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The elements of early vision
or, what vision (and this course) is all about



The Electric Monk was a labor saving device, like a dishwasher or a video recorder. 
Dishwashers washed tedious dishes for you, thus saving you the bother of washing them 
yourself, video recorders watched tedious television for you, thus saving you the bother of 
looking at it yourself; Electric Monks believed things for you, thus saving you what was 
becoming an increasingly onerous task, that of believing all the things the world expected 
you to believe.



What’s in the image? The task of early vision

How do neurons encode visual information?

How are neuronal representations decoded?Psychophysics
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after Churchland and Sejnowski, 1988

The challenge of scale
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The challenge of scale



Marr, 1982
David Courtnay Marr

(1946-1980)

The challenge of level
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Every body in light and shade fills the surrounding air with 
infinite images of itself; and these, by infinite pyramids 
diffused in the air, represent this body throughout space and 
on every side. Each pyramid that is composed of a long 
assemblage of rays includes within itself an infinite number of 
pyramids and each has the same power as all, and all as 
each.

– The Notebooks of Leonardo da Vinci 

In M. Landy and J. A. Movshon (eds), Computational Models of Visual Processing (pp. 3-20).
Cambridge, MA: MIT Press (1991). 

The Plenoptic Function and the Elements of Early Vision

Edward H. Adelson and James R. Bergen



What is there to see?

Black and white photo: x, y
Black and white movie: x, y, t

Color movie: x, y, t, λ
Holographic movie: x, y, t, λ, Vx, Vy, Vz

The plenoptic function describes the information available
to an observer at any point in space and time 

The plenoptic function describes all the information available
to an observer anywhere in space and time



Practical applications
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Single Lens Stereo with a Plenoptic Camera
Edward H. Adelson and John Y.A. Wang

(a) (b) (c) (d)

Fig. 2. (a) Pinhole camera forms an image from a single viewpoint; (b) in a
stereo system, two images are formed from different viewpoints; (c) in a
motion parallax system, a sequence of images are captured from many
adjacent viewpoints; (d) a lens gathers light from a continuum of viewpoints; in
an ordinary camera these images are averaged at the sensor plane.



Practical applications



Proposition 1. The task of early vision is to deliver a small set of useful 
measurements about each observable location in the plenoptic function.

Proposition 2. The elemental operations of early vision measure local 
change along various directions within the plenoptic function.

What is there to see?

Black and white photo: x, y
Black and white movie: x, y, t

Color movie: x, y, t, λ
Holographic movie: x, y, t, λ, Vx, Vy, Vz

Hence, the plenoptic function: P(x, y, t, λ, Vx, Vy, Vz)
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A hypothetical scene that produces a
variety of simple plenoptic structures.

The plenoptic structures found along various planes.
Each panel represents a slice through the plenoptic function.
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Some edge-like structures found in particular planes within the plenoptic function 
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Local derivatives will turn out to be handy



Local derivatives will turn out to be handy
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Derivatives along single dimensions lead to a number of basic visual measurements

Derivatives along single dimensions yield some basic visual measurements

Low-order derivatives lead to a few two-dimensional operators (receptive fields)
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The same receptive field structures produce different measurements
when placed along different planes in plenoptic space
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What can you measure with a tilted second derivative?



Hubel & Wiesel (1962, 1968)

Orientation selectivity in V1



Hawken & Parker, 1991

Orientation in space can be detected and measured by oriented filters
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DeValois, Albrecht and Thorell, 1982

Orientation in space can be detected and measured by oriented filters



Motion is orientation in space-time



Motion is orientation in space-time
and spatiotemporally oriented filters can be used to detect and measure it

Adelson & Bergen (1985)



Greg DeAngelis



DeAngelis, Ohzawa 
& Freeman, 1995



DIsparity is orientation in space-eye position



DIsparity is orientation in space-eye position
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Four examples of binocular receptive fields. Humans only take two samples from the Vx  axis,
as shown by the two lines labeled R.E. and L.E. for right eye and left eye.

The curves beneath each receptive field indicate the individual weighting functions for each eye alone.  
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DIsparity is orientation in space-eye position

Poggio (1981)
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Many psychophysical tasks look like Vernier acuity in different planes



Proposition 1. The task of early vision is to deliver a small set of useful 
measurements about each observable location in the plenoptic function.

Proposition 2. The elemental operations of early vision measure local 
change along various directions within the plenoptic function.

What is there to see?

Black and white photo: x, y
Black and white movie: x, y, t

Color movie: x, y, t, λ
Holographic movie: x, y, t, λ, Vx, Vy, Vz

Hence, the plenoptic function: P(x, y, t, λ, Vx, Vy, Vz)



What is there to see?

Black and white photo: x, y
Black and white movie: x, y, t

Color movie: x, y, t, λ
Holographic movie: x, y, t, λ, Vx, Vy, Vz

Hence, the plenoptic function: P(x, y, t, λ, Vx, Vy, Vz)

The analysis of the plenoptic function tells us what elementary measurements can be 
computed, but not which ones are computed or which ones should be computed.

What parts of the possible information are present in the world?

What parts of the information present in the world are important to the organism?



What’s in the image? The task of early vision

How do neurons encode visual information?
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Hubel, 1988

Neural circuits perform computations
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Kandel, Schwartz & Jessell, 2001

Vertical and horizontal pathways for information flow in the retina



Retinal neuronal diversity and circuit specificity

Masland, 2001

Human retina section
Retinal network





Spatial structure is first measured by neurons with center-surround receptive fields



Ganglion cell receptive field modeled as difference of Gaussians

Rodieck, 1965; Enroth-Cugell & Robson, 1966



Spatial contrast sensitivity



Ganglion cell receptive field modeled as difference of Gaussians

Enroth-Cugell & Robson, 1966



Frequency-domain representation of the difference of Gaussians

Enroth-Cugell & Robson, 1984



Temporal linearity in X cells

Enroth-Cugell, Robson, Schweitzer-Tong & Watson, 1983



Temporal linearity in X cells

Enroth-Cugell, Robson, Schweitzer-Tong & Watson, 1983



Diversity of retinal ganglion cell types



Hubel, 1988

Neural circuits perform computations


