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The perception of complex visual patterns emerges from neuronal activity in a cascade of areas in the primate cerebral cortex.

We have probed the early stages of this cascade with “naturalistic” texture stimuli designed to capture key statistical features of

natural images. Humans can recognize and classify these synthetic images and are insensitive to distortions that do not alter the

local values of these statistics. The responses of neurons in the primary visual cortex, V1, are relatively insensitive to the

statistical information in these textures. However, in the area immediately downstream, V2, cells respond more vigorously to

these stimuli than to matched control stimuli. Humans show blood-oxygen-level-dependent functional magnetic resonance

imaging (BOLD fMRI responses in V1 and V2) that are consistent with the neuronal measurements in macaque. These fMRI

measurements, as well as neurophysiological work by others, show that true natural scenes become a more prominent driving

feature of cortex downstream from V2. These results suggest a framework for thinking about how information about elemen-

tary visual features is transformed into the specific representations of scenes and objects found in areas higher in the visual

pathway.

THE FRAMEWORK: CASCADED VISUAL

PROCESSING

In primates, the perception of complex visual patterns

and objects emerges from neural activity as it is trans-

formed through a cascade of areas in the cerebral cortex.

Neurons in the primary visual cortex (V1) are selective for

local orientation and spatial scale of visual input (Hubel

and Wiesel 1962, 1968; DeValois et al. 1982). Down-

stream areas contain neurons selective for more complex

attributes, and this is presumably achieved by assembling

particular combinations of their upstream afferents. But

these attributes have proven difficult to discover with

either perceptual or physiological measurements.

Given the ubiquity of orientation selectivity in primary

visual cortex (Priebe and Ferster 2012), it is intuitively

appealing to assume that its computational purpose is to

represent the local orientation of edges. Over the past 50

years, the dominant view in both the computational and

biological vision communities is that later stages of pro-

cessing should somehow combine these local edge ele-

ments to construct corners, junctions, and more extensive

contours, eventually leading to shapes, forms, and objects

(Marr 1982; Reisenhuber and Poggio 1999). Until recent-

ly, most computational research on object recognition

was built around this paradigm, as well as much of the

study of midlevel pattern perception, and physiological

measurements in areas V2 and V4 of the ventral stream.

The intuitive appeal of the “edge paradigm” is partly

due to its constructive nature. We imagine the visual sys-

tem should analyze a visual scene much the way we would

draw a picture of it. But this cartoon reasoning should be

viewed with suspicion: The act of recreating a scene with a

pencil does not necessarily reveal the processes by which

the scene was analyzed by the visual system. In fact, edges

and contours make up a very small portion of most natu-

rally occurring visual scenes, and generating realistic

drawings relies crucially on the introduction of additional

elements such as shading and texture that are less easily

described as the assembly of individual strokes. More-

over, 50 years of effort seems not to have brought us

much closer to an understanding of form vision.

An alternative (but not exclusive) minority view has

coexisted with the edge-based view. In brief, the concept

is that the visual system is more concerned with the rep-

resentation of the “stuff” that lies between the edges, and

less concerned with the edges themselves (Adelson and

Bergen 1991). To make this more concrete for the present

discussion, let us focus on the specific case of visual

texture.

VISUAL TEXTURE: MODELS

AND HUMAN PERCEPTION

“Visual texture” refers to portions of an image that are

filled with repeated elements, often subject to some ran-

domization in their location, size, color, orientation, etc.;

for example, an image of leaves, or pebbles, or tree bark

(Fig. 1A). Lettvin (1976) offered this insight: “Let us say

that to the extent that visible objects are different and far

apart, they are forms. To the extent that they are similar

and congregated they are a texture. A man has form; a

crowd has man-texture. A leaf has form; an arbor has leaf-
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texture, and so on.” Bela Julesz pioneered the statistical

characterization of visual texture by proposing that the

statistics of image pixels, measured up to some order,

should suffice to partition textures into classes that are

indistinguishable to a human observer (Julesz 1962). Im-

plicitly, Julesz was asserting that the human visual system

represented visual texture by measuring these statistics,

and only these statistics. In this case, the theory predicts

that any two images that are identical in this statistical

sense must appear identical to a human.

Critical to Julesz’ framing of the problem was the de-

sire for a minimal set of statistics, as well as the plan to

experimentally validate the model by seeking perceptual

counterexamples. Julesz et al. (1973) initially thought

that pairwise statistics were sufficient, but then disproved

this by producing hand-constructed example pairs of tex-

tures with identical statistics through second (and even

third) order that were easily distinguished by human ob-

servers (Caelli and Julesz 1978; Julesz et al. 1978). Given

the falsification of this particular instantiation of his stat-

istical theory, Julesz abandoned the approach altogether

and began to develop a constructive theory of texture

based on randomly placed “texton” features. Like the

“edge paradigm,” this was appealing for its constructive

nature and easily led to stimuli and experiments, but

proved far more difficult to interpret in terms of percep-

tual or physiological representation.

Julesz’ statistical conceptualization was sound, but his

definition of the statistical model in terms of the order of

pixel statistics was problematic. Increasing statistical or-

der leads to ever more nonlinear interactions of multiple

pixels, with no restriction on the spatial extent of those

interactions. Responses of early visual neurons, on the

other hand, are generally described in terms of particular

combinations of local image intensity. For example, ret-

inal ganglion responses are commonly described as the

rectified response of a center-surround linear filter. V1

simple cell responses are commonly described as rec-

tified (or rectified and squared) responses of oriented

linear filters (Heeger 1992). And V1 complex-cell re-

sponses are described as an average over these simple

cell responses, all having the same orientation preference,

but differing in the spatial location of their filters (Hubel

and Wiesel 1962; Movshon et al. 1978; Adelson and

Bergen 1985).

Measuring statistics in a physiologically consistent for-

mat can lead to much more powerful model of texture.

Specifically, a model for texture based on the pairwise

correlations between model simple- and complex-cell re-

sponses, at nearby positions, orientations, and scales (Fig.

1D) can capture many of the salient features of natural

texture images (Portilla and Simoncelli 2000). The cor-

relations are computed by averaging the product of pairs

of responses over the spatial extent of the image. To show

that this model captures the visually relevant attributes of

a given texture, the authors followed Julesz’ paradigm,

synthesizing new images with the same model responses,

and then asking whether the resulting images were sim-

ilar in appearance to the original. In brief, one initializes

an image with white noise and then adjusts the pixels

according to the gradient of the squared error of the model

responses, relative to the desired model responses. This

Figure 1. Naturalistic textures and synthetic images with matching statistics. (A) Photographs of three different textures. (B) Spectral
statistics, as captured with a V1-like model. Statistics are computed as spatial averages over responses of arrays of model neurons,
whose receptive fields have a particular preferred orientation and scale. (C ) Images synthesized to have identical spectral statistics to
the corresponding original images (column A). (D) Joint (correlation) statistics of a V1-like model. Statistics are computed as
correlations (average of pairwise products) both within and across arrays of model V1 neurons (Portilla and Simoncelli 2000). (E)
Images synthesized to have identical joint statistics.
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procedure converges after a relatively small number of

iterations and produces images that are similar in appear-

ance to the original (Fig. 1E; Portilla and Simoncelli

2000; Balas 2006). It seems remarkable that responses

of these simplistic models (cascades of filtering, rectifi-

cation, averaging), which provide only a crude statistical

summary of the image content, are sufficient to capture

such sophisticated features. But it is worth noting that a

reduced model that uses only the averages of V1 respons-

es, computed for cells at each orientation and size (Fig.

1B) and therefore measuring only spectral information, is

insufficient to capture the features of most naturally oc-

curring textures (Fig. 1C).

Given that these synthesized textures capture much of

the visual appearance of the textures from which their

statistics are derived, it is natural to ask whether (and

where) these statistics might be represented in the brain.

Although the texture model described in the previous

paragraph was not originally intended as a model for

post-V1 physiology, two modifications allow it to be in-

terpreted as such, at the abstract level of population rep-

resentation. First, the statistics can be gathered locally,

over regions corresponding to receptive fields in a visual

area downstream from V1. A natural candidate is V2,

which receives strong direct input from V1, and whose

neurons have receptive fields that are roughly twice the

size of those in V1 at any given eccentricity (Gattass et al.

1981). As in most visual areas, receptive field sizes in V2

increase roughly in proportion to eccentricity. Second,

the products of V1-like afferents that are averaged when

computing model correlations can be replaced with the

squares of summed afferents (Adelson and Bergen 1985).

The product is implicitly represented (it is the “cross

term”), and two textures with the same correlations will

also have the same values in this modified model. More

importantly, this modified model assumes the same form

as models of V1 complex cells (a local average of squared

linear filter responses) and thus instantiates a cascade

model of cortical computation in which the same elemen-

tary operations are performed in each cortical area, differ-

ing only in the inputs they receive.

This physiological version of the texture model, in

which statistics are computed over regions roughly the

size of V2 receptive fields, can be used to synthesize

images whose local statistics over each region are

matched to those of an existing photograph. For a human

observer whose gaze is directed to the correct location

in the image (the sizes of model statistical regions are

chosen to match those of V2 receptive fields only for a

particular center of gaze), these synthetic images are in-

distinguishable from the original photograph, despite

distortions whose severity increases with eccentricity

(Fig. 2; Freeman and Simoncelli 2011). This provides a

direct demonstration that the information discarded by

the model, which retains only a crude statistical summary

of the content within each local spatial region, is also

discarded by the human visual system. This also provides

a physiological explanation for the visual phenomenon of

“crowding” (Bouma 1970), in which humans fail to rec-

ognize peripherally presented objects that are surrounded

by background clutter (Balas, et al. 2009; Freeman and

Simoncelli 2011).

Armed with the hypothesis that V2 represents local

statistics of the sort used in this statistical texture model,

a natural next step is to examine the physiological re-

sponses of V2 neurons to these stimuli.

Figure 2. Example photograph and a random image synthesized to have matching texture statistics over spatial regions the size of V2
receptive fields. V2 receptive fields are roughly twice the diameter of V1 receptive fields and grow approximately linearly with
distance from the fovea. When viewed in alternation by human subjects with their gaze fixated on the image center (red dot), the two
images are virtually indistinguishable, despite dramatic distortions in the periphery. Thus the statistics of the model, although they
provide only a partial summary of the original scene, are sufficient to capture its visual appearance.
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MACAQUE CORTICAL UNIT RESPONSES

TO NATURALISTIC TEXTURE

It has proved difficult to assign specific visual func-

tions to V2 or at least to deduce them from analysis of V2

neuronal responses to simple parametric stimuli, because

these are qualitatively quite similar to responses mea-

sured in V1. V2 cells are commonly selective for orien-

tation, direction, spatial frequency, drift rate or speed,

color, binocular disparity—all the dimensions for which

V1 neurons are selective (Hubel and Wiesel 1965; Hubel

and Livingstone 1987; Levitt et al. 1994; Hegde and

Van Essen 2007). There are quantitative differences. An

idea that has its roots in early work of Hubel and Wiesel

(1965) is that cells in V2 are selective for simple ex-

tensions of the basic contour responses measured in

V1—selectivity has been reported for such elaborated

features as curvature, angle, convexity, and illusory bor-

ders (von der Heydt and Peterhans 1989; Hegde and Van

Essen 2000; Zhou et al. 2000; Ito and Komatsu 2004;

Anzai et al. 2007; Willmore et al. 2010). However, al-

though some cells show selectivity for these various at-

tributes, many do not, and, when closely examined,

population selectivity does not differ substantially from

that seen when comparable measurements are made in V1

(Hegde and Van Essen 2007).

Based on the findings described in the previous sec-

tion, we hypothesized that cells in V2, but not those

in V1, might represent the spatial correlations that dis-

tinguish naturalistic texture from spectrally matched con-

trol stimuli (Fig. 1). V2 receives a strong direct input from

V1, and the size of its receptive fields match human

thresholds for discriminating scrambled textures (Fig. 2;

Freeman and Simoncelli 2011). We therefore decided to

begin with a comparison of response properties of cells in

V1 and V2, using a set of textures chosen to span a rea-

sonable range of naturally occurring variation in simple

image statistics.

The results of our neurophysiological texture experi-

ments are summarized (Freeman et al. 2013a) in Figure

3. In Figure 3A,B, we show the average response time

courses for populations of about 100 units recorded

from V1 (Fig. 3A) and V2 (Fig. 3B). In V1, responses

to naturalistic textures and spectrally matched noise

controls were almost indistinguishable, while in V2 re-

sponses to naturalistic textures were robustly larger than

responses to noise. The difference is captured in Figure

3C with a “modulation index,” which shows strong mo-

dulation for the V2 population over the entire time

course of response, and only very weak modulation

for the V1 population, emerging very late in the re-

sponse. The average traces do not reveal how consistent
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Figure 3. Responses of neurons in macaque V1 and V2 to
naturalistic textures and spectrally matched noise controls. We
measured the responses of isolated cells in V1 and V2 cells to a
randomly interleaved sequence of naturalistic textures and spec-
trally matched noise (Fig. 1). We presented the textures for 100
msec in a 4˚ window centered on the receptive field, with a 100-
msec blank interval between stimuli. (A) Normalized mean re-
sponses of 102 cells from V1. Solid line, naturalistic stimuli;
dashed line, noise controls. Stimulus time course indicated at
bottom. (B) Normalized mean responses of 103 cells from V2;
conventions as in A. (C ) A modulation index, computed as the
difference between naturalistic and noise responses divided by
their sum, plotted for V1 and V2 populations. Shaded bands in
A–C indicate 95% confidence intervals. (D) Distribution of the
modulation index for 102 cells in V1. (E) Distribution of the
modulation index for 103 cells in V2. After Freeman et al.
(2013a).
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the responses were for different neurons, so Figure 3D,E

shows the distribution of the modulation index for neuro-

nal populations in V1 and V2. The V1 data show modest

dispersion about a mean near 0, whereas the mean for V2

was substantially and significantly shifted to positive

values.

HUMAN CORTICAL RESPONSES

TO NATURALISTIC TEXTURE AND

NATURAL IMAGES

Given the robustly enhanced neuronal responses to

naturalistic textures that we observed in unit responses

recorded from V2, we decided to look for evidence of

similar responses in human visual cortex, using the tech-

nique of blood-oxygen-level-dependent functional mag-

netic resonance imaging (BOLD fMRI) (Freeman et al.

2013b). We measured responses in three subjects to an

alternating sequence of spectrally matched control stim-

uli and naturalistic textures (Fig. 4A), presented in an

annular region surrounding the fixation target. We render

the responses on a flattened map of the posterior pole of

the cortex in a representative subject; the marked borders

between visual areas were established in earlier topo-

graphic mapping studies using standard techniques (Wan-

dell et al. 2007; Gardner et al. 2008). The alternation of

naturalistic and noise stimuli notably failed to modulate

the BOLD signal in V1, but in V2 and adjacent areas, the

response was robust and reliable. This is entirely consis-

tent with our measurements of neuronal responses in

macaque V1 and V2 (Freeman et al. 2013a), as well as

the perceptual discrimination of images with statistics

matched over regions the size of V2 receptive fields

(Freeman and Simoncelli 2011).

The broad view of the brain given by functional imag-

ing allowed us also to explore the way in which image

representation begins to move beyond the representation

of the kind of naturalistic image statistics that are effec-

tive in driving V2; in particular, we have begun to ask

whether further elaborations of the cascade of visual

processing leads downstream areas to respond differen-

tially not only to images with naturalistic statistics, but

also to natural images themselves. Physiological mea-

surements of unit responses in macaque extrastriate areas

V4 and IT by Rust and DiCarlo (2010) suggest this

possibility, showing that units there respond better to

photographs of natural scenes than to scrambled photo-

graphs made to match the statistics of the texture model.

Using the same block design, we compared fMRI ac-

tivation in human visual cortex to natural images with

those to spectrally matched noise (Fig. 4B), and we also

compared activation by natural images and naturalistic

textures derived from those images (Fig. 4C) (Freeman

et al. 2013b). Although response modulation in V2 and

V3 was similar for the exchange of natural images with

noise, response modulation in areas anterior to V3 was

stronger than when naturalistic textures were exchanged

with noise (Fig. 4B). As one might then expect, the ex-

change of natural images for naturalistic textures evoked

little response in early areas (V1–V3), but strongly acti-

vated anterior areas (V4 and other downstream areas).

In aggregate, these preliminary measurements suggest

that areas downstream from V2 and V3 continue the

process of elaboration begun in V2, and effect at least

part of the job of transforming representations of the stat-

Figure 4. Responses of human visual cortex to natural images, naturalistic textures, and spectrally matched noise controls. Flattened
maps of the posterior pole of the right hemisphere of a representative observer showing modulation of BOLD fMRI responses to
alternating sequences of stimuli in a block design whose time course is schematically diagrammed at the bottom: briefly presented
repeated stimuli (200 msec on, 200 msec off ) were presented in 9-sec blocks, alternating between the conditions being compared. Area
boundaries are derived from a separate topographic mapping experiment. In each panel, the pseudocolor scale represents the coherence
of the BOLD response component synchronized with the time course of the stimulus exchange. (A) Alternation between naturalistic
textures and spectrally matched noise controls. (B) Alternation between natural images and spectrally matched noise controls. (C )
Alternation between natural images and naturalistic textures. (From Freeman et al. 2013b.)
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istical features of images into representations of the

particular features of objects and scenes that are found

in the visual areas of the inferior temporal lobe (DiCarlo

et al. 2012).

CONCLUSION AND OUTLOOK

We have established that V2 reformats the relatively

simple visual representation provided by V1 so as to make

explicit relationships of activity that are implicit in the

input population. This is akin to the computation of ori-

entation selectivity from nonoriented inputs that is exe-

cuted by circuits in V1—the orientational structure of the

visual image is implicit in the responses of LGN neurons

that provide input to V1, but is made explicit in V1

(Hubel and Wiesel 1962; Priebe and Ferster 2012). An-

other example of such cascaded computation is the selec-

tivity for pattern motion seen in directionally selective

neurons in area MT—these neurons respond to complex

object motion in a way that is implied, but not directly

represented in the inputs from V1 (Movshon et al. 1985;

Simoncelli and Heeger 1998; Rust et al. 2006). This re-

curring motif of cascaded computation is likely the basis

of other forms of selectivity in the visual pathway, such as

the selective responses to forms and objects observed in

V4 and IT (Brincat and Connor 2004; Serre et al. 2007;

Rust and DiCarlo 2010). Such elaboration is also likely

the basis of our finding that V4 and other areas down-

stream from V2 seem to respond preferentially to natural

images of objects and scenes, compared with statistically

matched textures derived from those images (Fig. 4C;

Freeman et al. 2013b).

What can we say about the responses of individual V2

neurons on the basis of our analysis of group data? The

population of neurons in V1 can represent orientation for

purposes, say, of discrimination (Graf et al. 2011). But

this is not the same as being able to describe the responses

of each V1 cell, for which a particular set of properties

and circuits are in play (Priebe and Ferster 2012). The

same is true for V2—knowing that the population of V2

neurons can represent statistical structure in images does

not uniquely specify the response properties of individual

V2 neurons, and a major challenge for ongoing research

will be to create such models. Related work in V4 has

explored computations that produce some forms of tex-

ture specificity (Okazawa et al. 2015), and we have begun

to explore models to account for the texture responses of

V2 neurons. The structure of the statistical model from

which the texture stimuli are generated (Portilla and

Simoncelli 2000) provides a starting point. This model

combines particular V1-like responses by correlation—

an average of pairwise products—a calculation for which

a neural implementation has not been shown in mammals

(although see Jones and Gabbiani 2012 for an in-

vertebrate example). As shown by Adelson and Bergen

(1985), an equivalent model can be constructed by squar-

ing the sums of these pairs, creating an alternative neural

circuit implementation that may be more plausible for

mammalian cortex. Such models make testable predic-

tions (see Emerson et al. 1992), and fitting and testing

V2 models of this form against data from individual neu-

rons is an important next step.

In addition, neural network models that are optimized

for performance of visual recognition may provide some

constraints (Serre et al. 2007; Khaligh-Razavi and Krie-

geskorte 2014; Yamins et al. 2014). In the past few years,

hierarchical neural network models, optimized for recog-

nition performance on large image databases, have out-

stripped previous models working within the classical

edge-based paradigm. The success of these networks is

still mysterious, and the details of their learned internal

representations have not been carefully studied (Khaligh-

Razavi and Kriegeskorte 2014; but see Zeiler and Fergus

2014). The design of these networks is often inspired

by physiology (Jarrett et al. 2009) and, given the similar-

ity to the construction of the texture model described

here, are likely to capture similar texture-like attributes

in intermediate stages. Images synthesized from these

representations may therefore prove useful as stimuli in

perceptual or physiological investigations, and the pre-

cise form of internal representation in these networks

may provide inspiration for the design of physiological

response models.

Our exploration of texture representations in cortex

was driven by perceptual phenomena and mechanisms.

Now we can begin to ask how to relate cortical neural

circuits to those perceptual phenomena. We have found

that the average modulation index of V2 neurons for par-

ticular texture images is correlated with the ability of

human observers to detect the presence of the model

statistics in synthetic versions of those images (Freeman

et al. 2013a). In the context of a more natural perceptual

task, we have obtained preliminary evidence that V2

neurons also provide a better substrate for classifying

textures into categories than V1 neurons—as a popula-

tion, V2 neurons are selective for the properties of par-

ticular textures, while being tolerant of image variations

that preserve texture identity, such as those that arise

during the synthesis procedure (Ziemba et al. 2012).

With this regard, V2 responses to texture are analogous

to IT responses to objects and forms—selective for par-

ticular forms and at the same time robust to transforma-

tions that preserve the identity of those forms (Rust and

DiCarlo 2010).

A central question is whether the form and object

selectivity of these later stages are constructed from

texture-selective neurons in area V2, or whether they

instead arise through some other form-specific pathway.

Lettvin (1976) considers the relationship between form

and texture: “One can imagine shapes spatially interfer-

ing with each other to comprise texture; or else suppose

that texture is primitive and that textures combine to

produce forms—just as letters combine to make words.”

Lettvin himself comes down on the second side, arguing

that texture provides the building blocks from which

form is constructed. This conjecture is compatible

with our observations that mechanisms in V2, relatively

early in the visual pathway, respond invariantly to tex-

ture. Only later, in areas like the inferotemporal cortex,
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do responses become selective and invariant for objects

and scenes.
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