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The early visual system is endowed with adaptive mechanisms that rapidly adjust gain and integration time based on the local

luminance (mean intensity) and contrast (standard deviation of intensity relative to the mean). Here we show that these mechanisms

are matched to the statistics of the environment. First, we measured the joint distribution of luminance and contrast in patches

selected from natural images and found that luminance and contrast were statistically independent of each other. This independence

did not hold for artificial images with matched spectral characteristics. Second, we characterized the effects of the adaptive

mechanisms in lateral geniculate nucleus (LGN), the direct recipient of retinal outputs. We found that luminance gain control had

the same effect at all contrasts and that contrast gain control had the same effect at all mean luminances. Thus, the adaptive

mechanisms for luminance and contrast operate independently, reflecting the very independence encountered in natural images.

In the early visual system, two rapid adaptive mechanisms control the
gain of neural responses1: luminance gain control and contrast gain
control. Luminance gain control (also known as light adaptation)
occurs largely in the retina. It adjusts sensitivity to match the locally
prevalent luminance (light intensity). Rather than responding linearly
with luminance, which can potentially vary over an extremely wide
range, the retina effectively divides luminance by the local mean
luminance1–3. Contrast gain control begins in the retina1,4–7 and is
strengthened at subsequent stages of the visual system8,9. It effectively
divides10 the responses by a measure that grows with the locally
prevalent root-mean-square (r.m.s.) contrast, the standard deviation
of the stimulus luminance divided by the mean luminance. This
division provides a degree of contrast invariance: rather than depend-
ing linearly on contrast, responses are reduced in those locations of the
visual field where contrast is high and increased where contrast is low.

At least some components of luminance and contrast gain control
should operate rapidly, because the eyes typically fixate a given location
for only 200–300 ms, and eye movements will often bring the receptive
fields of neurons in the early visual system over image patches that
differ in luminance and contrast. What ranges of luminance and
contrast are typically encountered in natural scenes? To what extent
do luminance and contrast vary together? We addressed these questions
by measuring luminance and contrast for image patches selected from
calibrated natural images. We found that the typical ranges are
substantial and that luminance and contrast are largely statistically
independent. We then turned to the gain control mechanisms in the
early visual system and found that their operation reflects the inde-
pendence encountered in natural images. This finding indicates a close
match between the statistical properties of natural scenes and the
processing of luminance and contrast in visual systems11–15. Moreover,

it directly supports the hypothesis1,2,16,17 that contrast is a fundamental
independent variable encoded by the early visual system.

RESULTS

Luminance and contrast in natural scenes

We studied the changes in luminance and contrast encountered during
a simulated saccadic inspection of a natural scene and found that these
changes cover more than an order of magnitude (Fig. 1). We analyzed
300 calibrated natural images18 and simulated scan paths based on the
measured statistics of saccades19. We considered image patches such as
would be covered by a receptive field of a neuron in the early visual
system (we repeated this analysis for different patch sizes). For each
patch, we measured local luminance (the mean luminance in the
patch) and local contrast (the r.m.s. contrast in the patch). The typical
distance between fixations was sufficient to cause large changes in
the local luminance and local contrast that fall within the receptive
field of visual neurons (Fig. 1b). An analysis of the population of
images confirmed that within an image, local luminance and local
contrast typically varied by more than a factor of 10 (Fig. 2a–d,
marginal distributions).

We found local luminance and contrast to be nearly statistically
independent. Indeed, the joint distributions of luminance and contrast
were approximately separable (Fig. 2b). Independence was confirmed
by examination of the conditional probabilities: in the ranges of
luminance and contrast that were most likely, all contrasts were roughly
equally probable given a luminance (Fig. 2c), and all luminances were
roughly equally probable given a contrast (Fig. 2d). This substantial
degree of independence was reflected in the correlation between
luminance and contrast, which was a low –0.2. Independence held
regardless of patch size: for patches ranging from 0.11 to 1.01 (full-width
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at half-height), the within-image correlations were always low, ranging
from –0.22 (±0.02, s.e.m., n ¼ 300) to –0.21 (± 0.02).

The mild negative correlation between luminance and contrast was
due to the portions of the images taken up by the sky, where local
luminance was high but local contrast was, on average, very low. We
measured local luminance and local contrast for some of the obvious
constituents of natural images: sky, foliage, ground and backlit foliage.
From each image, we selected, by hand, rectangular regions containing
these constituents, while excluding ambiguous regions. Approximate
statistical independence was found for each of these constituents—the
correlations were 0.0, 0.2, –0.1 and –0.2 for sky, foliage, ground and
backlit foliage. This analysis of the constituents also showed that the

regions of high luminance and low contrast (bottom right of Fig. 2b)
were indeed due to the sky.

To gain more insight into the observed independence of local
luminance and contrast, we evaluated, separately, the effects of the
phase and amplitude spectra of the natural images on the joint
distribution of luminance and contrast. We assessed the role of phase
by measuring local luminance and contrast for artificial-phase images
(Fig. 2e–h). These images had the same amplitude spectrum (that is, the
same autocorrelation function) as the original images, but they had a
random phase spectrum20. They were, approximately, samples of
Gaussian noise with an amplitude spectrum that fell as 1/f, a distribution
that is typically assumed to be representative of natural images21. In
these artificial-phase images, luminance and contrast were far from
independent (Fig. 2f); the average within-image correlation was –0.77 ±
0.01. The opposite was true in artificial-amplitude images (Fig. 2i–l).
These images preserved the phases of natural images, but had an
amplitude spectrum that decreased with frequency as 1/f n (as fitted
to the amplitude versus frequency curve of each image, n¼ 1.25 ± 0.02).
In these images, luminance and contrast were much more independent
(Fig. 2j); the average within-image correlation was –0.05 ± 0.02. A look
at the conditional probabilities for luminance and contrast confirmed
their marked dependence in artificial-phase images (Fig. 2g,h) and a
much higher degree of independence in artificial-amplitude images
(Fig. 2k,l). Thus, statistical independence of luminance and contrast was
not trivial (1/f noise does not have this property), but was dependent on
the typical phase structure of natural images (see Discussion).

Luminance gain control and contrast gain control

Thanks to luminance and contrast gain control, sudden changes in
luminance or contrast that occured between fixations had a reduced
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Figure 1 Luminance and contrast in a natural scene. (a) A sequence of

fixations in a natural scene. The crosses indicate fixation locations and the

circles represent the corresponding locations of an arbitrary receptive field

(diameter: 11). (b) Enlargements of the image patches falling within the

receptive field as a function of their r.m.s. contrast (ordinate) and average

luminance (abscissa).
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Figure 2 Statistics of local luminance and

contrast in natural images. (a) A natural image

(same as in Fig. 1a). (b) Joint distribution of

luminance and contrast as sampled from all 300

images. These distributions represent the varia-

tion of luminance and contrast within a typical

image: specifically, we first computed the overall

average luminance and contrast across images,

and then rescaled each image so that its average

luminance and contrast would match the overall

average. The contours delineate the regions
containing 90% (red), 65% (blue) and 40%

(green) of the observations. The curves on the

sides of the joint distribution indicate the

marginal distributions of luminance and contrast.

(c) Conditional probability of observing a certain

contrast given a specified luminance. This distri-

bution is obtained by normalizing vertical slices of

the joint distribution in b. (d) Conditional probabi-

lity of observing a certain luminance given a

specified contrast. This distribution is obtained by

normalizing horizontal slices of the distribution in

b. (e) An artificial-phase image. This image has

the same amplitude spectrum as the image in a,

but a random phase spectrum. (f–h). Joint

distribution and conditional probability distribu-

tions for the 300 artificial-phase images. Format

as in b–d. (i) An artificial-amplitude image. This

image has the same phase spectrum as the image
in a, but the amplitude at each frequency is given

by the 1/fn spectrum that best fits the spectrum

of the original image. (j–l). Joint distribution and

conditional probability distributions for the 300

artificial-amplitude images. Format as in b–d.
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impact on the responses of the early visual system (Fig. 3). We recorded
the responses of neurons in the lateral geniculate nucleus (LGN), which
receives the output of the retina and provides input to the visual cortex.
The recordings were performed extracellularly in anesthetized, paral-
yzed cats. LGN responses were barely affected by sudden steps in
luminance (Fig. 3a) and were weakly affected by changes in contrast
(Fig. 3c). The measured responses were much smaller and occured
faster than the high-luminance responses predicted by low-luminance
measurements of the receptive field (Fig. 3b) or the high-contrast
responses predicted by low-contrast measurements of the receptive
field (Fig. 3d). These reductions in gain and the changes in dynamics
occured well within a cycle of the drifting grating (80 ms in Fig. 3a,
128 ms in Fig. 3c), confirming that the gain control mechanisms
operate very quickly, in less than 100 ms1,5,6,22–26.

Do the mechanisms of gain control for luminance and contrast
reflect the independence of luminance and contrast seen in natural
images? To react appropriately to the changes in luminance and
contrast, the corresponding gain control mechanisms should be
functionally independent. In other words, within the range of lumi-
nances encountered during natural viewing, luminance gain control
should have the same effects at all contrasts, and contrast gain control
should have the same effects at all mean luminances. Instead, if the gain
control mechanisms were appropriate for statistics other than those in
the natural environment—for example, for those of 1/f noise—one
would expect that contrast gain control would be biased by local
luminance or that luminance gain control would be biased by local

contrast. In other words, one would expect the visual system to exploit
the redundancy implicit in any lack of independence.

Independence of gain control mechanisms

To test for independence, we characterized the effects of luminance and
contrast gain control in the LGN. We recorded responses to drifting
gratings (Fig. 4) with mean luminance (6–56 cd m–2) and contrast
(10–100% Michelson contrast; 0.07–0.7 r.m.s. contrast) covering a
range extending over a factor of 10, similar to the excursion seen in
patches of natural images (Fig. 2b). To fully quantify the effects of gain
control on both the amplitude and the dynamics of the responses1, we
measured responses to a range of frequencies by increasing the drift rate
exponentially with time from 0.5 Hz to 40 Hz in 5 s and back to 0 in the
subsequent 5 s (Fig. 4a–c, and Supplementary Fig. 1 online).
The responses to these stimuli can be read as tuning functions for
stimulus temporal frequency. As expected1, the preferred temporal
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Figure 3 Effect and time course of gain control mechanisms in LGN.

(a) Response of an LGN neuron to a drifting grating of constant contrast

(14%), whose luminance steps from 32 cd m–2 to 56 cd m–2 (left) and back

to 32 cd m–2 (right). Spatial frequency and temporal frequency (12.5 Hz) are

optimal for this neuron. The temporal profile of the stimulus is shown below

the responses. Histograms (gray) were obtained by convolving the spike trains

with a Gaussian window (s ¼ 5 ms), and averaging over three stimulus

presentations. From the histograms, we computed the average response to a
cycle of the stimulus before (dashed) and after (black) the step in luminance.

The linear prediction (green) was obtained by scaling the response before the

step (dashed) by the ratio of the two luminances. (b) Comparison of average

responses to low luminance (dashed) and high luminance (black), and of the

response expected in the absence of gain control (green). (c) Response of an

LGN neuron to a drifting grating of constant luminance (32 cd m–2) whose

contrast steps from 31% to 100% (left) and back to 31% (right). Spatial

frequency and temporal frequency (7.8 Hz) are optimal for this neuron.

Histograms (gray) are the average over five stimulus presentations. The linear

prediction (green) was obtained by scaling the response before the step

(dashed) by the ratio of the two contrasts. (d) Comparison of average

responses to low contrast (dashed) and high contrast (black), and of the

response expected in the absence of gain control (green).
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Figure 4 Characterizing LGN responses at various luminances and contrasts.

(a–c) Responses of an LGN neuron (X-type, on-center) to temporal frequency

sweeps at (a) low luminance and low contrast (L ¼ 6 cd m–2, C ¼ 10%,

Michelson contrast), (b) low luminance and high contrast (L ¼ 6 cd m–2,

C ¼ 100%) and (c) high luminance and high contrast (L ¼ 54 cd m–2,

C ¼ 10%). Histograms (gray) were obtained by averaging over ten stimulus

presentations. Red curves are descriptions of the responses by the descriptive

model (Fig. 5a). Stimuli were sinusoidal gratings at optimal spatial frequency
(icons). The temporal profile of the stimuli is shown under the responses;

drift rate increased exponentially with time, from 0.5 Hz to 40 Hz in 5 s, and

back (not shown). (d–f) Impulse responses used for the predictions in a–c.

The impulse response is smaller and faster at the higher contrast (e) or

luminance (f) than at low luminance and contrast (d, and dotted curves).

1692 VOLUME 8 [ NUMBER 12 [ DECEMBER 2005 NATURE NEUROSCIENCE

ART ICLES
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



frequency was substantially higher at higher contrast (Fig. 4b) or
at higher luminance (Fig. 4c) than at lower luminance and
contrast (Fig. 4a).

To summarize the responses in each stimulus condition (that is, each
fixed mean luminance and contrast), we fitted them with a descriptive
model. In this model (Fig. 5a), stimulus luminance was filtered
by a linear receptive field, whose output was rectified to yield positive
firing rates. The impulse response (the temporal profile of the receptive
field) was estimated independently for each
stimulus condition (Fig. 4d–f). The descrip-
tive model captured response amplitude and
phase over the entire range of tested temporal
frequencies (Fig. 4a–c and Supplementary
Fig. 2 online). For over half of the cells in
our population (N ¼ 40), it accounted
for more than 85% of the stimulus-
driven variance in the responses (Fig. 5b).

Differences between predicted and measured responses were due
mostly to short transients occurring at the onset of the rising phase
of a cycle. These transients corresponded to bursts of action poten-
tials27, which the model was not designed to produce.

When either mean luminance or contrast was changed, the gain
control mechanisms had potent effects on the impulse response4,28

(Fig. 4d–f). One effect of increasing mean luminance or contrast was
on the impulse response’s amplitude, which decreased markedly. For
example, the peak-to-peak amplitude was reduced by 59% by increas-
ing the contrast (Fig. 4e) and by 71% by increasing the luminance
(Fig. 4f), relative to the case of low luminance and low contrast
(Fig. 4d). This decrease countered the increase in signal strength,
reducing the dependence of the responses on mean luminance and
contrast and adjusting the cell’s dynamic range to the prevalent
stimulus conditions. The other effect of increasing mean luminance
or contrast was on the impulse response’s time course, which became
more transient. For example, the duration of the impulse response was
reduced from 94 ms at low luminance and contrast (Fig. 4d) to 55 ms
at the higher contrast (Fig. 4e) and to 48 ms at the higher luminance
(Fig. 4f). This reduction modified the temporal frequency tuning of the
responses, increasing the preferred temporal frequency as mean lumi-
nance and contrast increased (Fig. 4a–c).

Our method for measuring impulse responses yielded robust mea-
sures, which were not affected by slow contrast-adaptation mechan-
isms6,29–32. The responses in the first 5 s, when frequency ramped up
from 0.5 Hz to 40 Hz, were essentially identical to those in the
subsequent 5 s, when frequency ramped back down (Supplementary
Fig. 1). Moreover, responses commonly remained constant over 20 s of
stimulation with a drifting grating of constant frequency (Fig. 3c).
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Figure 6 Independence of the effects of

luminance gain control and contrast gain control.

(a) Impulse responses of the cell in Figure 4,

measured by fitting the descriptive model for all

combinations of mean luminance and contrast.

(b) The amplitude of the transfer functions

corresponding to those impulse responses, as a

function of frequency. (c) Impulse responses

predicted by the separable model (yellow),

compared to those predicted by the descriptive

model (red, replotted from a for comparison).

The latter are barely visible in the superposition,

indicating that the predicted impulse responses

are extremely similar. Each impulse response

(yellow) is the convolution of the fixed filter (pink)

with the luminance gain filter in the appropriate

column (blue) and a contrast gain filter in the
appropriate row (green). (d) The amplitude

transfer functions corresponding to those impulse

responses, as a function of frequency. The arrows

between the panels indicate the sequence of

operations: Fourier transform (FT, a to b), singular

value decomposition (SVD, b to d), and inverse

Fourier transform (FT–1, d to c).
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Thus, slow contrast adaptation mechanisms operating over time
courses of seconds had little (if any) role in these responses.

To test whether luminance gain control and contrast gain control
operate independently of each other, we asked whether these responses
could be explained by a separable model (Fig. 5c,d). This separable
model is a special case of the descriptive model described above
(Fig. 5a). In the model, the impulse response is described by a fixed
filter followed by two variable filters: one for luminance gain control,
which depends only on mean luminance, and one for contrast gain
control, which depends only on contrast. This model makes a strong
prediction: the effects on the impulse response of changing luminance
should be the same for all contrasts, and the effects of changing contrast
should be the same for all luminances.

We tested this prediction on measurements made at a variety of
luminances and contrasts (Fig. 6). To estimate the filters in the
separable model, we started from the impulse responses measured
with the descriptive model (Fig. 6a), and we applied a series of simple
mathematical operations (Fig 6b–d; see also Supplementary Methods
online). The first operation was the Fourier transform (Fig. 6b), which
expressed each impulse response as a transfer function in the frequency
domain; the advantage of this representation is that the transfer
function of a series of filters (the three filters in the separable model,
Fig. 5c) is the product of the transfer functions of the filters. According
to the separable model, the matrix of transfer functions (Fig. 6b)
should be separable: each transfer function should be the product of
three transfer functions—a fixed one, one that depends only on
luminance and one that depends only on contrast. The best estimates
for the three transfer functions were obtained through singular value
decomposition (Fig. 6d). This operation yielded (i) a fixed transfer
function (pink), (ii) transfer functions that depended only on
luminance (blue) and (iii) transfer functions that depended only on
contrast (green). Finally, we performed an inverse Fourier transform to
convert the transfer functions back into impulse responses in the
time domain. The predicted impulse responses were very similar

to the measured ones (Fig. 6c). For each combination of luminance
and contrast, the model predicted that the impulse response was the
convolution of the fixed filter with the corresponding snapshots of the
filters for luminance gain control and contrast gain control (that
is, the filters in the appropriate column and row). As expected,
these filters become larger and slower as luminance or contrast is
decreased (Fig. 6c).

The separable model provided excellent fits to the data. First, it
predicted impulse responses that were barely distinguishable from those
estimated by the descriptive model (Fig. 6c). This was the case not
only for the on-center, X-type cell (Fig. 6) but also for off-center cells
and Y-type cells (Supplementary Fig. 3 online). Second, it predicted the
firing rate responses almost as well as did the descriptive model
(compare Fig. 5b and 5d). The percentage of stimulus-driven variance
explained by the two models was comparable, with a median across cells
of 81% for the separable model versus 85% for the descriptive model. In
fact, we chose the example cell (shown in Fig. 6) because the quality of
the fits was the same as the median values, 81% and 85%.

This performance was notable, given that the separable model has
many fewer degrees of freedom than the descriptive model. To predict
the responses, the descriptive model requires 25 filters (one impulse
response for each combination of mean luminance and contrast),
whereas the separable model requires only 10 filters (the fixed filter
plus the snapshots of the variable filters for five luminances and four
contrasts; see Methods).

Another way to gauge the quality of the separable model was to
consider what would happen if the luminance and contrast gain
mechanisms were instead matched to the statistics of 1/f noise, for
which there is an inverse relationship between luminance and contrast
(Fig. 2f). If this were the case, the full matrix of responses should be
explained by only one gain control mechanism, which could operate
based on luminance alone or contrast alone. We tested this hypothesis
by trying to predict the full set of responses with a one-dimensional
subset of impulse responses. We used the impulse responses estimated
at combinations of luminance and contrast lying close to a line with the
slope observed in a 1/f world (Fig. 2f). For each luminance, the
impulse response nearest to the line was used to predict the responses
obtained at all contrasts. This method yielded poor fits, explaining only
35% (median) of the stimulus-driven variance of the responses,
implying that our analysis was sensitive enough to reject plausible
alternatives to the independence assumption.

Finally, an intuitive way to summarize the effects of gain control—
and to gauge the performance of the separable model—is to consider
overall measures of gain and integration time (Fig. 7). As a measure
of overall gain, we took the average of the amplitude of the transfer
function between 0.5 Hz and 15 Hz (at higher frequencies gain is barely
affected by changes in luminance and contrast). This overall gain was
plotted as a function of luminance (Fig. 7a). The slope of the curves
was close to –1 in logarithmic axes, indicating that overall gain was
inversely proportional to luminance1. On the other hand, overall gain
decreased more modestly with contrast (Fig. 7b, slope of curves is
shallower than –1). Indeed, at low temporal frequencies, LGN
responses were largely independent of mean luminance (Fig. 3a,b),
whereas they did grow with contrast (Fig 3c,d). As an overall measure
of integration time, we took the slope of the best-fitting line relating the
phase of the transfer function to frequency, weighted by the amplitude
at each frequency33. As expected, integration time decreased with
luminance (Fig. 7c) and with contrast (Fig. 7d). All of these effects
were very well captured by the separable model (Fig. 7), confirming
that the effects of luminance and contrast gain control are independent
of each other.
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DISCUSSION

We have demonstrated that luminance and contrast are largely inde-
pendent in natural images, and that the mechanisms of luminance
gain control and contrast gain control in the early visual system reflect
this independence.

Luminance and contrast in natural scenes

The independence of luminance and contrast in natural images
is not easily explained. According to the familiar view of image
formation, the luminance that reaches the eye is the product of the
reflectance of surfaces and an independent illuminant that changes
slowly across the scene1. We simulated this layout and modeled
the reflectance of a scene as a sample of 1/f noise and the illuminant
as an independent sample of low-pass filtered noise (for example,
1/f n noise, n 4 1). In the resulting images, local luminance and
local contrast invariably showed a strong negative correlation. The
correlation was weaker than for a uniform illuminant, but still
substantially more negative than for natural images; thus, indepen-
dence of the illuminance and reflectance functions cannot be the
whole explanation.

A factor contributing to the statistical independence is that regions of
a scene that have high luminance are likely to have more directional
illumination, and hence higher-contrast shadows and shading. This
factor contributes a positive correlation between luminance and con-
trast that partially cancels the expected negative correlation. Another
possible factor is that the distribution of reflectance in natural envir-
onments might be skewed towards the higher values, instead of being
symmetric (as in the case of 1/f noise).

The analysis of natural images reported here does not take into
account the longer-term changes in local luminance owing to the day-
night cycle or to switching of environments (for example, moving from
an open field to under a forest canopy). It seems likely that these longer
term changes are also uncorrelated with local contrast. Nonetheless, our
results are of most relevance to the more rapid components of lumi-
nance and contrast gain control that compensate for the changes in
receptive field stimulation resulting from movements of eye, head, and
body. Under these circumstances, we have shown that the visual system
will mostly encounter changes in luminance of about one order of
magnitude (but occasionally larger—see Fig. 2b), substantially less than
the many orders of magnitude over which the eye is able to operate3.

Independence of gain control mechanisms

To study the effect of luminance and contrast on responses of the early
visual system, we turned to simple stimuli, the drifting gratings that are
classically used to study vision. Drifting gratings of optimal spatial
frequency present many advantages for our purposes. First, drifting
gratings are defined by few parameters, which explicitly include
luminance and contrast. Second, drifting gratings drive neurons in
the early visual system very well, so that we could test low luminances
and low contrasts that would otherwise elicit very few spikes. Third,
drifting gratings elicit, in the receptive field, responses that oscillate at
the frequency of drift, so that it is straightforward to predict the
responses of the receptive field and see how these responses are affected
by gain control. In principle, it would have been desirable to use natural
stimuli, but describing LGN responses to such stimuli requires a rather
involved model that goes well beyond the simple temporal aspects
discussed here.

The independence of gain-control mechanisms for luminance
and contrast that we have found may not seem surprising at first,
given the common assumptions that the output of luminance
gain control (i) removes all effects of mean luminance and (ii) is

completely independent of contrast. However, these assumptions are
not accurate. First, the output of the luminance gain control mechanism
does depend on mean luminance: it emphasizes the low temporal fre-
quencies at low mean luminance and the high temporal frequencies at
high mean luminance (Fig. 4). To interpret these responses and estimate
stimulus contrast, a subsequent contrast gain-control stage would have
to know the mean luminance. Second, the output of mechanisms
performing luminance gain control does, to some extent, depend on
contrast34: for a high-contrast stimulus, luminance gain can vary over
time, because mean luminance is computed locally and rapidly1.

One limitation of our study is that we attributed all the effects of
contrast gain control to changes in the impulse response of the neurons.
In principle, contrast gain control might also affect the spatial receptive
field35 or the resting potential6,32. In practice, however, a model in
which contrast gain control leaves constant both the spatial receptive
field and the resting potential provides an excellent fit to the responses
of LGN neurons to stimuli of different contrasts, sizes and spatial
frequencies10. In ganglion cells, moreover, resting potential seems to be
affected only very slightly by changes in contrast26.

Similarly, we have not quantified the effects of luminance gain
control on the spatial receptive field and on the resting potential.
The surround of retinal ganglion cells becomes relatively weaker at
lower luminances36,37, but this weakening takes place only at the lowest
levels of luminance and is barely noticeable when one compares
responses within a limited range of luminances, as we do here. Mean
luminance might affect the resting potential, but this effect is small and
variable, at least as gauged from the resting firing rate36. Indeed, in our
models we have left the resting potential free to vary with mean
luminance, but the resulting estimates did not vary by much and did
not depend on luminance in an orderly fashion.

Conclusions

Our results add to the growing body of evidence for a close
match between the statistical properties of natural scenes and the
processing of contrast in visual systems. For example, there appears
to be a close correspondence between the range of local contrasts
in natural images and the dynamic range of single neuron responses
in the eye11,12 and in the LGN13. Similarly, the statistics of natural
images, together with the observation that signal strength, compared
to noise strength, is smaller at low contrasts, can predict how the
shape of the impulse response changes across contrasts14. There is
also computational evidence that, for natural images, rapid local
contrast adaptation enhances faint contours12 and increases statis-
tical independence (reduces the redundancy) in the responses of
orientation-selective and spatial frequency–selective neural popu-
lations in visual cortex15. Ultimately, however, a naturalistic explana-
tion of the computational advantages of contrast gain control will
have to account for the large differences seen across species and across
the different retinogeniculate streams such as the M and P pathways
in primates38.

In summary, we have shown that there is little dependence between
the local luminance and the local contrast in natural images and that
this independence is elegantly reflected in the neural responses of the
LGN. Our results provide direct support for the hypothesis1,2,16,17 that
contrast is a fundamental independent variable encoded by the early
visual system. They strengthen and validate a large body of neuro-
physiological, psychophysical and theoretical research that has
implicitly assumed that luminance and contrast gain control are
functionally independent, and provide a new example of how
measuring the statistics of natural environments can provide insight
into sensory systems.
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METHODS
Measurement of local luminance and contrast. From a publicly available

image bank18, we selected 300 images (12-bit, gray scale) that did not include

animals or artificial objects. For each image, we considered a sequence of eye

movements by sampling from eye movement distributions measured sepa-

rately19 (sampling from a uniform distribution gave similar results), with

the constraint that no two samples could be closer than half the diameter of

the patch.

The local luminance of a patch was defined as

L ¼
XN
i¼ 1

wiLi

where N is the total number of pixels in the patch, Li is the luminance of the ith

pixel and wi is the weight from a windowing function.

The local contrast of a patch was defined as

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼ 1

wi
ðLi � LÞ2

L2

vuut
The weighting function was a circularly symmetric raised cosine

ai ¼ cos
2p
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞ2 + ðyi � ycÞ2

q� �
+ 1

where d is the patch diameter, (xi, yi) is the location of the ith pixel in the patch

and (xc, yc) is the location of the center of the patch. The weights were

normalized to sum to 1: wi ¼ ai=
PN

i¼ 1 ai.

The results described here are for a patch diameter of d ¼ 64 pixels, which

corresponds to approximately 11 of visual angle18; however, we obtained very

similar results (that is, small correlations) for a wide range of patch sizes.

To determine the variation of local luminance and contrast within the

typical single image (or constituent sub-image), we first computed the overall

average luminance and contrast across all images (sub-images) and then

rescaled each image (sub-image) so that its own average luminance and

contrast would match the overall average. Correlations of luminance

and contrast were measured on the individual images and then averaged

across images.

Physiological recordings. Methods for recording from single neurons in

anesthetized cats have been described elsewhere39. The Animal Care and

Use Committee of the Smith-Kettlewell Eye Research Institute approved

all procedures.

Extracellular signals were recorded with quartz-coated platinum-tungsten

microelectrodes (Thomas Recording). Firing rates were obtained by convolving

spike trains with a Gaussian window (s.d.: 5 ms).

Stimuli were drifting gratings presented monocularly on a CRT-screen

(refresh rate: 125 Hz). Gratings had optimal spatial frequency and position.

For neurons that were strongly suppressed by large gratings, stimulus size was

set to the optimal value, as measured with gratings at 50% contrast and 32 cd

m–2; for the other neurons, the stimuli covered the entire receptive field.

Combinations of mean luminance (4–6 values between 6 and 56 cd m–2) and

contrast (3–5 values between 10% and 100%) were presented in a randomized

order (12–25 stimuli repeated 6–12 times). The appearance of a grating was

preceded by 2–2.5 s of uniform screen at the mean luminance of the stimulus.

We classified neurons as on-center (26 cells) or off-center (14 cells) by

mapping the receptive field with rapid sequences of flashed gratings.

We classified neurons as X-type (34 cells) or Y-type (6 cells) based on

standard criteria40.

Models. For each combination of mean luminance L and contrast C, we

estimated the impulse response fL,C(t) of a neuron by fitting a descriptive model

(Fig. 5a).

The first stage of the model is the convolution between the linear receptive

field h(x,y,t) and the stimulus s(x,y,t), vdriveðtÞ ¼ ½h � s�ðx0; y0; tÞ; where vdrive(t)

is the stimulus-driven membrane potential relative to rest, and (x0, y0) are

coordinates of the receptive field center. The stimulus s(x,y,t) is the luminance

distribution obtained by subtracting the mean from the luminance shown on

the screen. The receptive field h(x,y,t) has center-surround organization:

hðx; y; tÞ ¼ Gcðx; yÞ � f tð Þ � Gsðx; yÞ � f ðt � dÞ; where Gc and Gs are Gaus-

sian spatial profiles for center and surround, d is the delay between center

and surround, and f(t) is a difference-of-gammas temporal impulse response

(see Supplementary Methods). The latter is identical for center and surround.

The parameters of Gc and Gs, and the delay d were fixed for a given neuron.

The second and third stages of the model add Gaussian noise n(t) with fixed

variance s2 to the visual response vdrive(t), and rectify the result to yield a firing

rate r tð Þ ¼ v0ðLÞ + vdriveðtÞ + nðtÞb c; where b c indicates rectification and v0 is

the difference between the spiking threshold and the resting potential. The

variance of the Gaussian noise was fixed for a given cell, whereas the resting

potential was allowed to vary with mean luminance L to account for changes in

spontaneous firing rate seen at different mean luminances. The sequence of fits

used to estimate model parameters is described in Supplementary Methods.

In the separable model (Fig. 5c), the impulse response fL,C is the convolution

of three filters: fL;CðtÞ � ½f0 � fL � fC �ðtÞ; where f0 is fixed, fL depends only on

mean luminance (it describes the effects of luminance gain control) and fC
depends only on contrast (it describes the effects of contrast gain control).

We estimate the three filters from the impulse responses obtained with the

descriptive model. This procedure is described in Supplementary Methods.

Quality of predictions. To quantify how well the model predictions rt capture

the measured responses st (both consisting of t ¼ 1, y, M samples) we

estimated the fraction of stimulus-driven variance in the responses accounted

for by the model41,42:

b ¼ s2
s � s2

e

s2
s � s2

Z

where

s2
s ¼

1

M

X
t

s2
t

* +

is the power in the response,

s2
e ¼

1

M

X
t

ðrt � stÞ2

* +

is the mean square distance between data and model and

s2
Z ¼ d

d � 1

1

M

X
t

s2t

* +
� 1

M

X
t

s2t
� �" #

is an estimate of the variance in st that is due to noise. Angular brackets indicate

the average over d presentations of the same stimulus. The mean of the

responses st was removed before these computations.

The quantity b is an intuitive measure of fit quality, similar but superior to

the commonly used ‘percentage of the variance’. A perfect model—that is, a

model that is a perfect description of a system—could never account for 100%

of the variance, because some of that variance is due to noise. By estimating the

fraction of the variance that is due to the noise, the quantity sZ
2, and

subtracting it from the denominator in the definition of b, one eliminates this

contribution. Rather reasonably, then, a perfect model is then one that yields

b ¼ 1, or 100%. Values b 4 1 indicate overfitting, and b ¼ 0 as usual indicates

that a constant value would have been better than the proposed model. The

assumptions behind this estimation are minimal41: the noise should have zero

mean and a non-infinite variance, and should be independent between trials.

The estimator sZ
2 is unbiased, and holds even if the variance or other property

of the noise depends on the signal strength (as is common with neural signals).

Note: Supplementary information is available on the Nature Neuroscience website.
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