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Background: The cerebral cortex is divisible into many individual areas, each exhibiting distinct 

connectivity profi les, architecture, and physiological characteristics. Interactions among cortical 

areas underlie higher sensory, motor, and cognitive functions. Graph theory provides an important 

framework for understanding network properties of the interareal weighted and directed connectiv-

ity matrix reported in recent studies.

Advances: We derive an exponential distance rule that predicts many binary and weighted features 

of the cortical network, including effi ciency of information transfer, the high specifi city of long-

distance compared to short-distance connections, wire length minimization, and the existence of 

a highly interconnected cortical core. We propose a bow-tie representation of the cortex, which 

combines these features with hierarchical processing.

Outlook: The exponential distance rule has important implications for understanding scaling prop-

erties of the cortex and developing future large-scale dynamic models of the cortex.
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Density and topology of the cortical graph. (Left) The 66% density of the cortical matrix (black triangle) is 

considerably greater than in previous reports (colored points) and is inconsistent with a small-world network. 

(Right) A bow-tie representation of the high-density cortical matrix. The high-effi ciency cortical core has defi ned 

relations with the cortical periphery in the two fans.
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REVIEW

Cortical High-Density
Counterstream Architectures
Nikola T. Markov,1,2,3 Mária Ercsey-Ravasz,4 David C. Van Essen,5 Kenneth Knoblauch,1,2*
Zoltán Toroczkai,6,7*† Henry Kennedy1,2*†

Small-world networks provide an appealing description of cortical architecture owing to their
capacity for integration and segregation combined with an economy of connectivity. Previous
reports of low-density interareal graphs and apparent small-world properties are challenged by
data that reveal high-density cortical graphs in which economy of connections is achieved by
weight heterogeneity and distance-weight correlations. These properties define a model that
predicts many binary and weighted features of the cortical network including a core-periphery,
a typical feature of self-organizing information processing systems. Feedback and feedforward
pathways between areas exhibit a dual counterstream organization, and their integration into local
circuits constrains cortical computation. Here, we propose a bow-tie representation of interareal
architecture derived from the hierarchical laminar weights of pathways between the high-efficiency
dense core and periphery.

Because the concepts of localization of func-
tion and parcellation into cortical areas
are closely intertwined, elucidating the

global pattern of areal interactions is central to
understanding higher brain functions (1–5). Ce-
rebral cortex in the macaque monkey is sub-
divided into a mosaic of ~100 cortical areas, each
displaying characteristic features, including cyto-
architecture (6). Each area has a characteristic
connectivity profile thought to contribute to
determining its functional properties (1, 7, 8).
Here, we review how interareal connectivity at
the single-cell level (9), revealed by quantitative
anatomical tract tracing, is relevant to our under-
standing of large-scale cortical networks and their
hierarchical organization (8, 10–13).

The circuitry of cerebral cortex is dominated
by local (within-area) connections, and interareal
connections constitute only about 20% of total
cortical connectivity. Hence, the dozens of long-
distance projections to areas beyond the imme-
diate neighboring areas account for ~ 5% (10).
Local networks conform in many ways to a
canonical microcircuit that spans all cortical
layers (14, 15) and includes recurrent excita-
tion presumed to shape and amplify the sparse

input from subcortical and distant cortical
sources (16).

Felleman and Van Essen (FVE) showed that
interareal connectivity obeys hierarchical con-
straints rooted in the strong anatomical regular-
ities of feedforward and feedback pathways (17).
In this way, multiple distributed cortical hierar-
chies form a large-scale model of the cortex (17)
that reflects the laminar integration of interareal
connectivity into local circuits (18) and is rel-
evant to sensory (17, 19, 20), motor (21, 22), and
cognitive (23–27) systems. The structural features
of interareal interactions may provide important
insights into the observed dynamics of large-scale
interareal networks controlling information flow
through the cortex (1, 28, 29).

Density and Small-World Architectures
Graph theory provides a powerful framework
for investigating complex networks such as those
found in the brain. Many insights into the func-
tional processes supported by such networks have
been gleaned from analysis at the binary level
(i.e., connections present or absent; see Glossary
for definitions) (30). One important class of mod-
els that has received much attention is that of
small-world (SW) networks, distinguished by high
clustering coupledwith a short average path length
(also called characteristic path length) across the
graph (31). The relevance of the SW property to
understanding the cortex comes from its proposed
capacity to optimize essential cortical features,
including functional integration and segregation
(32, 33).

Several studies based on collations of pub-
lished anatomical tract tracing data (34–38) con-
cluded that the cortical interareal network conforms
to the SW network model of Watts and Strogatz
(31). According to this hypothesis, efficient sig-
nal propagation through cortical circuits benefits

from a modest number of shortcuts connecting
different communities across the cortical graph.

The SWhypothesis for interareal connectivity
has been challenged by recent studies that used a
consistent and optimized methodology to estab-
lish a quantitative data-base of macaque interareal
connectivity (8, 11). We segmented the cortical
sheet into 91 cortical areas and quantitatively
analyzed the incoming connections to a subset of
29 areas chosen to represent five major regions
of the cortex. By using similar procedures and
identical area definitions across brains, this effort
set out to overcome the limitations inherent in
collated datasets that combine results across many
anatomical studies (39). These limitations arise
from the diversity of procedures used among dif-
ferent anatomical studies, including cross-study
differences in parcellation schemes, extent of cor-
tex examined, tracer sensitivity, criteria for accept-
ing the presence or absence of a connection, and
the spatial resolution of the analysis.

Injections of retrograde tracers in the 29 areas
revealed 36% more connections than previously
reported (8, 10). These so-called new-found pro-
jections (NFPs) were presumably missed by ear-
lier studies for several reasons, including that
they link widely separated areas (long-distance
connections) and tend to be sparse, therefore re-
quiring high resolution obtained by optimized
sampling frequency for their detection (40, 41).
Notably, repeat injections in selected areas and
statistical modeling of the variability of projection
magnitude demonstrated well-defined weighted
connectivity profiles for each area and indicated
high consistency for pathways of sufficient strength
(8, 10). Inclusion of the NFPs considerably in-
creases the cortical network density (i.e., the num-
ber of binary connections that exist relative to the
total number of connections possible) (42). The
density of the full interareal network (FIN), rep-
resented by the graph (or matrix)G91x91, remains
unknown. However, a dominating set analysis of
the currently known interareal network represented
as the G29x91 subgraph of the FIN predicts that
the FIN is itself a densely connected network (8).

TheG29x29 interareal subgraph, formed among
the injected (target) nodes, is edge-complete (see
Glossary), and it has a link density of 66% (i.e.,
two-thirds of connections that can exist do exist)
(8). The G29x29 is denser than any subgraph used
in previous studies of the cortical network. Figure
1A displays the differences in density and aver-
age path length of various published subgraphs
that have been used to investigate the large-scale
properties of the cortex. FVE analyzed several
hundred publications and reported on 32 visual
areas and 305 pathways, for a graph density of
32% (17). In their meta-analysis, many pathways
were identified as untested (i.e., the subgraphwas
edge-incomplete); they predicted a density of 45%
if the unknown connections were to be tested.
Three subsequent studies added collated data to
the FVE data set, thus generating subgraphs of 47
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ofPhysics,Babeş-BolyaiUniversity, Cluj-Napoca,400084Romania.
5Department of Anatomy and Neurobiology, Washington Uni-
versity School of Medicine, St. Louis, MO 63110–1093, USA.
6Department of Physics and Interdisciplinary Center for Net-
work Science and Applications, University of Notre Dame, Notre
Dame, IN 46556, USA. 7Max Planck Institute for the Physics of
Complex Systems, 01187 Dresden, Germany.

*These authors contributed equally to this work.
†Corresponding author. E-mail: henry.kennedy@inserm.fr
(H.K.); toro@nd.edu (Z.T.)

www.sciencemag.org SCIENCE VOL 342 1 NOVEMBER 2013 1238406-1



areas G47x47 (34), 71 areas G71x71 (43), and 179
areas G179x179 (44), respectively. The resulting
subgraphs were also edge-incomplete, but untested
connections were assigned a “nonconnection”
status, leading to low density estimates ranging
from 5 to 25%. Jouve et al. updated the FVE data
set with additional connections reported during
the 7-year interval between the two studies, yield-
ing an observed density of 37% (45). They used
an inference algorithm based on second-order con-
nection regularities and arrived at a density pre-
diction of 58% for visual cortex.

The aggregate evidence suggesting high den-
sity of the FIN of themacaque neocortex led us to
explore the implications for putative SW proper-
ties of the dense cortical graph. In contrast with
d-dimensional regular lattices, where the char-
acteristic path length L grows as a power-law L∝
n1/dwith the number of nodes n, in a SWnetwork
path length growth is logarithmic with the num-
ber of nodes and hence much slower, i.e., as
L∝ lnn

lnk, where k is the average degree in the net-
work (31, 46). Figure 1B examines the effect of
density on a hypothetical 1000-node ring lattice
network on the interval over which the SW phe-
nomenon of high clustering and short path length
exists. The reduction in average path length and

increase in clustering of a lattice by random re-
wiring of connections is density dependent. At
densities below about 42%, even limited rewiring
substantially decreases average path length while
maintaining high clustering, thereby providing
shortcuts characteristic of a SW architecture. By
contrast, at high densities rewiring barely affects
path length, because density alone determines
this feature, independently of the more detailed
structure of the network. Figure 1C shows the SW
coefficient as a function of rewiring probability
for regular networks (lattices) with increasing
density [defined as in (31)]. These results indi-
cate that the density predicted by FVE (45%) and
that reported byMarkov et al. (8) would reject the
hypothesis of the large-scale interareal cortical net-
work being a Watts-Strogatz–type SW network.

The G29x29 matrix discussed here has a den-
sity of 66% and includes pathwayswith few labeled
neurons. As we have argued elsewhere, weak path-
ways could fulfill diverse roles (8, 10, 11, 13, 39),
and given that injections involve only a fraction
of a target area, we do not capture the full com-
plement of neurons for eachweak pathway. Thresh-
olding would reduce the range of weights that we
report. For example, eliminating pathways with,
on average, fewer than 10 neurons per tracer in-

jection would reduce the graph density from 66
to 53%, and the range of connection weights (8)
from five to four orders ofmagnitude. At 53%, our
conclusions concerning the SWwould not change.
However, 37% of the pathways that would be
eliminated by this thresholding have been reported
in earlier publications. Further, these conservative
steps would ignore the possibility that much larger
injections coupled with higher sampling could
potentially reveal larger cell numbers, thereby in-
creasing the range of connection weights, num-
bers of areas connected, and the graph density
with respect to the values reported here.

At graph densities approaching 100%, the
point when all pairs of nodes are interconnected,
the variability within the graph’s structure ap-
proaches zero. Hence, at the high density found
in the G29x29matrix, little binary specificity might
be expected. However, because the probability of
connections drops steeplywith distance, the subset
of long-distance connections can show binary
specificity, as we demonstrate in the next section.

Binary Specificity in the High-Density
Cortical Graph
Figure 2A shows theG29x29matrix with the NFPs
indicated in red and organized so that target areas
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Fig. 1. High density of the cortical graph excludes sparse small-world
architecture. (A) Comparison of the average shortest path length and density
of theG29x29 subgraph with the graphs of previous studies. Sequential removal
of weak connections causes an increase in the characteristic path-length. Black
triangle:G29x29; gray area: 95% confidence interval following random removal of
connections from G29x29. Dotted horizontal lines indicate the 5 to 95% interval
with at least one unreachable node (after repeated and graded, random edge
removal). The three least dense graphs are near their 5% unreachability levels.
Data incompleteness meant that some of the initial networks have unreachable
nodes (the latter are removed and not considered here); 14 unreachable nodes are
from Modha and Singh (44); 1 unreachable node is from Young (43); and 2
unreachable nodes are from Felleman and Van Essen (17). Modha and Singh
2010: (44); Young 1993: (43); Honey et al., 2007: (34); Felleman and Van Essen
1991: (17); Jouve et al., 1998: (45); Markov et al., 2012: (8). “Jouve et al., 1998
predicted” indicates values of the graph inferred using the published algorithm

(45). (B) Effect of density onWatts and Strogatz’s formalization of the small world.
Clustering and average path-length variations generated by edge rewiring with
probability range indicated on the x axis applied to regular lattices [of 1000 nodes
in a 1D ring as in (31)] of increasingly higher densities. The pie charts show graph
density encoded via colors for path length (L) and clustering (C). On the y axis, we
indicate the average path length ratio (Lp/Lo) and clustering ratio (Cp/Co) of the
randomly rewired network, where Lo and Co are the path length (Lo) and
clustering (Co) of the regular lattice, respectively. Lp and Cp are the same
quantities measured for the network rewired with probability (p). Hence, for
each density value indicated in the L and C pie charts, the corresponding Lp/Lo
and Cp/Co curves can be identified. Three diagrams below the x axis indicate
the lattice (left), sparsely rewired (middle), and the randomized (right) net-
works. (C) The small-world coefficient Cp=Co

Lp=Lo (33, 136) corresponding to each
lattice rewiring. Color code is the same as in (B). Dashed lines in (B) and (C) indicate
42% and 48% density levels. For electronic data files, see www.core-nets.org.
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are associated with one of the five regions of the
cortex (occipital, temporal, parietal, frontal, and pre-
frontal; see Fig. 2D). Earlier anatomical studies
suggested that cortical areas are preferentially con-
nected to physically nearby areas in the region in
which they are located, whereas the additional
NFPs mainly interconnect area pairs located in
different regions (8). Because regionally related
areas tend to have similar connectivity patterns,
this raises the question of whether the NFPs are
perhaps important because they connect areas
having dissimilar connectivity patterns. Using a
similarity index (see Fig. 2B), we measured the
degree to which two areas receive (or avoid re-
ceiving) input from common sources (in-link
similarity) (11). This confirmed that within-region
similarity was high; between-region similarity was
lower and, notably, declined with increasing dis-
tance between regions (Fig. 2B). The observation
that NFPs tend to interconnect distant areas with
low similarity provides one indication of their
specificity.

Additional evidence for theNFP-related spec-
ificity comes from a dominating set analysis, a
graph theoretical method that quantifies the ex-

tent to which connections are gathered (“domi-
nated”) by a small set of nodes (8, 11). In the case
of directed networks, in-link and out-link dom-
ination are specified separately. Because with ret-
rograde tracers all the in-links are revealed for an
injected target area (but not the out-links), we fo-
cused on in-link domination (8, 11). A subset of
nodes is said to be fully in-link dominating if all
nodes of the graph each project to at least one edge
into this subset. There can be several fully domi-
nating sets of nodes (areas); a minimum fully
dominating set (MDS) is the smallest such set.
The smaller the MDS, the more concentrated the
input, indicating the increased role that this set
plays in the network. A more refined measure is
given by encoding the percentage of all nodes
that project into a group of given target areas
(8, 11) (thus 100% corresponds to full domi-
nation). The histogram of this fraction over all
possible groups of a given size (e.g., all combina-
tions of two or more targets) gives an overall
picture of domination; see fig. S3, A and B, in
(11) for the G29x91 network. In this case, the low
value of 2 for the MDS along with the high domi-
nation percentage of many small groups of target

areas indicates that the FIN must also be a dense
network [see (8) for more details]. Comparing
these histograms with and without the NFPs in-
cluded shows that the NFPs play a key role in the
statistics of the inputs to area groups, as their re-
moval appreciably reduces domination for all sets,
and the MDS size jumps from 2 to 5 (11).

Besides suggesting a key role for the NFPs,
the dominating set analysis confirms the high den-
sity of the cortical graph (11). However, this density
is not homogeneously distributed. The percent-
age of areas projecting to a target area is 99% for
areas within 10mm, 85% between 10 and 20mm,
50 to 60% between 20 and 40 mm, and below
40% at 40 mm or greater. Examination of the
cortical areas projecting to a target region shows
that a modest number of areas outside that region
project to all of the injected areas included in the
target region (11) (Fig. 2D). Thus each target re-
gion has a set of common input areas, which con-
stitute a connectivity signature of the target region
(1, 7, 11). The number of common input areas to
a region is substantially larger when NFPs are
included (red versus blue in Fig. 2D). Compar-
isons with randomly permuted networks indicate
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that the increase in the number of common inputs
after inclusion of NFPs significantly exceeds that
which would occur from an increase in density
by the addition of an equivalent number of ran-
dom connections (11). Further, the specificity of
the long-distance connections and hence of the
NFP is indicated by the fact that the density of the
interregional edge-complete graphs is considerably
lower than for those formed by intraregional con-
nections (Fig. 2C). Note, that the specificity of the
NFP connectivity is the same as for all long-distance
connections, including those already known (11).

The impact of the interareal pathways on the
physiology of the target areas is constrained by
the laminar origins of the parent neurons of the
pathway and the cortical layers targeted by their

synaptic terminals. These laminar constraints on
interareal pathways contribute to determining cor-
tical hierarchies (17), which we address in the
next section.

Hierarchical Organization
More than 70% of all the projections to a given
locus on the cortical sheet arise fromwithin 1.5 to
2.5 mm, so that cortical connectivity is domi-
nated by short-distance (10), local connections
that conform to a canonical microcircuit optimized
to amplify and shape weaker long-distance cortical
inputs (Fig. 3A) (16). Therefore, when considering
long-distance interareal pathways, it is important
to consider not only the strength and the specif-
icity of the connections, but also their pronounced

laminar asymmetry determined by the direction
of the connection. Hence, feedforward (FF) path-
ways (mostly directed rostrally) originate princi-
pally from supragranular layers and terminate in
layer 4 in higher areas (47–49), whereas feedback
(FB) pathways (mostly directed caudally) originate
mainly from infragranular layers in higher areas
and avoid layer 4 in lower areas (47, 49–51).
Pairwise comparison of the connections has been
used to reveal cortical hierarchies (17, 52). While
the FVE model is indeterminate (53), it can be
partially resolved by using a continuous scale such
as hierarchical distance based on the fraction of
supragranular layer neurons (SLNs) (Fig. 3B)
(54–56). The SLN index quantifies an order
relation between areas as defined by their laminar
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Fig. 3. Cortical hierarchy. (A) Canonical microcircuit [adapted with per-
mission (131)]. (B) Cartoon of the laminar distribution of projections to a
cortical mid-level area. (C) Relationship of SLN and FLN. The strongest pathways
are the short-distance lateral connections with an SLN of ~0.5; long-distance
FF and particularly FB are substantially weaker. (D) Cortical counterstreams.
FB and FF are organized in a dual counterstream system localized in supra- and
infragranular compartments. In the supragranular compartment, the layer 3B
pyramidal cells have long-distance FF axons targeting layer 4 of higher-order
areas, while the pyramidal neurons of layer 3A have short-range FB axons
targeting the supragranular layers of lower-order areas. In the infragranular
compartment, layer 6 has long-distance FB axons that avoid layer 4 and

largely target layer 1, whereas layer 5 has short-distance FF axons. Layers 3A
and B are the major supragranular output layers and layer 4 is the major input
layer for FF projections, and layer 1 the major input layer for FB projections.
Apical dendrites of pyramidal cells of layers 3A and 3B and, to a lesser extent,
layer 5 reach layer 1, where they can receive FB influences, while some of the
basal dendrites of FF layer 3B neurons are located in layer 4. (E) A hierarchical
organization of the visual cortical areas using SLN as a hierarchical distance
measure (12). The projection of area 8L (frontal eye field) to area V4, and from
area V4 to area 8L, are both defined by their SLN as FF and therefore form a
strong loop (12). (D and E) Color coding: red, FF; blue, FB. [Panel (D) from
(12)]. For electronic data files, see www.core-nets.org.

1 NOVEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1238406-4

The Heavily Connected Brain



profiles of connectivity and thereby allows esti-
mation of the hierarchical distance separating
them (57). Further analysis shows that connec-
tions between neighboring areas have the highest
weight, defined as the fraction of labeled neurons
(FLN) (10, 58), whereas long-distance FF and FB
connections have lower weights (Fig. 3, B and C).

Interest in the hierarchical organization of the
cortex is fueled by evidence that FF and FB pro-
cesses are distinct physiologically. A useful, albeit
oversimplified characterization is that FF con-
nections are “driving” and FB connections are
“modulatory” (59–63). Further, FF and FB path-
ways engage different glutamate receptor subtypes
(64). If the two polarities indeed have relatively
distinct roles, one might predict that any given
neuron would contribute to only one type of path-
way, rather than supplying axons to both. This
has been tested by injecting two distinguishable
retrograde tracers in higher and lower cortical
areas and examining the intermediate areas for
double-labeled neurons (i.e., neurons with a bi-
furcating axon directed at both pathways). The
results showed that the FF and FB neurons in the
intermediate areaswere virtually all single-labeled,
which is striking given the commonality of axonal
bifurcation (57, 65). Not only do FF and FB
constitute distinct populations, but they also form
two segregated streams, consistent with earlier
observations (47, 66, 67). The supra- and the
infragranular layers each have a counterstream
organization, most pronounced in the supra-
granular layers (Fig. 3D) (12, 68). Further, the
supragranular counterstream showed a point-to-
point (i.e., topographical) precise connectivity in
both FF and FB directions, whereas the infra-
granular counterstream has a more diffuse topog-
raphy showing high divergence and convergence
in both directions (12). Hence, contrary to pre-
vious assertions, topographic precision distinguishes
supragranular layer from infragranular connec-
tions and not FB versus FF pathways (12).

The integration of interareal connections into
the canonical microcircuit of a target area pre-
sumably determines how top-down and bottom-
up streams affect processing within the target area
(18). The concept of hierarchical processing has
influenced theories of cortical computation, pre-
dictive coding, and emerging concepts of infer-
ence in cortical function (18, 69, 70). Recent
progress in elucidating interareal communication
includes the demonstration of gamma-band phase
coherence in the supragranular and beta-band
coherence in the infragranular layers (71, 72).
These differences in coherence reflect differences
in interareal synchronization (73–76), which are
thought to facilitate effective communication
(74, 77). Recently beta-gamma asymmetries have
been shown to correlate with the aforementioned
SLN fraction, suggesting a match between ana-
tomically and functionally defined hierarchies (18).
The SLN analysis revealed infrequent, but po-
tentially important, departures from the reciprocity

of FF and FB projections. For instance, instead of
FF being invariably reciprocated by FB, a few FF
pathways are reciprocated by a FF, thereby form-
ing a strong loop (54, 78, 79), which is illustrated
in Fig. 3E, where the FF projection of V4 to the
frontal eye field (area 8L) is reciprocated by a FF
and not a FB connection (12, 54). Given the evi-
dence for different physiological roles of FF and
FB pathways, such anti-hierarchical pathwaysmay
allow circulation of information up and down the
cortical hierarchy entirely via FF pathways. The
functional importance of these rare so-called strong
loops (79) remains to be determined.

Rich-Club and Bow-Tie Structure
Previous studies based on sparse cortical networks
have suggested an important structural heteroge-
neity in the cortex, where hub areas are statis-
tically more interconnected than expected, forming
a so-called rich club (80–82) or central core (44).
Using methods adapted to high-density graphs
(83), we have shown that the G29x29 subgraph
harbors 13 cliques (complete subgraphs in which
all possible connections are present) of size 10.
This results in a very high, 92% density core
formed of 17 nodes in the edge-complete G29x29

(13), a periphery of 12 nodes with a density of
49%, and a 54% density of connectivity between
the periphery and core. Because additional in-

jections cannot change the structure of theG29x29

subgraph, this implies that the FIN also has a dense
core (to which the core of G29x29 must belong,
being 92% dense), possibly larger than that of
G29x29. The core-periphery distinction is also sup-
ported by the average strength of connections, as
the fraction of labeled neurons (FLN, seeGlossary)
between the core and periphery is on averageweaker
than within either the core or periphery (13).

Next, we present a method (see captions of
Table 1 and Fig. 4) that uses both the FLN
weights and the SLN fractions to reveal correla-
tions among core and periphery links (Fig. 4A),
thereby providing further information on the large-
scale organization of the cortical network. In Fig.
4B, peripheral nodes are split into two groups
(Table 1). In the left fan, the preponderant path-
ways are FF going from the periphery to the core
reciprocated by FB from the core to the pe-
riphery. In the right fan, the preponderant path-
ways are FB going from the periphery to the core
reciprocated by FF pathways from the core to the
periphery (Fig. 4B). The preponderant pathways
being FF from left to right and FB in the inverse
direction also holds for the small number of
direct links between the two fans (see Fig. 4B).
The core includes areas in the frontal, prefrontal,
and parietal regions [see Fig. 2D for region lo-
cations and (8) for area members of each region].

Table 1. Properties of connections between periphery nodes and the core. All the individual links
of an area from P (column A) have been classified into one of four classes. If a link had an SLN > 0.5, it was
designated as FF, otherwise as FB. The index “o” indicates connections from the node to the core, and the
index “i” indicates connections from the core into that node. Columns B to E give the number of links of a
given type for an area. Columns F to I provide the cumulative effective SLN values (see below) for the four
types of connection groups (streams) after subtracting 0.5 from the values. The closer the value to 0.5
(–0.5), the stronger the effective FF (FB) nature of the group of links is. The cumulative effective SLN
values were obtained as follows. Let Lj (x) denote the set of nodes in the C that a node x in the P connects
with via a link of type j (one of the four types). The effective SLN measure Sj(x) for node x for its
connectivity with C, within every link class, weighted by the strength (FLN) of the connections is given by
Sj(x) ¼ (∑y∈Lj(x)sxyf xy)=∑y∈Lj(x)f xy. Here fxy is the FLN and sxy is the SLN; sxyfxy is thus proportional to the
number of supra neurons in that individual (x-y) projection, which is then summed over all connections
within that class that node x has with C, normalized by the total strength of the connections within that
class. Exploiting the correlations between the streams shown in Fig 4, A to C, we generated in columns J
and K two counterstream indices by adding the absolute values of the paired columns. If the outstreams
into the C were strong FF (correlated with strong FB from the core), we designated them as L (left wing
of the bow tie), otherwise as R (right wing). According to these criteria, TEpd is an outlier; see legend
of Fig. 4.

A B C D E F G H I J K L

Area #FFo #FBo #FFi #FBi FFo–0.5 FBo–0.5 FFi–0.5 FBi–0.5 F+|I| |G|+H L/C/R
2 4 6 3 2 0.136 –0.205 0.063 –0.035 0.171 0.268 R
5 5 6 2 5 0.225 –0.083 0.157 –0.205 0.430 0.240 L
7B 8 3 7 4 0.154 –0.328 0.069 –0.233 0.388 0.397 R-C
DP 10 1 2 11 0.203 –0.268 0.018 –0.158 0.361 0.287 L
F1 6 8 0 8 0.187 –0.253 N/A –0.073 0.260 0.253 L-C
MT 6 4 4 7 0.384 –0.015 0.174 –0.377 0.760 0.189 L
ProM 2 7 4 2 0.104 –0.199 0.255 –0.145 0.249 0.453 R
TEO 3 4 6 8 0.211 –0.029 0.247 –0.434 0.645 0.276 L
TEpd 3 8 2 8 0.065 –0.336 0.157 –0.104 0.168 0.493 R
V1 3 1 0 4 0.318 –0.500 N/A –0.442 0.760 0.0 L
V2 8 4 0 5 0.277 –0.260 N/A –0.394 0.671 0.260 L
V4 8 1 1 6 0.395 –0.500 0.074 –0.463 0.858 0.074 L
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The predominant FF inputs from the left wing to
the core areas may serve as feeders for the central
core processing (consistent with the inclusion of
primary sensory andmotor areas in this left wing;
see Fig. 4B), whereas the FB pathway predom-
inance from the right wing could correspond to a
monitoring or coordinating role for the members
of this group.

A Cortical Distance Rule as Cost-of-Wiring
Principle: The EDR Model
The above observations suggest a general picture
of the interareal network: It is a dense network,

but with high binary specificity ensured by long-
distance connections and characterized by the
existence of a core-periphery structure organized
into a bow tie via FF/FB pathways. The spec-
ificity of connections increases with projection
distance andwith decreasing connection weights.
Is there a fundamental, biophysical principle–based
model that can capture most of these properties
with a minimal number of fitting parameters? The
answer is yes, as discussed below.

A clue to the importance of weight-distance
relations for understanding the properties of the
cortical network comes from the observation that

the FLN weights are highly heterogeneous, fol-
lowing a log-normal distribution varying over
five orders of magnitude (8, 10) (Fig. 5A). The
log-normal distribution may directly reflect the
interplay between metabolic costs associated with
projection lengths and a geometrical or spatial
property of areal locations (13). Axonal projec-
tions out to a distance d through the white matter
come at an energy (metabolic) cost, irrespective
of the areas involved. This is suggested by the
exponential decay of the number of labeled neu-
rons as a function of projection distance d: p(d ) =
cexp(–ld), corresponding to an exponential
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being below 0.5 (that is, infra dominated, also called FB) or above 0.5 (that is, supra
dominated, also called FF) and according to whether they are oriented toward the
core (“out” or “o”) or from the core (“in” or “i”). This generates a total of four
possibilities for link types (y is an area from the core, x is noncore): (1) x projecting to
y (x→y) as FF (denoted FFo), (2) x→y as FB (denoted FBo), (3) y projecting into x (x←y)
as FF (or FFi), and (4) x←y as FB (or FBi). (A) The numbers of link types are correlated
over the set of all nodes (both from periphery, P, and core, C); the number of FF links
into the core (#FFo) correlates on average with the number of FB links from the core
(#FBi) and #FFi correlates with #FBo. (B) A bow-tie representation of the G29x29. The
dense core (92%) is shown in the middle. The left and right wings of the tie were
obtained based on the FF/FB counterstreams into and from the core and their

cumulative effective SLN values; see Table 1 legend for details. The cumulative
effective SLN is an average SLN to or from the C for the given connection type,
weighted by link strengths. In this way, for every area in the P, we obtain four numbers
all between 0 and 1, shown in Table 1, columns F to I. A strong FF into C pairs with a
strong FB from C, and vice versa, the connections forming FF/FB counterstreams.
Computing two indices of effective SLN strengths in absolute value for the two
pairs |FFo–0.5|+ |FBi–0.5| and |FFi–0.5|+ |FBo–0.5| (columns J andKof Table1),
we classify the nodes into one of two groups (L or R) depending on which value is
larger. (C) The imbalance between the number of FF and FB links from a node to C is
mirrored on average by imbalance between the FF and FB connections from C to the
samenode. (D) The edge-completeG29x29has a very high bisection bandwidth of 242
links, out of 536 total (see Glossary). For electronic data files, see www.core-nets.org.

1 NOVEMBER 2013 VOL 342 SCIENCE www.sciencemag.org1238406-6

The Heavily Connected Brain



distance rule (EDR) (Fig. 5B). The spatial decay
constant l = 0.188 mm–1 expresses the growth
rate of the metabolic cost with distance. We there-
fore expect that the FLN between two areas sep-
arated by a distance d is determined to a first
approximation by this cost, independently of areal
identity. A relevant spatial property is expressed
by the inset in Fig. 5B, showing that the fraction
of area pairs separated by a distance d is well ap-
proximated by a truncated Gaussian. Hence, com-
bining the EDR with the Gaussian distribution of
interareal distances, one finds that the distribution
of area pairs with a given FLN indeed obeys a
log-normal distribution (13).

These observations suggest that the EDR,which
is a global distance rule, acts as a principle for
resource allocation via the probability factor de-
termined by the space constant l. To what extent
is the cortical network determined by this prin-
ciple? To address this question, we defined two
random network models [see (13) for details],
one based on the EDR and the other on a constant
distance rule (CDR, where projection length bears
uniform cost). We then compared the statistical
properties of these two sets of networks to those of
the observed G29x29 subgraph. Only the EDR
model captures the binary statistical graph prop-
erties of G29x29 on all scales (from local to

global), including motif distributions (84) and
graph spectral properties. Most notably, the EDR
but not the CDR generates graphs with a pro-
nounced core-periphery structure, closely track-
ing the distribution of cliques in the G29x29 (Fig.
5C). This figure also demonstrates that the CDR
model fails to produce cliques of size 8 and larger.
This finding suggests that the existence of the
dense core in the cortex reflects the cost-of-
wiring principle expressed in the EDR.

Efficiency of Information Transfer
A simple measure of bandwidth for information
transfer in complex networks can be defined via
the average conductance between all source-target
pairs in the network (85), called global efficiency,
or (Eg). Conductance here is interpreted as in
physics, by the inverse resistance of the directed
path of minimal total path resistance through the
network from the source node to the target node
(see Box 1 for definitions of the quantities in
terms of FLNs). The path resistance can be in-
terpreted as the negative logarithm of the prob-
ability that activity in the source node will
generate activity in the target node. Here, we
equate bandwidth with axon number as reflected
by FLN. Thus, a sequence of edges having large
FLN values (or “high bandwidth” edges) directed
from source to target would form a path of low
resistance (high conductance), providing a high-
bandwidth pathway for information transmission.
To obtain a graded measure of global efficiency
within the structure of G29x29 and to understand
the role of weak projections, we computed Eg on
the remaining network after the sequential
removal of the weakest link (smallest FLN) and
plotted it as function of the network density.
Figure 5D shows that the global efficiency of
the network does not change before 76% of the
weakest links are removed, indicating the exis-
tence of a high global efficiency (high band-
width) backbone formed by short-range paths
(see Fig. 5, E and F). Indeed, the average length
of the remaining edges at 24% remaining density
is 16 mm compared to the 27-mm average length
of the removed edges. This suggests that the
cortical network is organized in such a manner as
to be independent of the activity along the weak
projections for high-bandwidth information
transfer. We speculate that these long-range
pathways, which we have shown to have a high
binary specificity, may contribute to interareal
synchronization between cooperating areas.

A more local notion of information transfer
can be similarly defined (86), via the average
conductance between all the pairs of nodes that
are neighbors of a given node i, after the removal
of node i, then averaging this quantity over all
nodes i (see Box 1), called local efficiency, El.
One can think of El as a measure of accessibility
between the satellites of a town via routes that
avoid the town. Figure 5D shows this quantity as
a function of density (following the sameweakest-
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link removal procedure as above). Intriguingly,
local efficiency increases sharply with weak-link
removal (or inactivity), compared to the global
efficiency. The weak-link removal increases lo-
cality because the weak links are long-range.
This tends to prune the interregional shortcuts
and physiologically would be predicted to de-
crease interactions between diverse functional
modalities, leading to a more localized structure
of the remaining network. It eliminates those
neighbors of a node to which it connects via weak
links, thus disconnecting regions and modalities
but preserving dense within-region connections.
Accordingly, the paths linking the remaining neigh-
bors of the node (avoiding that node) are all
strong, having small path resistance (large con-
ductance), and hence the measure of local ef-

ficiency becomes large. The redundancy of local
strong paths [the complete triangle is the most
abundant three-motif, formed by strong links as
shown in figure 3B of (13)] guarantees that the
number of edges on a path between two nodes is
small, which further decreases the path resistance
between the nodes and hence further increases
the local efficiency.

These changes in local efficiency indicate flex-
ibility of network modularity and long-distance
functional interactions—for example, in response
to changes in cognitive load (13, 87). This sug-
gests that in the cortical network, local informa-
tion processing is voluminous, and because of the
redundancy of local high-conductance paths, it is
much more efficient than global information pro-
cessing, whose efficiency acts at a constant base

line (Box 1). Notably, the organization of the cor-
tical network around a high-efficiency backbone
with constant global efficiency and optimal local
efficiency behavior is also captured well by the
EDR (Fig. 5D). These efficiencies are not binary
graph measures, but are based on weights (FLNs).
By contrast, the CDR fails completely, especially
for the local efficiency measure (Fig. 5D).

Optimal Placement
The ability of the weight-distance relations of the
G29x29 to predict numerous features of the cor-
tical network underlines the importance of the
embedded nature of real-world networks where
nodes are located in three-dimensional (3D) Eu-
clidean space and are linked by weighted and
directed edges (88). An important aspect of the
embedded cortical network is the spatial layout of
cortical areas. Numerous studies have presented
evidence that the spatial layout is optimized to
minimize total wire length (89–91). A recent study
used collated data for 95 areas of the macaque and
claimed that optimized component rearrange-
ments based on a simulated annealing algorithm
could substantially reduce total wire (92). How-
ever, the database used by that study was edge-
incomplete and the network density derived from
it had a low density. In addition, weights were
only classified as being on one of four levels. We
adapted evolutionary optimization algorithms and
applied them to our database to search for areal
placements that minimize total wire length; we
found alternative organizations that shorten the
binary network by 5%. For the weighted net-
work, the maximum reduction was less than 1%
and involved a small number of switches be-
tween adjacent areas (Fig. 6) (13). Figure 6A
shows a 3D representation of the G29x29 network
with areas color coded to indicate regional iden-
tity. Figure 6B is an example of shuffled areal
positions leading to increased wire length and
loss of adjacency of areas originally from the
same region. An optimization procedure applied
to the randomized network leads to regional clus-
tering similar to that observed in the cortex (Fig.
6C). Further, random networks based on the
EDR had significantly shorter wire lengths than
CDR-generated networks. These results therefore
confirm that wire minimization is a constitutive
organizational principle of the cortical network
(89–91, 93–99) and suggest that this design con-
straint is at least partially implemented by the
operation of the EDR generating the weight dis-
tributions of interareal projections (13).

Concluding Remarks
In summary, the interareal network achieves econ-
omy of connectivity and communication efficien-
cy by means of a distribution of weights, spatial
organization and a core-periphery structure in the
form of a bow tie with a dense core. Interareal
connections integrate across the local circuits via
dual counter-streams located in the supra- and
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Box 1. Efficiency measures for information transfer in networks.

In the simplest approximation, we may interpret the FLN weight fij of the projection from source
area i to target area j as the probability pi→j that activity in i will induce activity in j. Assuming that
these are independent events, the probability of activity in area k induced along the path i→j→k will
be given by the product of the FLNs: pi→j→k = fij·fjk or ln(pi→j→k) = ln(pi→j) + ln(pj→k). Then, the
positive quantity wij = –ln(fij) can be interpreted as a measure of resistance for information transfer
along the i→j link, as small FLN (weak links) induce a large resistance and vice versa. Addi-
tionally, based on our assumption above, the link resistance is additive along network paths. We
define the resistance rxy from an arbitrary
node x to an arbitrary node y as the
smallest sum of link resistances among
all directed paths wxy from x to y, that is,
rxy ¼ min

wxy
∑

ði,jÞ∈wxy

wij . The highest transmis-

sion probability path will be the one,
wxy* , that achieves this minimum (see
figure). The global efficiency measure
Eg is defined as the average conduct-
ance (inverse resistance) between all the
possible N(N – 1) node pairs, where N is
the number of nodes in the network as
shown in (A).

A local efficiency measure El is de-
fined in (B): We remove a node i with all
its links and then we compute the aver-
age of the resistances between all pairs
of its neighbors as measured through
the rest of the network, and finally, we
average these quantities over all nodes i.
Thus, El quantifies the degree to which
the satellites of a typical city can com-
municate via paths that avoid the city (B).

Schematics for efficiencymeasures.
(A) Global efficiency and (B) local effi-
ciency. The dashed curves are schematic
paths through the rest of the network
(not shown). Here {i} denotes the set of
network neighbors of node i.
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infragranular layers, which have distinct physio-
logical properties. Further explorations of the
impact of the cortical core on the local circuit
should improve our understanding of their dy-
namic interaction.

The broadband connections involving large
number of cells that form the global efficiency
backbone and that are expected to shape recep-
tive fields in target areas are short range and
strongly cluster areas of a given modality. The
considerably more numerous long-distance con-
nections are sparse and exhibit high binary spec-
ificity; we speculate that these connections serve
to promote cortical communication by control-
ling oscillatory coherence (77) possibly via contrac-
tion dynamics (100). During primate evolution
the increase in numbers of areas and their spa-
tially restricted broadband connections raises the
possibility that increases in brain size would lead
to increased isolation of clustered communities
(101, 102).Wehypothesize thatweak long-distance
connections appeared during recent evolution
and may facilitate cooperation between distant
areas. Assuming that a high-density connectivity
is a characteristic feature of the interareal cortical
graph, long-distance weak links may allow pres-
ervation of the connectedness of the cortical
network following cortical expansion. Further,
long-distance connections allow accommodation
of novel information processing, thereby building
over evolutionary time upon the existing reper-
toire of dynamic functions. There are a number of
advantages to be gained (see below) by develop-
ing a high efficiency central core that we along
with others have observed. Long-distance con-
nections particularly for the higher association
areas play a special role in forming the cortical
core. The high incidence of long-distance pro-
jections involving prefrontal areas (11) suggests a

particular importance of this cortical region in
core-periphery integration, indicating the cortical
core as an important component of higher order
interareal architectures (103, 104).

Self-organization in cortical development is
well established (105). The findings summarized
above suggest interesting parallels with other,
highly functional, self-organizing information-
processing networks. The high density, yet highly
specific nature, of G29x29 suggests a heteroge-
neous, expandable, and cost-efficient information-
processing network subject to evolutionary constraints.
In particular, we find (i) high connectivity, (ii)
high global accessibility, and (iii) large path di-
versity. Additional evidence supports several further
constraints: (iv) a high bisection bandwidth (Fig.
4D); (v) resilience to connectivity failures (global
conductance measurements in Fig. 5D show that
during sequential removal of the weakest links, a
substantial decline in the network’s global effi-
ciency is not reached until a density of 24%); and
(vi) incremental expandability that allows addi-
tion of new areas to the network during evolu-
tion, without a substantial wiring overhaul to
maintain or improve performance, also supported
by optimal placement studies. The global efficien-
cy and the optimal layout of the G29x29 are sup-
portive of (vi).As seen in Fig. 5D, global efficiency
stays constant with weak-link removal. Weak
links are long-range and might be more prevalent
in large brains. Conversely, adding long-range
links (during cortical expansion) seems not to af-
fect the global efficiency, much less worsen it (as
would be expected in a complete overhaul). In
terms of optimal layout, the total wiring inG29x29

[see (13)] is minimal as a consequence of the
EDR. It remains minimal following the addition
of new areas with strong links to their neighbors
and progressively weaker links to distant areas.

This corresponds to an optimal spatial arrange-
ment, consistent with incremental expandability.
In an interesting parallel, a recent study on ef-
ficient, massive data-processing networks shows
that for their purposes, random structures with a
pronounced core-periphery organization allow
incremental growth without sacrificing their
high bisection bandwidth and throughput capa-
bility (106).

Although primate neocortex shares a number
of common features with human-made, large-scale
information-processing networks, there are also
crucial differences, and so the analogies should
not be overextended. One important difference is
that in current technological information networks,
information (including a destination address) is
encoded within the units (packets) that are sent
along the edges of the network (packet-switching
networks), whereas this does not appear to be the
case for the brain. Our results show that spatial
location does influence the wiring properties of
the brain. Further, in the brain, the location and
timing of activity (in the context of other firing
activities) represent the message (neural coding),
thus linking network activity to the structural
properties of the cortical network. In the Internet
or World Wide Web, however, it does not matter
where the routers are physically in space, because
the packets are routed on the basis of network
addresses encoded into the packet. This key dif-
ference suggests that spatio-temporal network
models should hold more promise for brain sci-
ence than generic, purely graph theoretical mod-
els such as the SW model.

Future Perspectives
While the high density of the binary interareal
graph is not consistent with a SW architecture at
the computational level of a cortical area, the SW
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Fig. 6. Spatial positioning of areas and overall wire-length mini-
mization. (A) A 3D representation of G29x29, nodes positioned at the bary-
centers of the corresponding areas identified on brain surface reconstructions
(not shown). Edges are visualized as straight lines, but the wire-length cal-
culations for pairs of areas use the axonal trajectory generated as the
shortest possible path restricted to the white matter. Color coded for regions
(see key). Wire length is the product of the number of neurons involved in

the pathway with the estimated pathway length. (B) Random repositioning
of areas with connectivity preservation leads to wire-length increase. (C) An
adapted harmony search algorithm reduces the wire length of the start-
ing network in (B). Wire reduction is accompanied by restoration of areal
adjacencies. Solutions that fail to reconstruct the initial network exhibit
increased wire length with respect to (A). Number in each panel refers to
wire lengths.
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concept may nonetheless be relevant at finer spa-
tial scales. For example, the high clustering and
short path lengths indicative of SW architecture
are suggested by diffusion magnetic resonance
imaging (MRI) analysis at a node scale of a few
millimeters (about the size of the voxels) (107).
Here, the importance of the SW parameters re-
vealed by this approach must be considered with
respect to the methodological thresholding im-
posed by the whole-brain imaging technique. The

nonrandom connectivity at the single-cell level
raises the issue of SW architecture at this scale
(108, 109). The rich variety of cell identities
posits a conceptual challenge for the potential of
SW network at the single-cell level. Large-scale
circuit mapping at the single-cell level is not
currently feasible, although innovative approaches
might conceivably provide the appropriate data
in mice (110). At the interareal level, our results
indicate that the spatially embedded nature of the

cortical network determines many of its proper-
ties, such as structural and weighted graph char-
acteristics. Could similar weight-distance relations
operate for single neurons, thereby suggesting a
similar operational logic over different scales?
Like interareal connectivity, local connectivity
shows an exponential density decay (10), reflect-
ing the decrease in the likelihood of synaptic
contact with distance (111). Also, log-normal dis-
tributions like that of interareal weights have
been observed for the distribution of synaptic
strengths of single neurons (109).

The EDR that we describe shows that the
spatial constant of interareal density decay ac-
counts for many of the binary and weighted fea-
tures of the cortical graph, as well as the important
design feature of wire minimization. Given the
high scalability of mammalian neocortex, accom-
modating five orders of magnitude range of brain
weight (112), we examined the spatial location of
cortical areas in the G29x29 subgraph and found
that when magnitude of connections is taken into
account, it shows an optimal placement of area
positions indicating minimization of metabolic
expenditure on total wire length, also well pre-
dicted by the EDR. Given these results it will be
instructive to explore the weight-distance rela-
tions in different species to determine how the
decay parameter l changes with brain size. This
may provide insights into a common rule govern-
ing scaling properties of the brain and also allow
improved extrapolation of our understanding of
the connectivity of the macaque brain obtained
using invasive techniques to the larger and less
directly accessible human brain.

A core-periphery structure has been observed
in other self-organized information-processing
architectures, both human-made such as theWorld
Wide Web (113) and the Internet (114, 115), and
in biological networks, such as in metabolism
(116, 117), the immune system (118), and cell
signaling (119–121). The resulting bow tie is an
evolutionarily favored structure for awide variety
of complex networks (122, 123), expressing the
fact that functional or living systems have an
input interface, a processing unit, and an output
interface. This is because these systems are not in
thermodynamic equilibrium and are required to
maintain energy and matter flow through the sys-
tem. While the overall bow-tie structure is com-
mon, we have seen that for the brain it emerges
through a counterstream organization of the di-
rected links between core and periphery, showing
its specific nature when compared to other bow
ties in biology or technical networks. However,
the full details of this structural organization will
only become evident when additional tracer-based
anatomical data are incorporated.

Although the interareal connectivity data ex-
plored here has revealed interesting features of
the cortical network, many additional analyses
remain to be done. It will be important to com-
plement the quantification of connectivity by func-

Box 2. Glossary of technical terms.

1. Area: A region of the cortex with specific cytoarchitecture and associated with a function.
Target area: An area that received a retrograde tracer injection. Source area: An area
containing labeled neurons projecting to a target area.

2. Average path length: Average value of shortest path lengths between all node pairs in
the graph. Length here is measured in hop-counts along directed edges.

3. Binary specificity: The degree to which a network or a graph differs in its binary graph
theoretical properties from a random graph.

4. Bisection bandwidth: The minimum of the number of connections between two, equal-
size partitions of the nodes of a graph, taken over all such partitions.

5. Clustering: The average of the fraction of connected neighbors of a node (fraction of
triangles).

6. Counterstream: Refers to the organization principle by which there are streams ascending
(supragranular layer) and descending (infragranular layer) the cortical hierarchy (135).
Recently, this has been extended to include a dual counterstream organization where an
ascending and descending stream is identified in each of the two compartments (12).

7. Dominating set: A set of nodes in a graph such that all nodes of the graph have at least
one edge with one of their end-nodes in this set.

8. Edge: A link or connection between two nodes directed from one to the other, here
interareal pathway. There can be at most two directed links, oppositely oriented between any
two nodes.

9. Edge-complete subgraph: A subgraph that has exactly the same connections between its
nodes as the connections between the same nodes in the larger graph that this subgraph is
part of.

10. FLN: Fraction of labeled neurons: For a given injection (target area i) and source area j,
the FLN is the ratio fij between the number of labeled neurons in area j and the total number
of extrinsic (not in i) labeled neurons for that injection. We use FLN as a measure of weight
(10, 58).

11. Gnxm (sub)graph or matrix: For every one of the n targets (injected areas), it specifies
which of the m sources project into that target (0 if no projection, 1 if there is a projection).
Here, G91x91 denotes the full graph of interareal connections, G29x91 represents the currently
known projections from all areas into the injected 29 areas, and G29x29 denotes the subgraph
formed by the connections among the target areas only. The latter is edge-complete, i.e., the
status of connectivity is fully known within this set of nodes.

12. Nodes: Discrete entities represented as points or vertices in graph theory for the purpose
of studying the patterns of interactions among them (represented as links or edges). In this
case, a node represents a cortical area.

13. SLN: The fraction of supragranular labeled neurons is defined for each source area
projecting to an injected target area. SLN corresponds to the number of retrogradely labeled
neurons located in the supragranular layer divided by the total number of neurons (in infra-
and supragranular layers). SLN distinguishes FF and FB pathways and can be used to cal-
culate hierarchical distance (12, 54, 55).
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tional and improved molecular characterization
of cortical areas and also of the parent neurons
(124–126). A necessary and complementary de-
velopment will be to use anterograde tracers to
examine the laminar integration of interareal con-
nectivity, combining quantification and morpho-
logical characterization at the synaptic level
(127, 128). Finally, our use of the term “canonical
microcircuit” in the sense of a stereotyped circuit
constituting a fundamental cortical building block
should be tempered by the evidence for large
regional differences in cell densities and dendritic
arbor sizes (129, 130). While it is generally ac-
cepted that the local circuit exhibits cell-specific
connectivity across the cortex (thereby conform-
ing to a canonical circuit) and likewise that there
are consistent input-output patterns across the
different areas (131), there is nevertheless only a
single quantitative interlaminar connectivity map,
namely, for cat area 17 (132). The concept of the
canonical microcircuit provides a coherent frame-
work for thinking about neocortical function, and
evidence of variations of local connectivity point
to the need to establish additional quantitative
interlaminar maps. Dynamic models built on ex-
isting quantitative interlaminar maps (132, 133)
give realistic dynamics (134). Extending this type
of modeling to include interareal relations be-
comes a reasonable next step.
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