx
Parietal Cx (7a)

IT statistics (rhesus monkey)

Striatum
Thalamus

Thalamus
Hypothalamus
Brain stem



Ungerleider et al (2007)

IT is about central vision

V4 foveal 
projections to 
IT



The “complexity” of the stimuli needed to activate neurons increases along the ventral stream 

Kobatake and Tanaka (1994)



Average RF size also increases along the ventral stream

10
deg

Adapted from Kobatake et al. (1994)



“The use of [these] stimuli was begun one day when, having failed to drive a unit with 
any light stimulus, we waved a hand at the stimulus screen and elicited a very vigorous 
response from the previously unresponsive neuron... 

Increasing ability to drive this IT neuron -->

“We then spent the next 12 hours testing various paper cutouts in an attempt to find 
the trigger feature for this unit. When the entire set of stimuli used were ranked 
according to the strength of the response that they produced, we could not find a 
simple physical dimension that correlated with this rank order. However, the rank 
order of adequate stimuli did correlate with similarity (for us) to the shadow of a 
monkey hand." (Gross et al., 1972)



IT neurons can be tuned to very specific combinations of features (high selectivity)

Desimone et al. (1984) Kobatake et al. (1994)



Selectivity for objects in two IT 
neurons
(Tamura and Tanaka, 2001)
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Cortical representations: sparseness



Baddeley et al, 1997

Sparseness of neural response in V1

V1

relation.This is indicated in ¢gure 5a,b by the approxi-
mately straight lines appearing on a log^log plot.
The coe§cient of variation, CV, measures the

normalized variability of interspike intervals, and has
been the subject of much theoretical interest (see, for
instance, Softky & Koch 1993; Holt et al. 1996). This
measure can be used to identify a stationary Poisson
process for which CV à 1. CV for N interspike inter-
vals of duration Tj is given by
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Using this measure, neither the V1 nor the IT spike
trains are well characterized by a Poisson process. The
coe§cients of variation were, on average, 1.91 for V1
cells (s.d.à0.42, p(CV41) < 0:005)) in the video
condition. For IT neurons the mean CV was 1.84
(s.d.à0.49, p(CV41) < 0:005)).

CV is most useful if the spike train is stationary, but
this is not the case for most in vivo recordings. A local
version of CV , CVn, has been proposed in this case, to

determine whether groups of n spikes can be described
as arising from a Poisson process (Holt et al. 1996). To
compute CVn, we de¢ne the mean ISI between inter-
spike interval i and interspike interval iá n as

hTini à
1
n

Xián�1
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Tj, (4)

and the local standard deviation as:
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The local coe§cient of variation is then

CVn à Kn

XN�ná1

ià1

�n
i

hTini
, (6)

where Kn is a value chosen so that CVn is equal to one
for a Poisson process. The computed values of CVn as a
function of n are shown in ¢gure 5c. The values are
always greater than one. CVn values for the IT spike
trains with small n are closer to the Poisson value,
which may re£ect the persistence time of the images
IT is sensitive to (faces, objects). Images that make V1
neurons respond vigorously (oriented lines at particular
locations) are likely to have shorter persistence times in
the videos.The relationship between CVn and n appears
approximately power law implying that it does not
de¢ne any particular spike or time-scale.
An additional non-Poisson feature we found was

positive correlation between successive interspike

1778 R. Baddeley and others Responses of neurons in primary and ITV1to natural scenes
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Figure 3. The average spike-count distributions for the V1 (a, b, c) and IT (d, e, f ) neurons is relatively insensitive to the
window size used to calculate the rate. To display the average distributions for all the video-stimulated cells (each with a
di°erent average ¢ring rate), we used a window size adjusted so that the average number of spikes per window was the same
for all the cells, either one (a, d ) two (b, e) ten (c, f ) spikes per window. Error bars are standard errors. Spike-count distribu-
tions for six di°erent video conditions and two noise conditions. In each case the window size was chosen so that the average
number of spikes per window was one. Near exponential spike count distributions were found for all three video conditions:
mixed (a), natural (b), indoor (c), laboratory (e), colony (f ) and arti¢cial (g). More surprisingly, the white noise (d), and blank
screen (h) conditions also produced approximately exponential distributions. Error bars correspond to standard errors.
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for a Poisson process. The computed values of CVn as a
function of n are shown in ¢gure 5c. The values are
always greater than one. CVn values for the IT spike
trains with small n are closer to the Poisson value,
which may re£ect the persistence time of the images
IT is sensitive to (faces, objects). Images that make V1
neurons respond vigorously (oriented lines at particular
locations) are likely to have shorter persistence times in
the videos.The relationship between CVn and n appears
approximately power law implying that it does not
de¢ne any particular spike or time-scale.
An additional non-Poisson feature we found was
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Figure 3. The average spike-count distributions for the V1 (a, b, c) and IT (d, e, f ) neurons is relatively insensitive to the
window size used to calculate the rate. To display the average distributions for all the video-stimulated cells (each with a
di°erent average ¢ring rate), we used a window size adjusted so that the average number of spikes per window was the same
for all the cells, either one (a, d ) two (b, e) ten (c, f ) spikes per window. Error bars are standard errors. Spike-count distribu-
tions for six di°erent video conditions and two noise conditions. In each case the window size was chosen so that the average
number of spikes per window was one. Near exponential spike count distributions were found for all three video conditions:
mixed (a), natural (b), indoor (c), laboratory (e), colony (f ) and arti¢cial (g). More surprisingly, the white noise (d), and blank
screen (h) conditions also produced approximately exponential distributions. Error bars correspond to standard errors.



Position Scale Context

IT neurons are tolerant to identity-preserving transformations

Rust & DiCarlo, 2012



“Sparseness” is not a direct measure of “selectivity”

Sparseness: 2/4

Neuron 1 Neuron 2

Rust & DiCarlo, 2012



Sparseness: 2/4
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“Sparseness” is not a direct measure of “selectivity”
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Sparseness: 2/4

Neuron 1 Neuron 2
“Sparseness” is not a direct measure of “selectivity”
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Sparseness: 2/4

Neuron 1 Neuron 2
“Sparseness” is not a direct measure of “selectivity”

Rust & DiCarlo, 2012



Sparseness: 2/4

Neuron 1 Neuron 2
Selectivity and tolerance are confounded in complex images

Rust & DiCarlo, 2012
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Rolls & Tovee 1995; Vinje & Gallant 2000; Lehky, Sejnowski & Desimone 2005
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Using this measure, neither the V1 nor the IT spike
trains are well characterized by a Poisson process. The
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condition. For IT neurons the mean CV was 1.84
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where Kn is a value chosen so that CVn is equal to one
for a Poisson process. The computed values of CVn as a
function of n are shown in ¢gure 5c. The values are
always greater than one. CVn values for the IT spike
trains with small n are closer to the Poisson value,
which may re£ect the persistence time of the images
IT is sensitive to (faces, objects). Images that make V1
neurons respond vigorously (oriented lines at particular
locations) are likely to have shorter persistence times in
the videos.The relationship between CVn and n appears
approximately power law implying that it does not
de¢ne any particular spike or time-scale.
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Figure 3. The average spike-count distributions for the V1 (a, b, c) and IT (d, e, f ) neurons is relatively insensitive to the
window size used to calculate the rate. To display the average distributions for all the video-stimulated cells (each with a
di°erent average ¢ring rate), we used a window size adjusted so that the average number of spikes per window was the same
for all the cells, either one (a, d ) two (b, e) ten (c, f ) spikes per window. Error bars are standard errors. Spike-count distribu-
tions for six di°erent video conditions and two noise conditions. In each case the window size was chosen so that the average
number of spikes per window was one. Near exponential spike count distributions were found for all three video conditions:
mixed (a), natural (b), indoor (c), laboratory (e), colony (f ) and arti¢cial (g). More surprisingly, the white noise (d), and blank
screen (h) conditions also produced approximately exponential distributions. Error bars correspond to standard errors.
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Sparseness is constant along the visual pathway

Rust & DiCarlo, 2012
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The form processing pathway maintains an “equally distributed” representation of images
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