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Balanced Increases in Selectivity and Tolerance Produce
Constant Sparseness along the Ventral Visual Stream
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Although popular accounts suggest that neurons along the ventral visual processing stream become increasingly selective for particular objects,
this appears at odds with the fact that inferior temporal cortical (IT) neurons are broadly tuned. To explore this apparent contradiction, we
compared processing in two ventral stream stages (visual cortical areas V4 and IT) in the rhesus macaque monkey. We confirmed that IT
neurons are indeed more selective for conjunctions of visual features than V4 neurons and that this increase in feature conjunction
selectivity is accompanied by an increase in tolerance (“invariance”) to identity-preserving transformations (e.g., shifting, scaling) of
those features. We report here that V4 and IT neurons are, on average, tightly matched in their tuning breadth for natural images
(“sparseness”) and that the average V4 or IT neuron will produce a robust firing rate response (�50% of its peak observed firing rate) to
�10% of all natural images. We also observed that sparseness was positively correlated with conjunction selectivity and negatively
correlated with tolerance within both V4 and IT, consistent with selectivity-building and invariance-building computations that offset
one another to produce sparseness. Our results imply that the conjunction-selectivity-building and invariance-building computations
necessary to support object recognition are implemented in a balanced manner to maintain sparseness at each stage of processing.

Introduction
Our ability to identify objects results from computations that
successfully extract object identity from the diversity of light
patterns that are produced across changes in the position, size,
and/or visual context of an object. These computations are
thought to be implemented in the ventral visual stream [the
retina, lateral geniculate nucleus, primary visual cortex V1,
V2, V4, and inferior temporal cortex (IT)], but they remain
little-understood.

A number of lines of evidence suggest that, as signals propa-
gate through the ventral visual stream, neurons become selective
for increasingly complex image features by combining the fea-
tures encoded by neurons at earlier stages (“conjunction sensitiv-
ity”). In V2, V4, and posterior IT, tuning for stimuli more
complex than simple line segments suggests that neurons may
integrate signals across, for example, V1 neurons tuned for dif-
ferent orientations at different spatial positions (Gallant et al.,
1993; Pasupathy and Connor, 1999; Brincat and Connor, 2004;
Anzai et al., 2007). Additionally, neurons that are highly selective
for complex objects or object fragments have been reported in IT,
suggesting additional computations later in the pathway (Desi-

mone et al., 1984; Logothetis and Sheinberg, 1996; Tanaka, 1996;
Yamane et al., 2008; Rust and DiCarlo, 2010). However, descrip-
tions of IT neurons as highly selective for objects appear to be at
odds with findings that most IT neurons are broadly tuned when
tested with large sets of natural images (Desimone et al., 1984;
Rolls and Tovee, 1995; Kreiman et al., 2006; Zoccolan et al.,
2007). How might we resolve this apparent discrepancy?

One factor not taken into account in the above description is
the contribution of the tolerance of a neuron (aka “invariance”)
to its sparseness. As signals propagate through the ventral visual
pathway, receptive field sizes increase and neurons better main-
tain their rank-order selectivity preferences across changes in
object position, size, and background (“tolerance” increases)
(Kobatake and Tanaka, 1994; Ito et al., 1995; Rust and DiCarlo,
2010). Importantly, increases in conjunction sensitivity for image
features can, in theory, be offset by increases in tolerance (e.g., for
the position of those features) such that neurons with higher
conjunction sensitivity need not respond to fewer complex im-
ages (Fig. 1a,b), thus potentially resolving the discrepancy pre-
sented above.

Knowing that both conjunction sensitivity and tolerance both
increase across the ventral visual pathway does not alone deter-
mine how and whether sparseness changes (Fig. 1b), and thus this
study focused on comparing sparseness at two different levels of
the pathway (i.e., V4 and IT). Although sparseness has been mea-
sured at different stages previously (Rolls and Tovee, 1995; Bad-
deley et al., 1997; Vinje and Gallant, 2002; Kreiman et al., 2006;
Zoccolan et al., 2007; Lehky et al., 2011; Willmore et al., 2011), it
has never been measured in a manner that allows a direct com-
parison between these two areas. We find that distributions of
sparseness in response to natural images are virtually identical in
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V4 and IT and that neurons in each area
typically respond to �10% of natural im-
ages. Moreover, we find that equivalent
sparseness values are correlated with
higher levels of conjunction sensitivity
and tolerance in IT compared with V4,
suggesting that conjunction sensitivity
and tolerance are implemented in a
balanced manner to produce matched
sparseness distributions along the ventral
pathway.

Materials and Methods
With elaborations noted below, the experi-
mental procedures used for this study are de-
scribed in detail by Rust and DiCarlo (2010)
and summarized here. Experiments were per-
formed on two male rhesus macaque monkeys
(Macaca mulatta) with implanted head posts,
scleral search coils, and recording chambers
over both hemispheres of V4 and IT. All surgi-
cal and animal procedures were performed in
accordance with the National Institute of
Health guidelines and the Massachusetts Insti-
tute of Technology Committee on Animal
Care.

All behavioral training and testing was per-
formed using standard operant conditioning
(juice reward), head stabilization, and high-
accuracy, real-time eye tracking. Stimuli were
presented on a CRT monitor with an 85 Hz
refresh rate. All images were presented at the
center of gaze, in a circular aperture that
blended into a gray background. Both mon-
keys were trained to initiate each trial by fixat-
ing a central red point (0.15°) within a square
fixation window that ranged from �0.9° to
�1.1° for up to 4 s. Soon after initiating fixa-
tion (250 ms), a series of visual images were
presented in rapid succession, in a rapid serial
visual presentation (RSVP) paradigm (each for
218 ms or approximately five per second) with
no intervening blank period. Monkey 1 was re-
warded with juice for maintaining fixation for
2.43 s (10 images). Monkey 2 viewed the same
images while engaged in an invariant object de-
tection task that required a saccade to a re-
sponse dot 10° below the fixation point when
encountering an image that contained a mo-
torcycle (Fig. 2c) to receive a reward.

The activity of well-isolated V4 and IT neu-
rons was monitored serially using standard sin-
gle microelectrode methods. Electrodes used to
record from V4 and IT were constructed from
the same materials (glass-coated tungsten) by
the same manufacturer (Alpha Omega) and
matched in impedance (�0.5 M�). Spike
waveforms were isolated online using a dual
window discriminator. In addition, a post hoc,
template-based spike sorting procedure was
applied to remove spurious electrical artifacts
and corruption by other neurons. Great care
was taken to ensure that any neuron whose
waveform could be isolated would be recorded,
regardless of baseline or visually elicited firing
rate. While searching for cells, the monkey en-
gaged in the same task required during the data
collection (described above). This included pe-

Figure 1. Conjunction sensitivity and tolerance combine to determine sparseness. a, Toy model illustration. Each quadrant
describes one toy neuron. Images that elicit a response from the neuron are indicated by red squares. For simplicity, sparseness ( S)
is calculated in this figure as S � 1 � F, where F is the fraction of images to which a neuron responds. Top left, A neuron that
responds to a vertical line at a specific position. This feature exists in two of the four images, and thus the neuron responds to half
of this image set (S � 0.5). Top right, A neuron that responds to a conjunction of a vertical line and two off-horizontal lines.
Compared with the neuron shown in the top left quadrant, this neuron has a higher conjunction sensitivity and responds to a
smaller fraction of the set, resulting in higher sparseness (S � 0.75). Bottom left, A neuron that responds to a vertical line placed
anywhere in the image. Compared with the neuron shown in the top left quadrant, this neuron is matched for conjunction
sensitivity but is more tolerant; as a result, it responds less sparsely (S � 0). Bottom right, A neuron that responds to the same
conjunction of features as the neuron in the top right quadrant, but like the neuron in the bottom left quadrant, it responds to these
features placed anywhere in the image. Compared with the neuron shown in the top left quadrant, this neuron has a higher
conjunction sensitivity and a higher tolerance, but because these two factors act in opposition, it responds with equal sparseness
(S � 0.5). b, The relationship between conjunction sensitivity, tolerance, and sparseness, summarized: and-like operations,
reflected in measurements of conjunction sensitivity, and or-like operations, reflected in measurements of tolerance, combine to
determine sparseness, and these two variables act in opposition. c, Schematic illustration of sparseness values produced by
different combinations of and-like and or-like operations. Contours of constant sparseness for one idealized model of their imple-
mentation are plotted in gray; different implementations of “ands” and “ors” (e.g., strict “and” operations compared with “softer”
super-linear summation rules) would change the slope and shape of these contours but not the logic described here. Circles
indicate possible mean sparseness values for each visual area under different hypothetical scenarios. Assuming that both opera-
tions are increasing in strength across the visual system, three possible scenarios are illustrated. Dashed line, And-like operations
increase at a faster rate than or-like operations, resulting at higher sparseness at later stages of the pathway. Dotted line, Or-like
operations increase at a faster rate than and-like operations, resulting in lower sparseness at later stages of the pathway. Solid line,
And-like and or-like operations are balanced, in that the same sparseness is found at each stage of visual processing.
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riods of viewing stimuli interleaved with intertrial epochs in which no
stimuli were presented and the monkey was free to look around the
room. Additionally, no data analysis was performed during data acqui-
sition to assess the “quality” of the neuron; all neurons were recorded
until the experiment was complete or until the waveform was lost. In
cases in which the electrode traversed the gray matter approximately
perpendicularly (the lower visual field representation of V4 and all pen-
etrations of IT), care was taken to record approximately evenly across
depth to ensure that all layers were sampled approximately uniformly. To
guard against possible nonstationary effects (e.g., familiarity with the
images), recordings were alternated between V4 and IT. Both hemi-
spheres of each visual area were sampled approximately equally in each
monkey, with approximately twice as many cells sampled in monkey 2
compared with monkey 1 (experiment 1: monkey 1, V4 left, n � 30; V4
right, n � 20; IT left, n � 20; IT right, n � 26; monkey 2, V4 left, n � 30;
V4 right, n � 63; IT left, n � 26; IT right, n � 70; experiment 2: monkey
1, V4 left, n � 4; V4 right, n � 6; IT left, n � 4; IT right, n � 6; monkey

2, V4 left, n � 24; V4 right, n � 13; IT left, n � 21; IT right, n � 19;
experiment 3: monkey 1, V4 left, n � 25; V4 right, n � 23; IT left, n � 32;
IT right, n � 16; monkey 2, V4 left, n � 42; V4 right, n � 50; IT left, n �
35; IT right, n � 60). Chamber placements varied slightly between hemi-
spheres and between animals and were guided by anatomical MR images.
A representative IT chamber was centered 15.5 mm anterior of the ear
canal, 12 mm lateral of the midline, and angled 5° lateral. The resulting
region of IT recorded was located on the ventral surface of the brain,
lateral to the anterior middle temporal sulcus and spanned �10.5–17.5
mm anterior to the ear canals (Felleman and Van Essen, 1991). A repre-
sentative V4 chamber was centered 6 mm posterior and 17 mm dorsal to
the ear canals (for additional details regarding access to the upper and
lower visual field representations in V4, see Rust and DiCarlo, 2010). V4
recording sites were confirmed by a combination of receptive field size
and location. Because of a combination of time constraints and, for some
neurons, the absence of responsiveness to isolated bar stimuli, we were
not able to obtain a receptive field map for every neuron in our dataset.

Figure 2. Experimental design. a, Most images were displayed in a 5°-diameter aperture located at the center of gaze (red). Expected receptive field locations and sizes for neurons in V4
(Desimone and Schein, 1987; Gattass et al., 1988) and IT (Op De Beeck and Vogels, 2000). To compare sparseness distributions across these two areas, we targeted V4 neurons such that the
population of V4 receptive fields tiled the image and compared the results with a similarly sized population of IT cells. This required us to record from both hemispheres of V4 and IT (see Materials
and Methods). b, Actual receptive field center positions for a subset of the recorded V4 neurons. c, Images were displayed at a rate of approximately five per second while the monkeys maintained
fixation. One monkey was engaged in an invariant object recognition task and was rewarded for making a saccade to a response dot on encountering an image containing a motorcycle (as shown);
the other monkey passively fixated the images. d, Example images used to measure sparseness. e, Example images used to measure conjunction sensitivity and tolerance. Shown here is a bottle and
the following five identity-preserving transformations: zoom in, zoom out, shift right, shift left, bottle on a natural background. Also included at the end of the row is a texture scrambled version
of the natural background image.
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However, we were able to obtain a receptive field map from at least one
neuron on each electrode penetration, and we made the assumption that
the neurons that we were not able to map had similarly positioned recep-
tive fields. Neurons with receptive fields at the fovea and near the upper
visual field were more difficult to verify given their existence within the
inferior occipital sulcus and at the foveal confluence of V1, V2, and V4.
Thus, it is not certain that all the neurons in the upper field were from V4,
although the receptive field sizes were more consistent with V4 than
either V2 or V1. Notably, given the absence of easily identifiable bound-
aries in this region, anatomical reconstruction would not assist in veri-
fying their precise location. We also note that, aside from their receptive
field locations, neurons in the upper visual field did not have any obvi-
ous, distinguishable properties from those in the lower visual field.
Moreover, the claims of this study (a comparison between mid-level and
high-level visual areas) would be little affected by the occasional corrup-
tion of a neuron from a nearby visual area.

Experiment 1. Designed to measure V4 and IT neuronal sparseness,
this image set included 300 natural images, presented in a 5° aperture at
the center of gaze (Fig. 2c,d). All images included an object in its natural
context, and each object was distinct (would be called by a different
name) from the other objects. Images included a wide variety of content,
including objects familiar to the animal, other (unfamiliar) animals,
man-made objects, other monkeys, and people. Objects were positioned
at a variety of locations in the image and in the context of a wide variety
of camouflage and clutter. An additional five blank (gray) stimuli were
interleaved to measure baseline but not included as stimuli in the sparse-
ness measurements. Five repeats of each stimulus were collected.

Experiment 2. Also designed to measure V4 and IT sparseness, this
image set included 30, 1.84 s natural movie clips presented at 28.33 Hz in
a 10° circular aperture that blended into a gray background. Each movie
clip was continuous in that it had no scene breaks. One movie clip was
shown on each trial while the animal maintained fixation for the entire
clip duration. As in experiment 1, movies contained familiar scenes,
animals, man-made objects, and people. After disregarding the first 200
ms epoch to minimize onset transient effects and after accounting for the
latency of each neuron (see Fig. 5a), 210 epochs were used to calculate
sparseness. An additional “blank” movie was presented to estimate base-
line firing rate. During experiment 2, both monkeys were rewarded for
maintaining fixation (monkey 2 was not engaged in the object detection
task). Five repeats of each movie clip were collected.

Experiment 3. Designed to probe V4 and IT selectivity and tolerance,
this image set included 190 images presented in a 5° aperture at the center
of gaze (Fig. 2e). Included were 50 natural images (also included in ex-
periment 2) and 50 scrambled versions of those images (Fig. 2e, right)
(Portilla and Simoncelli, 2000). For 10 of the natural images, five addi-
tional invariant transformations were also presented to the following
stimulus conditions (regardless of receptive field location and size): res-
caled to 1.5� and 0.5�; shifted 1.5° right and left; and presentation in the
context of a natural background (Fig. 2e, left). An additional five blank
(gray) stimuli were included to measure baseline. Ten repeats of each
stimulus were collected. A more detailed description of these stimuli and
analysis of the resulting data can be found in the study by Rust and
DiCarlo (2010).

At the onset of each trial for experiments 1 and 3, one of the images was
randomly presented, and the responses to this image were disregarded to
minimize onset transient effects. Similarly, the initial 200 ms of each
movie clip (experiment 2) was disregarded.

Receptive field mapping (V4). Designed to measure the location and
extent of V4 receptive fields, bars were presented, each for 500 ms, one per
trial, centered on a 5 � 5 invisible grid. Bar orientation, polarity (black or
white), length, and width, as well as the grid center and extent were adjusted
for each cell based on preliminary hand-mapping. On each trial, the monkey
was required to maintain fixation on a small response dot (0.125°) to receive
a reward. Three repeats were collected at each position.

Latency. We computed the responses of each neuron by counting
spikes in a window matched to the duration of the stimulus (218 ms) and
shifted to account for the latency of the neuron. To calculate the latency
of each neuron, we used techniques described by Rust and DiCarlo
(2010).

Sparseness. To calculate sparseness, we began by computing the mean
firing rate of each neuron across five repeated trials of each image. Be-
cause we only wanted to include responsive neurons in our population,
we performed a t test to determine whether any image produced re-
sponses significantly different from the baseline firing rate, in which
baseline firing rate was defined as the response to the integrated blank
stimulus. All neurons that responded to at least one image were deemed
“visually responsive” and were included in our sparseness calculations.
When considering the appropriate p value criterion, we had two oppos-
ing concerns. On one hand, we were concerned that imposing a overly
stringent p value criterion would remove highly sparse neurons from our
population. On the other hand, we were concerned that imposing a
overly lenient p value criterion would reduce our statistical power to
compare V4 and IT by adding noise to our data (i.e., by including neu-
rons that did not actually respond to any image but were only selected
based on variability in baseline firing rate). Thus, we repeated the analysis
with a range of p value criteria. For neurons deemed visually responsive,
sparseness ( S) was calculated as follows (Vinje and Gallant, 2002):

a �

�� �ri� /N� 2

��ri
2/N	

S �
1 � a

1 �
1

N

,

where ri is the average response to each stimulus, and N is the total
number of stimuli. To provide some intuition for this measure, a mea-
sures the ratio of the squared grand mean firing rate to all images and the
average of the means squared, and S inverts the metric such that neurons
that respond to a smaller fraction of images produce higher sparseness
measures. For a neuron that responds to all images with approximately
equal firing rates, the numerator and denominator will be nearly equal,
resulting in a of �1 (and S of �0). For a neuron that responds to only one
image, the average of the means squared (the denominator) will exceed
the low average mean rate (the numerator), resulting in a of �0 (and S of
�1). Trial-to-trial variability was estimated via a bootstrap procedure in
which the firing rate response of each neuron to each stimulus was re-
peatedly sampled, with replacement, on five trials, and sparseness across
all 300 images was calculated as described above; SE was calculated as the
SD across 500 iterations of this procedure.

Sparseness bias correction. Although Poisson noise produces an unbi-
ased estimate of firing rate on average, Poisson noise will result in over-
estimation of the responses to some stimuli and underestimation of the
response to others. When the firing rates are plotted in rank order, the
increased “spread” of the data resulting from Poisson noise becomes
apparent (see Fig. 6b, left and right). Because Poisson noise always in-
creases but never decreases the spread of the data and this is approxi-
mately what sparseness measures, Poisson variability generally produces
an overestimation of sparseness. To correct for the sparseness bias intro-
duced by Poisson noise, we implemented a two-stage procedure that
sought to recover the assumed underlying exponential rank-order re-
sponse curve that gave rise to the simulated data. The two-parameter
exponential had the following form: R(x) � Ae �ax, where A is a scalar,
and � determines the steepness of response falloff. First, we estimated the
most probable underlying firing rate A that gave rise to the maximal
firing rate we observed by calculating the distributions of mean firing
rates measured with five samples of a Poisson process centered at differ-
ent underlying mean rates. Next, we determined the exponent of the
underlying exponential by fixing the peak firing rate and observing the
relationship between different exponents and the sparseness values pro-
duced in simulated experiments (see Fig. 6).

Entropy. We calculated single-neuron entropy as suggested previously
(Lehky et al., 2005). Mean firing rates rj were normalized to unit variance
and binned with a number of bins determined by the square root of the
number of stimuli, �300 � 17 bins, adjusted to cover the dynamic
range of each neuron. Entropy was calculated as follows:

SE � 2.074 � �
j�1

M

p�rj	log2�p�rj		
r.
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The resulting metric ranges from 0 to 2.074 (in
which 2.074 is the entropy of a Gaussian).
Single-neuron conjunction sensitivity. To mea-
sure conjunction sensitivity, we were interested
in comparing the degree to which natural and
scrambled images produced differential re-
sponses (e.g., high and low firing rates) from a
neuron. As a measure of the magnitude of re-
sponse modulation of a neuron for each stim-
ulus class, we computed the variance of the
average responses of the neuron across trials
(Smith et al., 2005). Specifically, we define the
mean firing rate response of a neuron to 50
natural stimuli as the vector Xn and to 50
scrambled stimuli as Xs. Conjunction sensitiv-
ity (CS) was measured as the ratio of the vari-
ance of response to natural images and the
variance to scrambled images:

CS �
var(Xn)

var(Xs)
.

Single-neuron tolerance. Tolerance was mea-
sured as the mean angular difference between
the vector of firing rates for the 10 objects pre-
sented at the six transformed conditions, in-
cluding shifted positions and scales and
changes in background (Fig. 2e) relative to the
reference position and scale (Fig. 2e, leftmost
image). Specifically, we define the mean firing
rate response of a neuron to 10 different objects
all presented under the reference condition as
the vector Xr and under another transforma-
tion (e.g., a rightward shift) as Xt. We then
compute the angle between the two vectors �rt

as follows:

�rt � arccos��Xr � Xt	

�Xr� �Xt�
�,

and we then consider the mean angular differ-
ence as the average across all six transforma-
tions. To obtain the final tolerance measure,
bounded from 0 to 1, the mean angular differ-
ence was normalized to range from 0 to 1 (by
dividing by 180°) and then subtracted from 1

Figure 3. Monitoring sparseness across the ventral visual pathway. a, Top, Example natural images used to measure sparse-
ness. In total, 300 images were presented. Bottom, Spike raster plots of one neuron to five repeated presentations of four of the
images. Spikes were counted in a window matched to the duration of stimulus presentation (�200 ms; gray region), offset by the

4

latency of the cell (�). b, To quantify sparseness, we used a
metric that ranges from �0 if the neuron responded to all
images with the same firing rate to �1 for a neuron that re-
sponds to only one image in the set [labeled S (Rolls and Tovee,
1995; Vinje and Gallant, 2002)]. Shown are the mean firing
responses, plotted in rank order, for three example neurons.
Sparseness is inversely related to the fraction of images to
which a neuron responds. c, Histograms of sparseness for 143
V4 and 142 IT neurons, measured with the responses to the
static RSVP images (subpanel a). The two distributions are sta-
tistically indistinguishable as assessed by a t test comparison
of their means (mean: V4, 0.384; IT, 0.376, p � 0.76) and by a
K–S test that compares their cumulative probabilities ( p �
0.13). Neurons that did not respond significantly differently
from baseline (t test, p � 0.05) were placed in the nonvisual
(NV) bin. Arrows indicate means. d, Sparseness measurements
for 50 V4 and 46 IT neurons measured in monkey 1 and 93 V4
and 96 IT neurons measured in monkey 2. In both monkeys,
sparseness distributions in V4 and IT were statistically indistin-
guishable (monkey 1: t test, p � 0.91; K–S test, p � 0.50;
monkey 2: t test, p � 0.77; K–S test, p � 0.51).
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such that larger angular differences between transformed conditions
mapped to smaller tolerance values. In a previous report (Rust and Di-
Carlo, 2010), we found that two different measures of tolerance, changes
in firing rate that result from identity-preserving transformations (e.g., a
change in firing rate when an effective stimulus is moved to a new loca-
tion; Zoccolan et al., 2007), and changes in the ranked stimulus prefer-
ences of a neuron across identity-preserving transformations (e.g., a
change in the identity of the best object across a change in position; Li et
al., 2009) were both higher in IT than V4, but these two were, at best,
weakly correlated within each population. The angular difference mea-
sure used here is a hybrid of these two measures (i.e., to have a high
measured tolerance, a neuron must both have a large receptive field and
maintain its rank-order selectivity across identity-preserving transformations).

Results
Although conjunction sensitivity and tolerance have both been
shown to increase along the ventral visual pathway (Rust and
DiCarlo, 2010), the relative rates at which these two computa-
tions are implemented and their overall impact on tuning

breadth for natural images remain un-
known. Increases in conjunction sensitiv-
ity are often described and implemented
as “and-like” operations (i.e., a neuron
will respond supralinearly to the conjunc-
tion of feature A “and” feature B), whereas
tolerance computations are often de-
scribed and implemented as “or-like” op-
erations [i.e., a neuron will respond to a
visual feature at position X “or” position
Y; the “max” operator is an example of
this operation in contemporary models of
the ventral stream (Riesenhuber and Pog-
gio, 1999; Serre et al., 2007)]. Because the
sum total of all conjunction sensitivity-
building (and-like) operations and all
tolerance-building (or-like) operations
combine in an opposing manner to deter-
mine sparseness, we can infer the relative
net strengths of these two operations
along the ventral visual stream. If the and-
like operations that confer conjunction
sensitivity are implemented more quickly
or more strongly than the or-like opera-
tions, this will produce neurons that tend
to respond to fewer and fewer natural im-
ages as one ascends the ventral stream
(i.e., lead to an increase in sparseness; Fig.
1c, dashed line). Conversely, if the or-like
operations that confer tolerance proper-
ties are implemented more quickly or
more strongly than the and-like opera-
tions, this will produce neurons that tend
to respond to more and more natural im-
ages as one ascends the ventral stream
(i.e., lead to a decrease in sparseness; Fig.
1c, dotted line). Finally, if the and-like and
or-like operations are balanced, neurons
at different levels of the ventral stream will
respond to the same fraction of natural
images (constant sparseness along the
ventral stream; Fig. 1c, solid line). In sum-
mary, the fact that conjunction sensitivity
and tolerance both increase along the ven-
tral pathway does not by itself determine
whether sparseness will increase, decrease,

or stay the same along the pathway because the relative strengths
of these operations must also be taken into account.

To make well-controlled and comparable measurements of
sparseness, we compared visual areas V4 and IT under conditions
in which the exact same set of retinal images was presented to
each and every recorded neuron, and many single neurons were
measured in each visual area, in the same animal subjects, per-
forming the same task. In most of our experiments, natural stim-
uli were presented in a 5°-diameter circular aperture placed at the
center of gaze (Fig. 2a). Neurons in IT have receptive fields that
will often encompass the entire aperture; these receptive fields
typically include the center of gaze and extend into all four visual
quadrants (Fig. 2a, right) (Op De Beeck and Vogels 2000). Neu-
rons in V4 have receptive fields that are retinotopically organized
and are primarily confined to the contralateral hemifield (Fig. 2a,
left) (Desimone and Schein, 1987; Gattass et al., 1988). In these
experiments, we fixed the location of the aperture (center of gaze)

Figure 4. Alternative sparseness metrics applied to the data presented in Figure 3c. a, The same example neurons presented in
Figure 3b but labeled with new metrics. The brackets indicate the fraction of 300 images that produced average firing rates (across
5 presentations) that exceeded 50% of the estimated peak firing rate of each neuron (see Results). Histograms of this measure for
143 V4 and 142 IT neurons are presented in subpanel b; means are labeled. Distributions of this measure in V4 compared with IT
were statistically indistinguishable (t test, p � 0.82; K–S test, p � 0.07). Also labeled is single-neuron entropy (see Materials and
Methods), which ranges from 0 to 2.074 (the entropy of a Gaussian). Histograms of entropy for 143 V4 and 142 IT neurons are
presented in subpanel c, and means are labeled. V4 and IT entropy distributions were statistically indistinguishable (t test, p �
0.925; K–S test, p � 0.878). In both plots, NV indicates neurons whose responses were not statistically different from baseline as
assessed by a t test ( p � 0.05).
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and recorded from V4 neurons whose re-
ceptive fields together tiled that aperture
(i.e., by recording from the upper and
lower visual representations in both
hemispheres; Fig. 2b; see Materials and
Methods). We compared these V4 re-
sponses to the responses of a similarly
sized population of IT neurons (i.e., by
also recording from both hemispheres).
To guard against the possibility of any
change in sparseness during the time re-
quired to collect the data, we alternated
recordings between V4 and IT in each an-
imal (see Materials and Methods). While
we were searching for neurons and during
recording, one monkey performed an in-
variant object recognition task to engage
the visual system (Fig. 2c); the other mon-
key was passively fixating the images. We
found no differences in sparseness be-
tween the two monkeys (Fig. 3d), and thus
the data presented here are pooled across
both subjects.

To estimate the sparseness of each neu-
ron, we measured its responses to a large
set of natural images (300 images; Figs.
2c,d, 3a), and we paid particular attention
to collecting the data in an unbiased (as
possible) manner by testing every neuron
that we could detect and isolate. To calcu-
late sparseness, we began by determining
the fraction of neurons that failed to re-
spond to any image in our set significantly
above or below baseline (t test, p � 0.05);
we found a similar proportion of such cells in V4 and IT (Fig. 3c,
labeled “NV” for nonvisual; see below for results with increas-
ingly stringent criteria). For the remaining neurons, we applied a
nonparametric estimate of sparseness (Rolls and Tovee, 1995;
Vinje and Gallant, 2002) bounded near 0 for a neuron that re-
sponded with the same firing rate to all images and near 1 for a
neuron that responded to only one image in a set (see Materials
and Methods; Fig. 3b). This metric measures the relative magni-
tudes of the responses to different images while normalizing for
absolute firing rate (e.g., doubling the firing rate responses to all
images will result in a neuron with the same sparseness).

Remarkably, although sparseness varied widely from neuron
to neuron, we found that the distributions of sparseness in V4
and IT (Fig. 3c) were statistically indistinguishable [mean �
SEM: V4, 0.384 � 0.017; IT, 0.376 � 0.017; t test, p � 0.76;
Kolmogorov–Smirnov (K–S) test, p � 0.13]. This result was con-
firmed in both animals (Fig. 3d). As a second and perhaps more
intuitive measure, we computed the fraction of images that elic-
ited a firing rate more than half of the peak rate. Given that
Poisson variability tends to lead to an overestimation of the peak
firing rate (see Fig. 6), we determined the peak rate using approx-
imately half of the trials (three of five) and determined the frac-
tion of images evoking firing rates exceeding 50% of this value
using the remaining trials (two of five; Fig. 4a). This measure of
tuning bandwidth was also remarkably similar between V4 and
IT (means � SEM: V4, 11.0 � 1%; IT, 9.4 � 1%; medians: V4,
6.7%; IT, 6.7%; t test, p � 0.82; K–S test, p � 0.07; Fig. 4b). As a
third measure of natural image tuning breadth, we calculated the
“entropy” of the firing rate distributions (Fig. 4a; see Materials

and Methods). This measure ranges from near 0 (for a neuron
that responds with the same firing rate to all images) to 2.074 (the
entropy of a Gaussian). We found that the V4 and IT distribu-
tions of single-unit entropy were also statistically indistinguish-
able (mean � SE: V4, 0.894 � 0.02; IT, 0.895 � 0.02; t test, p �
0.925; K–S test, p � 0.878; Fig. 4c). Notably, the fraction of images
that a V4 or IT neuron responds to does not depend measurably
on the animal’s particular task as evidenced by the finding that
sparseness distributions recorded from a monkey engaged in a
demanding object recognition task were statistically indistin-
guishable from another monkey that was passively fixating (Fig.
3d). These results suggest that, on average, neurons at different
levels of the ventral visual pathway respond to the same fraction
of natural images, with the average recorded neuron in each vi-
sual area responding robustly to �10% of all natural images
(“lifetime sparseness”).

To test the sensitivity of this result to the particular conditions
we used to measure it (such as the particular images used, the size
of the aperture, and the particular neurons sampled), we re-
corded the responses of a second, separate set of V4 and IT neu-
rons to natural stimuli under markedly different conditions:
continuous, natural movie clips presented in an aperture that was
twice the size of the original aperture (Fig. 5a, top). To calculate
sparseness, we treated each adjacent 200 ms epoch of the contin-
uous movie as a stimulus (Fig. 5a, bottom), resulting in 210 total
epochs presented within 30 different movies, and computed
sparseness as described above. As in the case of the static images,
we found no significant difference between the distribution of
sparseness values for V4 neurons compared with IT neurons to

Figure 5. Measuring sparseness with short movies. a, Example frames of a 1.8 s movie (presented at 28.33 Hz) used to measure
sparseness. Bottom, Spike raster plots of five repeated movie presentations. Spikes were counted in adjacent 200 ms windows,
offset by the latency of the cell (�). The first window was disregarded to mitigate onset transient effects. b, Histograms of
sparseness for 47 V4 and 50 IT neurons, determined by the responses to the movie clips. The two distributions are statistically
indistinguishable (means: V4, 0.383; IT, 0.380; t test, p � 0.997; K–S test, p � 0.948. Neurons that did not respond significantly
differently from baseline to any frame of any movie (t test, p �0.05) were placed in the nonvisual (NV) bin. Arrows indicate means.
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these movie stimuli (Fig. 5b; means: V4,
0.383; IT, 0.380; t test, p � 0.997; K–S test,
p � 0.948). Sparseness distributions were
also remarkably similar when calculated
with natural movies compared with static
images presented in rapid sequence. Thus,
the finding that, on average, neurons at
different levels of the ventral visual path-
way respond to the same fraction of natu-
ral images appears to be quite robust to
the particular conditions used to measure
it (within the class of natural images).

Because all of our measures of natural
image response bandwidth (above) are
bounded and individual neurons show
wide variation on these measures, we per-
formed a number of control analyses to
determine whether the observation of
matched distributions could have resulted
spuriously from a lack of power in our
methods. First, we considered the possi-
bility that the well-known neuronal spik-
ing variability of cortical neurons might
explain the observed constant value. We
discovered (via simulation) that the Pois-
son variability known to exist in cortical
neurons produces a bias in the commonly
used sparseness metric (the metric we
used above; Fig. 6a,b). We developed a
corrective procedure for this bias (see Ma-
terials and Methods; Fig. 6b), and our re-
sults demonstrate that the noise-corrected
sparseness metric results in a distribution
that remains indistinguishable between
V4 and IT (Fig. 6c). Furthermore, by
bootstrapping the response data from
each neuron, we found that the average
variability in the sparseness value of each
neuron induced by trial-to-trial variabil-
ity was only 0.016 in V4 and 0.014 in IT
(SEM), which is �2% of the range of ob-
served values over the population. In
other words, spiking variability does not
explain the wide range of matched single-
unit sparseness values observed in both
V4 and IT, and it could not have pre-
vented us from observing many alterna-
tive possible, non-matching distributions.
Second, we considered the possibility that
our selection of “visually driven” neurons
was hiding a difference between V4 and
IT. To evaluate this, we applied increas-
ingly stringent criteria to classify neurons
as visually driven significantly different
than baseline by at least one image (crite-
rion t test p values � 0.05, 0.025, 0.01, and
0.005 uncorrected for multiple compari-
sons) and found both a similar number of
neurons in each area labeled “non-visual”
(V4, 8%, 15%, 23%, and 32%; IT, 13%,
17%, 30%, and 43%, respectively) and
that sparseness distributions among the
remaining neurons remained statistically

Figure 6. Sparseness biases arise from Poisson variability and can be corrected. a, Simulations illustrate that sparseness biases arise
fromPoissonvariability.Left,Exampleexponential functionsusedtomodelneuronswiththeformR(x)�Ae � �x,whereAdeterminesthe
peak firing rate, and � is inversely proportional to the steepness of response falloff. Sparseness values, calculated in the limit of infinite
samples from these functions, are labeled. To simulate an experiment, 300 randomly selected points (hypothetical images) were sampled
from an exponential with a fixed exponent (�) and peak rate (A), and five samples were randomly taken from a Poisson distribution
centered at each mean to simulate five presentations of each image. Mean firing rates were calculated across the five trials, and sparseness
is calculated as described previously (see Materials and Methods). Middle, Sparseness bias, calculated as the difference between the true
sparseness and the sparseness measured in the simulated experiment, as a function of true sparseness. Sparseness is consistently overes-
timated, with the largest biases existing at low firing rates and low true sparseness. Right, Estimated sparseness biases at the mean firing
rates recorded in the V4 and IT populations; although sparseness biases are expected to be large for neurons with low firing rates (middle),
sparseness biases are expected to be small at the average firing rates observed across the population (bias � 0.05). To determine the
degree to which these biases impact the results we report in Figure 3c, we developed a corrective procedure to estimate the true sparseness
ofeachneuron(seeMaterialsandMethods).b, Illustrationofthebiascorrectionprocedurewithmodelneurons.Leftandright,Detailsofthe
bias correction for two example model neurons. Shown are the underlying exponential functions (black), the mean firing rate (FR) re-
sponsesobservedinamodelexperiment(whitedots),andtherecoveredexponentialafterbiascorrection(reddashedline).Labeledarethe
actual, measured, and corrected sparseness values. Middle, Plot of measured versus actual sparseness based on raw data (black) and after
thecorrectiveprocedure(red)forneuronswithpeakfiringratesof10Hz.Openblackcirclesindicatethetwoexamplemodelneuronsshown.
At all sparseness values, the correction improves the sparseness prediction. Thus, although this procedure is not guaranteed to perfectly
recover the true sparseness of a neuron (e.g., noise in the original dataset cannot be removed), we found that this method was highly
effective in estimating the true underlying exponential functions for model neurons. c, Corrective procedure applied to real data. Left,
Histograms of the fraction of variance accounted for (r 2) by the exponential model. Most cells were well described by an underlying
exponential and Poisson variability (r 2 � 0.85: 95% of V4 and 87% of IT cells). Middle, Plot of corrected sparseness values as a function of
raw (uncorrected values). Right, Histograms of corrected sparseness values for n �142 V4 and n �143 IT neurons. NV indicates neurons
that did not respond significantly different than baseline to any of the 300 images (t test, p�0.05). Means are indicated by arrows. V4 and
IT distributions are shifted relative to their uncorrected values (compare with Fig. 3c) but remain statistically indistinguishable from one
another (t test, p � 0.46; K–S test, p � 0.13).
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indistinguishable between V4 and IT (t test, p � 0.75, p � 0.82,
p � 0.87, and p � 0.33, respectively). Third, we investigated
whether a spurious matching of V4 and IT sparseness distribu-
tions might have arisen from the fact that we only probed a finite
number of natural images. To check this, we repeatedly sub-
sampled subsets of images, and we found that mean V4 and IT
sparseness remain matched even when lower numbers of natural
images are used to make the comparison, and mean values appear
to converge at the values we report above even when far less
(�100 images) than our total number of visual images are used to
measure them (Fig. 7a). Finally, we determined via simulation
that, with 300 randomly selected natural images, sparseness
would be accurately estimated for all but those neurons with
extremely high sparseness (i.e., just those neurons that would
have fallen in the upper half of the highest histogram bin in Fig.
3c; Fig. 7b). In summary, these results show that it is highly un-
likely that our sparseness measures are differentially biased in the
V4 and IT populations and that matched sparseness distributions
are not explained by trial-to-trial spiking variability, an inability
to visually drive these neurons, or an insufficient number of
tested images.

As a complementary consideration, we were interested in un-
derstanding the power (i.e., the sensitivity) of our data in detect-
ing hypothetical differences in the sparseness distributions
between V4 and IT. To quantify this sensitivity, we performed
simulations based on the data presented in Figure 3 in which we
used the V4 population as a reference and systematically shifted
the sparseness of each neuron to a higher (or lower) value (i.e.,
simulating sparseness distributions one might hypothesize to
find in IT). These results suggest that our measurements were
sensitive to detecting differences in distributions whose mean was
13.5% higher (0.387 � 0.052) or 12.0% lower (0.387– 0.047) (Fig.
7c). From these analyses, we conclude that sparseness distribu-
tions are matched or nearly matched in V4 and IT.

The neurons in our study were, on average, well driven by
visual stimuli with median peak firing rates that were more than
fivefold the median baseline rate (Fig. 8). Notably, absolute firing
rates were slightly higher in V4 than IT (median peak, cross-

Figure 7. Sensitivity to sparseness differences. a, To determine how our estimate of mean
sparseness is affected by probing with a finite stimulus set (n � 300), for each neuron we
randomly sampled subsets of responses from our data, each with N stimuli (N � 2, 3, . . ., 150),
and calculated the sparseness for each sample. Mean sparseness across the population of n �
132 V4 neurons (red) and n � 123 IT neurons (black) deemed visually responsive as a function
of the number of stimuli used to calculate sparseness. Dot indicates the sparseness value calcu-
lated at n � 300 neurons for a reference. b, To estimate the probability that highly selective
neurons exist that could not be driven by any stimulus in our relatively large but limited set of
300 natural images, we simulated neurons with a range of selectivities and estimated the
maximal bias observed by randomly selecting the 300 images from a uniform distribution. In
these simulations, each neuron was modeled by an exponential rank-order image tuning curve
with a peak firing rate of 30 Hz. We randomly selected 300 points along the x-axis (i.e., we
assumed that our natural images were uniformly distributed along this axis) and then selected
five random trials from a Poisson distribution centered around the true mean response to each

4

image. Shown are the maximum sparseness biases observed over 100 simulations at each
sparseness value; the simulated experiment only failed to find a stimulus that would drive
neurons with extremely high sparseness values (S � 0.98). To understand these results, note
that the probability of failing to respond to any image is determined by the probability of not
selecting a value less than N in 300 draws from a uniform distribution on [0,1] where N is defined
by the sparseness of a neuron (e.g., a neuron with a sparseness of 0.9 produces a response to
�10% of all images or equivalently to 3% of images �50% of its peak firing rate; the proba-
bility of failing to draw a number �0.1 or even 0.03 with 300 random samples is incredibly
low). c, To estimate the magnitude difference that would have been required to observe a
significant difference between the V4 and IT populations, we simulated populations of neurons
constructed from the models extracted for each neuron described in Figure 6c. We began by
constructing two populations of neurons with identical parameters and thus identical sparse-
ness distributions (based on the V4 population). We then introduced shifts in each population
by shifting each neuron by �N% of its true sparseness value (one population was shifted
toward higher values and the other toward lower). A simulated experiment analogous to the
one performed in our study was then performed to determine a measured sparseness value for
each neuron. Left, Plots of the p value of a t test assessing the difference between the unshifted
and shifted population means (top, higher shifts; bottom, lower shifts). The p value crosses the
p � 0.05 boundary with populations shifts of 13.5% higher and 12.0% lower. Right, The
sparseness distributions resulting from the unshifted, simulated population (middle), shifts of
each neuron higher by 13.5% of its sparseness and shifts of each neuron lower by 12.0% of its
sparseness. These results suggest that, even given the observed neuron-by-neuron variation in
sparseness in each area, our experiment would have been capable of detecting sparseness
differences between two populations with means that were higher by 0.052 or lower by 0.047.
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validated firing rate: V4, 24.2 Hz; IT, 18.1 Hz; t test, p � 0.0001;
median grand mean firing rate: V4, 5.8 Hz; IT, 5.0 Hz; t test, p �
0.0001; Fig. 8). The combined analyses presented above suggest
that our finding of matched sparseness distributions in V4 and IT
is not produced by an inability to effectively drive IT neurons.
Rather, we note that sparseness—a measure of the relative mag-
nitudes of the responses of a neuron to different images—is
matched in V4 and IT, and, at the same time, absolute firing rates
in response to natural images were slightly higher in V4. This
suggests a slight (average) rescaling of firing rates as signals prop-
agate from V4 to IT (at least under the conditions measured with
this experiment).

Matched sparseness distributions in V4 and IT could result
from matched average levels of conjunction sensitivity and toler-
ance in these two areas. Alternatively, as described in the Intro-
duction and Figure 1c, matched sparseness could result from
balanced increases in and-like conjunction sensitivity building
operations and or-like tolerance building operations as signals
are transformed from V4 to IT. To discern between these alter-
natives, we computed the relationships between conjunction sen-
sitivity, tolerance, and sparseness for an additional dataset that
included the responses to a subset of the natural images (50 of
300) used to measure sparseness in Figure 3. As was the case for
the more extensive image set, V4 and IT sparseness distributions
computed for these partially overlapping neural populations
(and with the subset images) were statistically indistinguishable
(means: V4, 0.36; IT, 0.34; t test, p � 0.29; K–S test, p � 0.43). To
measure conjunction sensitivity, we were interested in compar-
ing the degree to which natural and scrambled images produced
differential responses (i.e., both high and low firing rates) from a
neuron. As a measure of the magnitude of response modulation
of a neuron for each stimulus class, we computed the variance of
the average responses of the neuron across trials to the 50 images

in each stimulus set (Smith et al., 2005),
and we computed conjunction sensitivity
as the ratio of these two values (natural/
scrambled). The rationale behind this
measure is that neurons with higher con-
junction sensitivity should be more sensi-
tive to image scrambling as a result of the
destruction of naturalistic, global image
structure in the images, and, as a result,
these neurons should produce larger
modulations for natural compared with
scrambled images (Rust and DiCarlo,
2010). Consistent with our previous re-
port, IT neurons had, on average, a higher
conjunction sensitivity than neurons in
V4 (geometric means: V4, 1.21; IT, 1.59; t
test of log-transformed values, p � 0.002).
Finally, we computed single-neuron tol-
erance based on the responses of each
neuron to 10 objects presented at different
positions, sizes, and on different back-
grounds (Fig. 2e). Consistent with our
previous reports of this dataset (Rust and
DiCarlo, 2010), our measure of single-
neuron tolerance (described in Materials
and Methods) was, on average, also higher
in IT than V4 (means: V4, 0.66; IT, 0.71; t
test, p � 0.001). In summary, these results
suggest that matched mean sparseness in
V4 and IT is found even as the ventral

stream is working to increase both mean conjunction sensitivity
and mean tolerance in IT.

Although we have thus far focused on the mean values of
conjunction sensitivity, tolerance, and sparseness in V4 and IT,
our results (Figs. 3, 5) and previous data (Rolls and Tovee, 1995;
Baddeley et al., 1997; Kreiman et al., 2006; Zoccolan et al., 2007;
Rust and DiCarlo, 2010) clearly reveal broad distributions of all
three measures at the single-unit level, so we were also interested
in knowing whether the relationships outlined in Figure 1 held
across neurons within each visual area. First, the relationships
described in Figure 1b predict positive correlations between con-
junction sensitivity and sparseness and negative correlation be-
tween tolerance and sparseness within each area. Consistent with
these predictions, we found that single-neuron conjunction sen-
sitivity and sparseness were positively correlated within V4 and
within IT (r 2: V4, 0.141; IT, 0.140; Fig. 9a), and single-neuron
tolerance and sparseness were negatively correlated within V4
and within IT (r 2: V4, 0.527; IT, 0.292; Fig. 9b). Consistent with
increases in mean conjunction sensitivity and tolerance in IT over
V4 (above), plots of the running average of both parameters were
higher in IT than in V4 (Fig. 9a,b, red vs gray lines). Stated dif-
ferently, comparison of V4 and IT single neurons with the same
sparseness reveals that IT neurons have, on average, both
higher conjunction sensitivity and higher tolerance (Fig. 9a,b,
black arrows).

To more closely examine how our measures of single-neuron
tolerance and single-neuron conjunction sensitivity relate to our
measure of sparseness, we began by plotting the tolerance of each
neuron against its conjunction sensitivity (Fig. 9c, left; V4, gray
dots; IT, red dots). We then computed a two-dimensional histo-
gram of the data (combined across both areas) and determined
the mean sparseness of the neurons falling in each histogram bin.
Finally, these data were used to determine contours of constant

Figure 8. Evoked and baseline firing rates in V4 and IT. Peak firing rate (left), grand mean firing rate observed across all stimuli
(middle), and baseline firing rate (right) pooled across all neurons included in this report. Arrows indicate the median of popula-
tions of 299 V4 and 335 IT neurons. To calculate the peak and grand mean firing rates for each cell, mean firing rate responses to
each stimulus were calculated by counting spikes in a 200 ms window, adjusted for the latency calculated for each neuron. Grand
mean firing rates were averaged across five trials. To avoid overestimating the peak firing rate as a result of Poisson variability and
a finite number of trials (similar to Fig. 6), the means across two randomly selected trials were used to determine the stimulus
producing the maximal firing rate, and the firing rate to that image was calculated with the remaining three trials. Firing rates were
computed for all the natural images included in each experiment (experiment 1, 300 natural images; experiment 2, movie clips;
experiment 3, 50 natural images). To calculate the baseline firing rate for each neuron, firing rates were computed for the
interleaved blank (gray) stimuli for experiments 1 and 2 and the blank movie for experiment 3; spikes were counted in a 100 ms
window starting 50 ms after the blank stimulus onset to reduce “spillover” of the response to the previous or next stimulus. Peak
and grand mean but not baseline firing rates were significantly higher in V4 compared with IT (t test: peak firing rate, p � 0.0001;
grand mean firing rate, p � 0.0001; baseline, p � 0.32).
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sparseness via linear interpolation be-
tween the bins (Fig. 9c, right, shown as
black lines). As predicted by theoretical
considerations (Fig. 1c), contours of con-
stant sparseness fell approximately along
diagonal lines in this plot, suggesting that
the underlying two types of mechanisms
(and-like and or-like operations) inferred
by our measures of conjunction sensitiv-
ity and tolerance do indeed have opposing
effects on empirically measured sparse-
ness (i.e., on average, neurons with high
sparseness values also tend to have low
tolerance and high conjunction sensitiv-
ity; neurons with low sparseness values
also tend to have high tolerance and low
conjunction sensitivity; and neurons with
matched sparseness values can corre-
spond to multiple combinations of con-
junction sensitivity and tolerance).
Additionally, geometric mean conjunc-
tion sensitivity and mean tolerance are
both higher in IT (Fig. 9b, large red dot)
than in V4 (Fig. 9b, large gray dot), al-
though their sparseness values are the
same (shown above) and their location on
the plot is close to the sparseness contour
predicted from our initial estimates of
sparseness (Fig. 3).

Although the empirical results in Fig-
ure 9 are qualitatively consistent with the-
ory (Fig. 1c), they are nontrivial in at least
two ways. First, the three values (conjunc-
tion sensitivity, tolerance, and sparseness)
computed for each neuron were derived
from primarily non-overlapping datasets
and were each motivated on their own as a
measure of interest. Despite this, Figure 9
reveals clear empirical relationships be-
tween these measures, even in the face of
spiking variability and particular choices
of feature scrambling (to measure con-
junction selectivity), choice of specific
objects and identity-preserving image
transformations (to measure tolerance),
and particular sample of natural images
(to measure sparseness). Thus, this im-
plicitly suggests that extracellular spiking
data from high-level visual areas are pow-
erful enough to reveal a relationship that
was previously only theoretical (Fig. 1c; but also see Discussion).
This observation isconsistentwithanalysesthatshowreasonablygood
reliabilityofeachof thethreemeasures foreachsingleunit relative tothe
range of values we found across each population. Second, Figure 9a
supports the conclusion that conjunction-sensitivity-building opera-
tions and tolerance-building operations act in opposition to determine
sparseness, and the hypothesis that matched sparseness in V4 and IT
arises from balanced conjunction-sensitivity-building and tolerance-
building operations as signals propagate from V4 to IT.

Discussion
Previous studies have also measured sparseness in different visual
areas (Baddeley et al., 1997; Willmore et al., 2011). Baddeley et al.

(1997) compared the distribution of spike counts of V1 and IT
neurons during naturalistic stimulation and found exponential
distributions, consistent with maximal information transmis-
sion. They also measured sparseness and found both increases
and decreases between V1 and IT, depending on the specific met-
ric used to measure it. Although these comparisons were made
between V1 neurons in the barbiturate-anesthetized cat and IT
neurons in an awake, free-viewing monkey, others (Vinje and
Gallant, 2002) have since measured sparseness with natural im-
ages in awake monkey V1, and their mean sparseness values
(computed with a different stimulus set and in a different region
of the visual field) are similar to those we report here (mean V1
sparseness computed under similar conditions: 0.45 compared

Figure 9. Relationships between single-neuron measures of conjunction sensitivity, tolerance, and sparseness. a, Single-
neuron conjunction sensitivity, measured as the ratio of the variance of the mean responses to all natural images (of 50) and the
variance of the mean responses to all scrambled images (of 50; see Materials and Methods), plotted against sparseness. Lines
indicate running average sparseness and conjunction sensitivity computed over 30 neurons that were adjacent along the rank-
ordered sparseness axis. Single-neuron conjunction sensitivity and sparseness are positively correlated in V4 and IT (r 2 � 0.141
and 0.140, respectively). The following points fell off the plot (sparseness and conjunction sensitivity: V4, 0.69 and 15.5; 0.75 and
95; IT, 0.68 and 28.6; 0.22 and 13.1; 0.45 and 12.5). b, Single-neuron tolerance, measured across changes in position, scale, and
background (Fig. 2) plotted against sparseness. Similar to subpanel a, lines indicate running average sparseness and tolerance
computed over 30 neurons. Single-neuron tolerance and sparseness are negatively correlated in V4 and IT (r 2 � 0.527 and 0.292,
respectively). In subpanels a and b, arrows illustrate that the same (average) sparseness correlates with higher conjunction
sensitivity and higher tolerance in IT over V4. c, Left, Single-neuron conjunction sensitivity plotted against single-neuron tolerance.
In both V4 and IT, the correlation coefficients between these two parameters are not statistically significant (V4, p � 0.49; IT, p �
0.99). The pooled V4 and IT conjunction sensitivity and tolerance data were used to compute a two-dimensional histogram, and the
average center of mass of each bin (collapsed across the other dimension) was used as the center for bin. The solid box defines the
extreme values of the bin centers. Right, The same region indicated by the solid box on the left. Sparseness, measured from
the responses to the 50 natural images included in experiment 3 (see Materials and Methods), was computed for each neuron, and the
average sparseness value of the neurons falling in each bin of the two-dimensional histogram described above was determined. Black lines
indicate contours of constant sparseness. Large gray and red colored circles indicate the geometric mean conjunction sensitivity and mean
tolerance in both V4 and IT, respectively; error bars indicate SEM. Compare with Figure 1c. Not shown in these plots are 15 of 140 V4 and 28
of 143 IT neurons that were not significantly visually activated (differentially from baseline, t test, p�0.05) by at least one of the 50 natural
images, one of the 50 scrambled images, and one of the 60 images used to measure tolerance.
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with our measurements of �0.38). Perhaps most notably, Will-
more et al. (2011) report matched sparseness values in V1 and V2
with small but significant decreases in sparseness in V4 (which
they propose are likely attributable to differences in stimulus
paradigms). Thus, although these previous results together with
our results suggest that sparseness may be constant across the
entire visual stream, that broader statement can only currently be
made cautiously. In particular, as shown by our control analyses
(see Results), a fair comparison of sparseness values over different
visual areas requires a great deal of care, both to not get a biased
result (it is easy to measure a false increase or decrease) and to also
be able to confidently state the sparseness value is not changing.
Here, we report that the observed mean IT sparseness is within
1% of observed V4 sparseness (Fig. 3c), and we can confidently
state that the true mean IT sparseness is within �13% of true
mean V4 sparseness (see Fig. 7c).

Here we report measures of lifetime sparseness, a measure of the
fraction of images to which each neuron responds. How do our
results relate to “population sparseness,” a measure of the fraction of
the neurons activated by each single image? As described by others
(Willmore and Tolhurst, 2001; Lehky et al., 2011; Willmore et al.,
2011), these two measures are not necessarily related. Specifically,
unlike lifetime sparseness (which is unaffected by rescaling), popu-
lation sparseness is highly dependent on the heterogeneity of firing
rates (e.g., maximum, minimum, and mean) across neurons. Thus,
when measuring population sparseness, one has to make assump-
tions about whether and how firing rates should be normalized
across cells, and these decisions have profound implications on the
rate at which population sparseness converges as a function of the
number of images. For example, one study reported that, under
some scenarios, population sparseness fails to converge in IT with as
many as 800 images (Lehky et al., 2011). Notably, the issues we
address in this paper relate to relationships between single-neuron
properties (single-neuron conjunction sensitivity, single-neuron
tolerance, and lifetime sparseness) and do not make predictions
about the distributions of absolute firing rates across individual cells.
Thus, the claims of this paper do not rely on the ability to accurately
measure population sparseness.

We were interested not only in understanding how sparseness
changes along the ventral pathway but also in its relationship with
conjunction sensitivity and tolerance. As described in Figure 1,
and-like operations that confer conjunction sensitivity and or-
like operations that confer tolerance must theoretically act in
opposition to determine sparseness. In a previous report (Rust
and DiCarlo, 2010), we demonstrated that mean conjunction
sensitivity and mean tolerance both increase from V4 to IT, and
we observed this at both the population level and the single-unit
level. In this study, we report the correlation of each of these
measures with sparseness. Although we cannot directly measure
the strength of conjunction-sensitivity-building operations and
tolerance-building operations along any two points of the ventral
stream, we can indirectly infer the strength of each type of oper-
ation by carefully measuring changes in sparseness at those two
points. Our findings imply that conjunction sensitivity and tol-
erance are built on outputs of V4 such that, on average, they offset
one another in that they do not change the sparseness of the
neurons at the next stage (the outputs of IT). What does it mean
to equate the increases in these two very different types of mea-
surements? Consider the (local) features encoded by neurons at
an early stage of visual processing (i.e., in area V1; local, oriented
patches). Our previous results (Rust and DiCarlo, 2010) and Fig-
ure 9c suggest that neurons in IT are selective for specific, natu-
rally occurring conjunctions of those local features. Note that any

specific conjunction of features must occur at an equal or lower
probability than any of its components in isolation. If neurons in
IT were simply more selective for conjunctions of features than
neurons earlier on, they should respond to a smaller fraction of
images presented to them (sparseness should increase along the
ventral stream). Given that sparseness does not increase, we infer
that increases in conjunction-sensitivity-building computations
are offset by increases in tolerance-building computations. In
other words, the features that neurons are selective for and the
image transformations that they become tolerant to are set such
that the average number of views of the natural world (i.e., “nat-
ural images”) that neurons respond to remains constant.

It is important to keep in mind that the key comparisons of V4
and IT described above are at the level of the population mean, in
that individual neurons within both V4 and IT show very wide
ranges of values for conjunction sensitivity, tolerance, and
sparseness (Fig. 9c). We cannot explain that variability from this
study alone, but we can state that it is not simply attributable to
trial-by-trial spiking variability and that it does not appear to be
attributable to our particular sample of natural images. Conjunc-
tion sensitivity is a particularly difficult quantity to measure, and,
although our specific approach for measuring it has the advan-
tage of being unbiased in that it relies on the exact same images
presented to every neuron, the consequence is that it produces an
insensitive and noisy measure. For example, a previous study
found that, within IT, a more tailored measure of “shape selec-
tivity” was inversely correlated with several measures of toler-
ance: highly shape-selective neurons tended to have lower levels
of tolerance (Zoccolan et al., 2007). That result can be readily
understood in the context of mechanistic models (Riesenhuber
and Poggio, 1999; Serre et al., 2007): it is very difficult to build
neurons that are both highly sensitive to changes in shape and
highly tolerant to identity preserving transformations, and thus
each model neuron tends to contain an echo of this fundamental
“selectivity versus invariance” tradeoff in object recognition. The
present study was not designed to carefully measure single-unit
measures of shape selectivity that might replicate and further
resolve that previous finding. Nevertheless, it is worth pointing
out that we did not here detect a relationship between “conjunc-
tion sensitivity” and tolerance within IT (or within V4; Fig. 9c).
This suggests that conjunction sensitivity (sensitivity to feature
scrambling, measured here) and shape selectivity (e.g., sensitivity
to morph-line changes, measured by Zoccolan et al., 2007) are
measuring different things about IT neurons. This is perhaps not
that surprising; the latter measures the sensitivity of each neuron
to local shape perturbations in natural image space around pre-
ferred natural shapes, whereas the former measures its ability to
encode natural images relative to its ability to encode feature-
scrambled (non-natural) images. Although these issues are or-
thogonal to the focus of the present study and clearly require
future work, it is also worth pointing out that our study does not
offer any explanation or insight as to why both V4 and IT each
contain neurons with such a diversity of sparseness values (and a
corresponding diversity of conjunction sensitivity and tolerance
values; for additional discussion, see Zoccolan et al., 2007).

Sparseness has long been postulated as a property that might
be optimized for sensory processing (Barlow 1972; for review, see
Olshausen and Field, 2004) and may reflect a constraint on cor-
tical processing that applies to all of visual cortex and perhaps
even all cortex. Such a constraint could be imposed by the meta-
bolic requirements of neurons and neuronal networks (Levy and
Baxter, 1996) and/or could reflect a coding constraint imposed
on the system (Olshausen and Field, 1996; Ben Dayan Rubin and
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Fusi, 2007). Our results suggest that increases in conjunction
sensitivity and tolerance are balanced to maintain sparseness.
Although it remains unclear why the system was constructed in
this balanced manner, we do know that biology tends to solve
problems efficiently. We also know that some of the leading
“feedforward” style computational models of the ventral visual
stream use strategies that either explicitly (Fukushima, 1980; Ri-
esenhuber and Poggio, 1999; Serre et al., 2007) or implicitly
(LeCun et al., 2004; Pinto et al., 2009) attempt to balance and-like
and or-like operations in an attempt to produce tolerant object
representations. Thus, we speculate that maintaining mean
sparseness across the ventral visual stream, through balanced in-
creases in conjunction sensitivity and invariance, reflects part of
an optimal, undiscovered coding principle within the class of
bio-constrained models of the ventral stream.
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