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SUMMARY

Functional models of the early visual system should
predict responses not only to simple artificial stimuli
but also to sequences of complex natural scenes.
An ideal testbed for such models is the lateral genic-
ulate nucleus (LGN). Mechanisms shaping LGN
responses include the linear receptive field and two
fast adaptation processes, sensitive to luminance
and contrast. We propose a compact functional
model for these mechanisms that operates on se-
quences of arbitrary images. With the same parame-
ters that fit the firing rate responses to simple stimuli,
it predicts the bulk of the firing rate responses to
complex stimuli, including natural scenes. Further
improvements could result by adding a spiking
mechanism, possibly one capable of bursts, but not
by adding mechanisms of slow adaptation. We con-
clude that up to the LGN the responses to natural
scenes can be largely explained through insights
gained with simple artificial stimuli.

INTRODUCTION

A central goal of visual neuroscience is to understand the pro-

cessing performed by the early visual system on the flow of com-

plex images that stimulate the eyes. Virtually all progress toward

this goal has come from studies that used simple stimuli such as

dots, bars, and gratings. Such simple, artificial stimuli present

overwhelming advantages in terms of experimental control: their

simple visual features can be tailored to isolate one or few of the

several mechanisms shaping the responses of visual neurons

(Rust and Movshon, 2005). Ultimately, however, we need to un-

derstand how neurons respond not only to these simple stimuli

but also to image sequences that are arbitrarily complex, includ-

ing those encountered in natural vision. The visual system

evolved while viewing complex scenes, and its function may

be uniquely adapted to the structure of natural images (Felsen

and Dan, 2005; Simoncelli and Olshausen, 2001). In fact, it has

been suggested that artificial and natural stimuli may engage en-

tirely different mechanisms (Felsen and Dan, 2005; Olshausen

and Field, 2005).

The chasm between the knowledge gained with artificial stim-

uli and the world of natural stimuli can be gauged in the lateral

geniculate nucleus (LGN). The LGN constitutes a testbed for
theories of visual function: its responses are complex enough

to constitute a challenge, but enough understood to make a gen-

eral model appear within reach. Such a functional model would

be useful, as it would summarize much of the processing per-

formed in the retina, and it would characterize the main visual in-

put to the cerebral cortex. Can such a general functional model

of LGN responses be derived based on present knowledge?

Would the model predict responses to both simple, artificial

stimuli and complex, natural scenes?

Decades of research in retina and LGN have yielded detailed

models of the mechanisms shaping responses to simple, artificial

stimuli (Carandini et al., 2005; Kaplan and Benardete, 2001; Mei-

ster and Berry, 1999; Shapley and Enroth-Cugell, 1984; Troy and

Shou, 2002; Victor, 1999). At a minimum, these mechanisms in-

clude a center-surround linear receptive field (RF) followed by

a nonlinearity that produces firing rates (Figure 1A) (Cai et al.,

1997; Dan et al., 1996; Dawis et al., 1984; Saul and Humphrey,

1990; So and Shapley, 1981; Stanley et al., 1999). The RF, in

turn, depends on local statistics of the images through the fast ad-

aptation mechanisms of light adaptation and contrast gain control

(Figure 1B) (Bonin et al., 2005; Demb, 2002; Kaplan and Benar-

dete, 2001; Lesica et al., 2007; Mante et al., 2005; Meister and

Berry, 1999; Shapley and Enroth-Cugell, 1984). The former oper-

ates largely in the retina (Fain et al., 2001; Meister and Berry, 1999;

Shapley and Enroth-Cugell, 1984); the latter begins in the retina

(Baccus and Meister, 2002; Demb, 2002; Meister and Berry,

1999; Shapley and Enroth-Cugell, 1984; Shapley and Victor,

1978; Victor, 1987) and becomes progressively stronger at later

stages in the visual pathway (Sclar et al., 1990). Moreover, addi-

tional mechanisms may play an important role, including slow

contrast adaptation (Baccus and Meister, 2002; Demb, 2002;Sol-

omon et al., 2004), single spike generation (Butts et al., 2007; Car-

andini et al., 2007; Keat et al., 2001; Pillow et al., 2005), and burst

generation (Lesica and Stanley, 2004; Sherman, 2001).

Most of these models, however, apply only to a restricted set of

simple stimuli and do not generalize to more complex stimuli.

Most of the difficulties are encountered with models of fast adap-

tation mechanisms. Unlike mechanisms of spike generation and

burst generation, these mechanisms need to operate on se-

quencesof images and must therefore bespecified in thedomains

of both space and time. Models of light adaptation are generally

limited to spatially uniform stimuli (e.g., van Hateren et al., 2002

and references therein) or full field gratings (Mante et al., 2005;

Purpura et al., 1990); those models that operate both in space

and in time do not account for contrast gain control (Dahari and

Spitzer, 1996; Gaudiano, 1994; van Hateren, 2007). Similarly,

models of contrast gain control operate in the domain either of
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space (Bonin et al., 2005) or of time (Mante et al., 2005; van Hat-

eren et al., 2002; Victor, 1987), but not in both domains. As a result,

it is difficult to quantitatively relate studies employing complex,

natural stimuli (Butts et al., 2007; Danet al., 1996; Denning and Re-

inagel, 2005; Lesica et al., 2007; Lesica and Stanley, 2004; Stanley

et al., 1999) to much of the literature on fast adaptation.

We therefore sought a model of LGN responses that extends

previous, partial models of LGN responses by integrating the basic

mechanisms of RF and firing rate generation together with the fast

adaptation mechanisms of light adaptation and contrast gain con-

trol. We validated and constrained the model with simple artificial

stimuli and then applied it to complex stimuli, both artificial and

natural. By looking at the successes of the model, we show how

the mechanisms of fast adaptation are central in shaping LGN re-

sponses to complex, natural stimuli. By investigating the model’s

shortcomings, we thenassess the importanceof the key additional

mechanisms that may play a role in determining these responses.

RESULTS

We recorded from LGN neurons in anesthetized cats, subjecting

each neuron to a battery of initial basic measurements that char-

Figure 1. The Effects of Fast Adaptation on the Receptive Field

(A) The receptive field (RF) consists of a center filter (thin line) and an antago-

nistic, delayed surround (thick). Both center and surround have a Gaussian

spatial profile (left) and a biphasic temporal weighting function (bottom). Fast

adaptation operates by adjusting the temporal weighting function to the lumi-

nance and contrast of the stimulus. Firing rates (R) are obtained by convolving

the RF with the stimulus, adding Gaussian noise, and rectifying the resulting

membrane potential (Vm).

(B) The weighting function of the example neuron estimated at various combi-

nations of luminance and contrast. Stimuli in the empty corner of the matrix are

not physically realizable.

(C) The fraction of stimulus-driven variance in the responses explained by the

full matrix (B) of weighting functions (horizontal axis) compared to fraction ex-

plained by a fixed weighting function estimated at intermediate luminance and

contrast (vertical axis). The example neuron is in black. Filled lines and arrow

indicate the medians of the distributions.
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acterized its linear RF (Figure 1A). We recorded responses to

drifting gratings varying in location, spatial frequency, and tem-

poral frequency (Figure S1 available online). As expected from

previous studies (Cai et al., 1997; Dawis et al., 1984; Saul and

Humphrey, 1990; So and Shapley, 1981), the responses to these

stimuli were well described by a center-surround linear spatio-

temporal RF followed by a nonlinearity that produces firing rates,

and allowed us to estimate the parameters of these mechanisms

(Figure 1A).

The RF, however, is not a fixed attribute; its gain and temporal

profile depend on mechanisms of light adaptation and contrast

gain control (Figure 1B). Increases in luminance or contrast

diminish both the amplitude of the RF, the neuron’s gain, and

the duration of its temporal profile, the neuron’s integration

time (Bonin et al., 2005; Demb, 2002; Kaplan and Benardete,

2001; Lesica et al., 2007; Mante et al., 2005; Meister and Berry,

1999; Shapley and Enroth-Cugell, 1984). We characterized these

mechanisms by recording responses to drifting gratings with

several combinations of luminance and contrast (Figure S2),

each varying over the range found in typical natural scenes

(Mante et al., 2005). We used these responses to obtain a tempo-

ral weighting function for each combination of luminance and

contrast (Figure 1B). The size and shape of these weighting func-

tions reflect the corresponding gain and temporal profile of the

RF.

The effects of fast adaptation on the gain and integration time

of the RF were pronounced for all neurons in our sample

(Figure 1C). As a consequence, letting the RF vary as appropriate

from one stimulus condition to another substantially improves

the model’s ability to predict the responses. For the example

cell (Figure 1B), the fraction of stimulus-driven variance in the

responses explained is 87% for a variable RF and 56% for a fixed

RF. Similar results are seen across the population (Figure 1C),

where a variable RF explains 84% of the stimulus-driven vari-

ance (median, n = 45) compared to only 24% for a fixed RF.

A Model of Fast Adaptation
To obtain a succinct model of fast adaptation, we took advan-

tage of the fact that the effects of light adaptation and contrast

gain control are functionally separable (Mante et al., 2005). We

therefore considered a succession of three independent stages:

a fixed linear filter (an immutable property of the LGN neuron) and

two adaptive mechanisms that modify its output.

We modeled the adaptive mechanisms as resistor-capacitor

(RC) circuits whose conductances are allowed to vary with the

input (Figure 2A). RC circuits or similar components have long

been used to model adaptive mechanisms in retina and cortex

(Baylor et al., 1974; Benardete and Kaplan, 1999; Brodie et al.,

1978; Carandini et al., 1997; Fuortes and Hodgkin, 1964; Purpura

et al., 1990; Shapley and Enroth-Cugell, 1984; Shapley and

Victor, 1981; Victor, 1987). Here, a first batch of RC circuits

implements light adaptation, while a second batch of RC circuits

implements contrast gain control. For simplicity, in text and illus-

trations we refer to each batch of RC circuits as to a single RC

stage; a full explanation is in the Experimental Procedures.

Only two model parameters were allowed to vary across stim-

ulus conditions. The conductance of the first RC stage (the one

devoted to light adaptation) was allowed to vary with luminance
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Figure 2. A Model of Fast Adaptation

(A) In the model, the effects of fast adaptation on the temporal weighting function are captured by two resistor-capacitor (RC) stages that shape the output of

a fixed linear filter. The first RC stage implements light adaptation, and its conductance depends on stimulus luminance. The second RC stage implements con-

trast gain control, and its conductance depends on stimulus contrast. All other model parameters are fixed for a given neuron.

(B) Temporal weighting functions, measured (black, same as Figure 1B) and fitted by the model (red).

(C) The fraction of stimulus-driven variance in the response histograms explained by the fitted (horizontal axis) and measured (vertical axis) temporal weighting

functions. Filled lines and arrow are medians of the distributions. The example neuron is drawn red.

(D) Dependence of first conductance on luminance, for example neuron.

(E) Same, for population (red line is linear regression over all neurons).

(F and G) Dependence of second conductance on contrast.
(Figures 2D and 2E), and that of the second RC stage (the one

devoted to contrast gain control) was allowed to vary with con-

trast (Figures 2F and 2G). For fixed values of luminance and con-

trast (i.e., with fixed conductances), these stages act as linear

filters, and thus the model reduces to a single RF. The temporal

weighting function of this RF is the convolution of the weighting

functions of the fixed linear filter and of the two RC stages (Mante

et al., 2005).

This RC model captures the responses for the full range of

luminance and contrast levels tested. It provides excellent fits

to the estimated temporal weighting functions (Figure 2B, com-

pare black and red). The model explains 85% of the stimulus-

driven variance in the responses of the example cell and 78%

(median, n = 45) over the entire population (Figure 2C, horizontal

axis). Thus, with a dramatically reduced number of parameters,

this model of fast adaptation fits the data practically as well as

the full set (Figure 1B) of individually estimated RFs (Figure 2C,

vertical axis).

The fits reveal a pleasingly simple relationship between model

conductances and stimulus attributes, which can be used to

compare the two adaptive mechanisms. The functions relating

conductance to luminance (Figures 2D and 2E) and contrast (Fig-

ures 2F and 2G) are well approximated by power laws (straight

lines in the logarithmic plots of Figures 2D–2G). The exponent of

this power law is close to unity for light adaptation and markedly

lower for contrast gain control (0.95 ± 0.05 versus 0.68 ± 0.05,

95% confidence interval, n = 45, Figures 2E and 2G, red lines).
To interpret these results, consider that for stimuli of low tem-

poral frequency the conductances of the RC stages are inversely

proportional to the gain of responses (see Experimental Proce-

dures). At low frequencies, therefore, light adaptation over this

range of luminance levels is nearly perfect: it obeys Weber’s

law, i.e., a fractional increase in luminance results in the same

fractional reduction in gain (Shapley and Enroth-Cugell, 1984).

Contrast gain control, on the other hand, is weaker, as changes

in contrast are not fully compensated by changes in gain.

The Spatial Footprint of Fast Adaptation
Before the model can be applied to arbitrary scenes, we must

specify the spatial footprint of the light adaptation and contrast

gain control stages, i.e., how the signals driving these mecha-

nisms are integrated over visual space.

The footprint of light adaptation has been extensively studied

in the retina. Light adaptation is thought to be driven by the aver-

age light intensity falling over a region not larger, and possibly

smaller, than the RF surround (Cleland and Enroth-Cugell,

1968; Cleland and Freeman, 1988; Cohen et al., 1981; Enroth-

Cugell et al., 1975; Enroth-Cugell and Shapley, 1973b; Lankheet

et al., 1993b). For simplicity, we set the conductance of the light

adaptation stage to the mean luminance falling on the RF sur-

round. This choice guarantees that light adaptation operates lo-

cally and yet does not significantly deform the sinusoidal re-

sponse to drifting gratings of optimal spatial and temporal

frequency.
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Figure 3. The Spatial Footprint of Fast Adaptation

(A) Local luminance is the average luminance falling over the RF in

a recent period of time. Local contrast is computed by the

suppressive field, by taking the square root of the squared and

integrated responses of a pool of subunits.

(B) The temporal weighting function measured with gratings of

various contrast and diameter (black). Fits of the model (red)

were obtained by estimating one conductance value for the sec-

ond RC stage for each combination of contrast and diameter.

(C) The estimated conductance increases with both contrast

(abscissa) and diameter (white to black).

(D) The four sets of conductance values can be aligned by shifting

them along the horizontal axis. The resulting curve describes

how conductance depends on local contrast. Red line is linear

regression.

(E) The volume under the portion of the suppressive field covered

by the stimuli of different diameter. The data points are obtained

from the magnitude of the shifts needed to align the curves in

(C). The curve is the fit of a descriptive function (Experimental Pro-

cedures). For this neuron, the size of the center of the RF is 1.0�.

(F) Average over all neurons. Stimulus diameter is normalized by

the size of the center of the RF. Error bars indicate two SE.
Similarly, contrast gain control depends on the root-mean-

square contrast falling over a region centered over the RF

(Shapley and Victor, 1979, 1981), which we term suppressive

field (Bonin et al., 2005, 2006). We posit that this measure of local

contrast sets the conductance of the contrast gain control RC

stage (Figure 3A).

The validity of this choice can be tested on the basis of a simple

prediction: increasing the size of a grating should affect the gain

and the integration time of the RF exactly in the same way as

a matched increase in contrast (Shapley and Victor, 1979,

1981). Indeed, in the model both manipulations result in stronger

effects of contrast gain control. We confirmed this prediction by

measuring temporal weighting functions from responses to drift-

ing gratings varying in contrast and diameter. Indeed, increasing

diameter reduced both the gain and the integration time, the

same effects seen when increasing contrast (Figure 3B, black).

To model these effects, we allowed the conductance of the

contrast gain control stage (Figure 3A) to vary with stimulus

diameter as well as contrast (Figure 3C). The resulting temporal

weighting functions closely resemble the ones estimated individ-

ually (Figure 3B, compare black and red) and predict the re-

sponses to gratings of various contrast and diameter almost as

well (72% versus 75% stimulus-driven variance explained for

the example cell; 77% versus 82% over the population, n = 34,

median). The curves relating grating contrast to conductance,

which depend on grating diameter (Figure 3C), could be made

to lie on a single line by appropriate horizontal shifts (Figure 3D)

indicating that the effects of increasing diameter could be

exactly matched by an appropriate increase in contrast. The

horizontal shifts determine the weight contributed by each stim-

ulus diameter (Figures 3E and 3F), and therefore allow us to

estimate the size of the suppressive field. Defining size as the

diameter corresponding to half of the total volume, we find that
628 Neuron 58, 625–638, May 22, 2008 ª2008 Elsevier Inc.
on average the suppressive field is 2.0 ± 0.2 (s.e., bootstrap es-

timate, n = 34) times larger than the center of the RF (Figure 3F).

These estimates are consistent with earlier measures based only

on response gain (Bonin et al., 2005).

As in previous work, we postulate that local contrast is com-

puted from the output of the light adaptation stage and is com-

bined across a number of neurons (subunits) having spatially dis-

placed RFs (Bonin et al., 2005; Shapley and Victor, 1979). The

outputs of the subunits are squared and combined in a weighted

sum, and the result is square rooted (Bonin et al., 2006). The

weights are given by the profile of the suppressive field

(Figure 3A). Because the responses of the subunits are shaped

by light adaptation, which has a divisive effect on the responses,

at steady state this computation of local contrast reduces to the

common definition of root-mean-square contrast (Shapley and

Enroth-Cugell, 1984), the ratio between the standard deviation

and the mean of the local luminance distribution (Experimental

Procedures).

Temporal Dynamics of Fast Adaptation
Finally, to apply the model to arbitrary scenes, we must specify

how the signals driving the adaptation mechanisms are integrated

over time. This matter has been extensively studied, and based on

the literature we made two assumptions. First, we assumed that

the measure of local luminance extends over �100 ms in the

recent past (Enroth-Cugell and Shapley, 1973a; Lankheet et al.,

1993a; Lee et al., 2003; Saito and Fukada, 1986; Yeh et al.,

1996). Second, we assumed that the measure of local contrast

is determined entirely by the responses of the subunits, with no

further temporal integration. Thus, the measure of local contrast

is estimated over a brief interval (Alitto and Usrey, 2008; Baccus

and Meister, 2002; Victor, 1987), whose duration is shorter when

local luminance is high, and longer when local luminance is low.
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The model is now complete (Figure 3A) and is general

enough to be applied on arbitrary sequences of images. To

gain an intuition for its operation, consider its responses to

an increase in luminance (Figure S3). If mean luminance is sud-

denly increased while contrast is maintained constant, LGN

neurons barely change their firing (Mante et al., 2005). Much

of this invariance in the responses is due to light adaptation: af-

ter luminance is increased, a corresponding conductance in-

crease in the light adaptation RC stage reduces the gain of

the neuron. Light adaptation, however, is not instantaneous

and cannot entirely suppress the stimulus-evoked transient.

This transient is suppressed by the contrast gain control stage:

the transient response of the subunits computing local contrast

briefly increases the conductance of this RC stage. Surpris-

ingly, therefore, the contrast gain control stage helps achieve

seamless light adaptation. Thus, while increases in luminance

and contrast have independent effects on the responses to

steady-state stimuli (Mante et al., 2005), the underlying fast ad-

aptation mechanisms show a marked interdependence in the

response to transient stimuli.

Fitting the Responses to Simple Stimuli
To validate the model quantitatively and to estimate its parame-

ters, we applied it to responses to simple grating stimuli varying

in luminance and contrast (Figure S4). We have seen that these

data can be explained by two RC stages in which the conduc-

tances are fixed for each stimulus condition based on prior

knowledge of the stimulus (Figure 2). Here we ask if they can

be fit by the complete model in which conductances are calcu-

lated dynamically from the time-varying images (Figure 3A). Suc-

cess is not guaranteed because the conductances vary over

time, and because the signals that set the conductance of the

contrast gain control stage depend on the conductance of the

light adaptation stage (Figure 3A).

The model provided excellent fits, accounting for 79% of the

stimulus-driven variance (median, n = 30). This performance is

indistinguishable from that of the earlier model in which the con-

ductances were fixed to constant values on the basis of external

knowledge (80% of the variance, Figure S4).

Predicting the Responses to Complex Stimuli
We then asked how the model performs when confronted with

much more complex, naturalistic stimuli (Figures 4A–4D). We

presented four sets of naturalistic sequences. The first was

recorded by a camera mounted on the head of a cat roam-

ing through a forest (methods described in Kayser et al.

[2003]; http://www.cogsci.uni-osnabrueck.de/�NBP/) (‘‘Cat-

Cam,’’ Movie S1). The second consisted of short sequences

from a cartoon (Disney’s Tarzan). The third and fourth are mod-

ified versions of the first set, scaled to have lower contrast or

higher contrast than the original (at constant mean luminance).

Examples of movies and LGN responses can be seen at http://

www.carandinilab.net/LGN. Taken together, these sequences

span a substantial range of contrast and luminance levels (Fig-

ures 4E–4H).

When we applied the model to these complex sequences, we

found that its predictions closely resemble the measured re-

sponses (Figures 4A–4D). The model explains 65% of the stimu-
lus-driven variance in the measured responses for the example

cell, and 59% (median) over the entire population (Figure 4M,

horizontal axis). This performance is remarkable, considering

that these are predictions, not fits; most of the model parameters

are frozen, they are the same that we had obtained from the re-

sponses to drifting gratings. Thus, the mechanisms determining

LGN responses operate similarly under both artificial and natural

stimulation conditions.

The model predictions are, however, less accurate for natural-

istic sequences than for the drifting gratings (59% versus 80%

explained stimulus-driven variance, Figure 4M). A drop in fit qual-

ity is to be expected given that model parameters were opti-

mized for the responses to drifting gratings and not for the natu-

ralistic sequences. However, an additional factor might be at

play: the natural images are more complex in the spatial and

temporal domain than the drifting gratings, and the model might

be an incomplete description of the responses under these

conditions.

To gauge the importance of this factor, we compared model

performance on the naturalistic sequences to the performance

on a third set of stimuli, which is intermediate between drifting

gratings and naturalistic sequences (Figure 5). These stimuli

are rapid sequences of flashed gratings of random spatial phase,

spatial frequency, and orientation (Ringach et al., 1997).

Spatially, these stimuli are identical to the drifting gratings, but

temporally they contain a wider range of frequencies. The model

performed equally well for the grating sequences as for the nat-

uralistic sequences. The model explained 61% of the stimulus-

related variance in the responses to the grating sequences

(median, n = 30), lower than the 80% seen with drifting gratings

(Figure 5B), but similar to the 59% seen with naturalistic

sequences (Figure 5C).

The similar quality of model performance observed with

flashed gratings and natural stimuli suggests that model short-

comings observed with these two types of stimuli might share

a common origin. In particular, we investigated two possibilities.

First, the shortcomings might reflect inadequacies in the model’s

accounting for the effects of fast adaptation in complex images.

Second, the shortcomings might reflect additional nonlinear

mechanisms that we have not included in the model.

Fast Adaptation in Responses to Complex Stimuli
We first asked whether the model captures the effects of fast ad-

aptation in the responses to our naturalistic sequences. In these

stimuli, the largest changes in luminance and contrast are seen

across sequences rather than within sequences (Figures 4E–4H).

Accordingly, the model’s estimates of local luminance and

local contrast vary considerably across sequences, and only

moderately (though significantly) within sequences (Figures

4A–4D, bottom). It is therefore meaningful to ask whether for

each sequence the model was able to identify the average

weighting function that would optimally describe the responses.

To find the optimal weighting function, we predicted the re-

sponses to each sequence with every temporal weighting func-

tion that can be generated by the model for a given neuron. We

parameterized this space of weighting functions by the corre-

sponding combinations of luminance and contrast (as in

Figure 1B). We assessed their optimality by comparing how
Neuron 58, 625–638, May 22, 2008 ª2008 Elsevier Inc. 629
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well the corresponding predictions explain the responses

(Figures 4I–4L).

The model typically succeeded in delivering the best temporal

weighting functions among the ones it can produce. Only a sub-

set of these weighting functions result in good predictions; this

subset often corresponds to a contour with negative slope, be-

cause the effects of increasing luminance can be approximately

compensated by decreasing contrast (Figures 4I–4L). The

weighting functions generated by the model (Figures 4E–4L,

red dots) invariably fell near this optimal subset. For the example

cell (Figures 4I–4L, red), the optimal weighting functions explain

67% of the variance over all sequences (57% over the popula-

tion, median), which is comparable to the fraction explained by

the model itself (65% and 59%).

Figure 4. Responses to Natural Stimuli

(A–D) Responses of an LGN neuron (gray) to four

naturalistic movies and predictions (black) of the

model (Figure 3A). Local luminance and local con-

trast and the associated conductances (blue and

green) vary both within and across the movies.

Scale bars, 500 ms and 100 spikes/s.

(E–H) The joint distributions of local luminance and

local contrast for each of the four movies, and the

corresponding averages (red crosses).

(I–L) Quality of predictions for different choices of

a fixed RF (i.e., without fast adaptation), computed

for each of the four movies. Each point corre-

sponds to the prediction based on the RF esti-

mated at a given luminance and contrast (same

ranges as in Figure 1B). The subset of the RFs

resulting in good predictions (brightest contour)

differs across movies, reflecting their different

average local luminance and local contrast (red

crosses, redrawn from [E]–[H]).

(M) Quality of predictions of the model for re-

sponses to naturalistic sequences (horizontal

axis) and drifting gratings (vertical). Filled lines

and arrow are medians of distributions. The exam-

ple neuron is drawn in red.

This ability of the model to select the

appropriate RF for each sequence is

critical, because no single, fixed RF is

appropriate for all sequences. For the

example neuron, any fixed RF could ac-

count for 0%–54% of the overall sti-

mulus-driven variance in the responses.

The upper bound will be reached

with the fixed RF whose weighting func-

tion corresponds to the mean average

luminance and contrast of all the natural-

istic sequences. Thus, the model does

better than any fixed RF could do and

does so without any a priori knowledge

of the luminance and contrast of the

stimulus.

Indeed, a more detailed comparison

between the model predictions and the

predictions of the optimal, fixed RF

shows that the model corrects some of the shortcomings of

the fixed RF (Figure 6). When the fixed RF underestimates the

measured responses (Figure 6A, right half) the model appro-

priately predicts stronger responses, and when the fixed RF

overestimates the responses (left half) the model appropriately

predicts weaker responses. However, if the model perfectly

corrected the errors of the fixed RF, then the data points would

lie on the unity line. The points tend to fall between the unity

line and the horizontal axis, which means that the model

undercompensates for these errors. This effect is seen mostly

in the responses to natural images: the same analysis on the

response to drifting gratings of various mean luminances and

contrasts yields points lying much closer to the unity line (Figures

6C and 6D).
630 Neuron 58, 625–638, May 22, 2008 ª2008 Elsevier Inc.
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Additional Nonlinear Mechanisms
The inadequacies of the model are most pronounced at short

time scales, i.e., at high temporal frequencies (Figure 7). Specif-

ically, the predicted responses contain less power at high fre-

quencies than the measured responses (Figure 7A,C, compare

black and blue). Indeed, the predicted time courses are less tran-

sient than the measured ones (Figures 4A–4D). The model cor-

rectly predicts the phase in the measured responses up to about

25 Hz (Figures 7B and 7D), which is the frame rate at which we

presented the naturalistic sequences; above this frequency the

predictions tend to lead the measured responses. This phase

difference, however, has little effect on the quality of predictions,

as these contain only little power at these frequencies (Figures 7A

and 7C). Removing these frequencies from the time courses

has little effect on the average responses (Figures 7E–7G).

Similar observations can be made on the actual and predicted

responses to artificial stimuli (Figure S5).

Several of the mechanisms that we have not incorporated into

the model could contribute to these shortcomings. In particular,

we tested the possible impact of two such mechanisms: a mech-

anism of burst generation (Lesica and Stanley, 2004; Mukherjee

and Kaplan, 1995; Sherman, 2001; Smith et al., 2000) and

a mechanism of slow adaptation (Baccus and Meister, 2002;

Demb, 2002; Solomon et al., 2004).

Adding to the model a bursting mechanism would likely

improve the model performance, at least for some neurons

(Figure 8). On average over the population, 12% (median) of all

spikes generated during the responses to naturalistic sequences

occur as part of a burst, though the degree of burstiness varies

substantially across neurons (Figure 8A). We found no clear cor-

relation between the burstiness of a neuron and the quality of the

corresponding model predictions (Figure 8A), but we did obtain

the best predictions (percentage of stimulus-driven variance >

60%) for neurons with the least bursts (spikes in bursts < 21%

of the total spikes). Moreover, the impact of burstiness on model

performance can be shown clearly on a cell-by-cell basis by

taking advantage of the variability of burstiness across trials

(Figure 8B). The measured responses are better predicted

by the model on trials with few bursts (60% stimulus-driven

Figure 5. Responses to Grating Sequences

Stimuli are sequences of flashing gratings of random spatial frequency, spatial

phase, and orientation.

(A) Responses of an LGN neuron (gray, same neuron as in Figure 4), predictions of

the model (black, Figure 3A), and the corresponding conductance of light adapta-

tion (blue) and contrast gain control (green). Scale bars, 500 ms and 100 spikes/s.

(B) Quality of predictions of the model for responses to grating sequences

(horizontal axis) and drifting gratings (vertical). The filled lines and arrow are

medians of distributions. The example neuron is drawn in red.

(C) Quality of predictions of the model for responses to naturalistic sequences

(horizontal axis) and grating sequences (vertical). Same format as in (B).

Figure 6. Model Validation

The model of fast adaptation (Figure 3A) partially

corrects the shortcomings of a fixed linear RF.

(A and B) Model validation on the responses to natural

sequences.

(A) Joint histogram of deviations between the mea-

sured responses and the responses predicted by the

fixed RF (horizontal axis) and between the responses

predicted by the model and those predicted by the

fixed RF (vertical axis). The fixed linear RF was opti-

mized from the pooled responses to all naturalistic se-

quences. The average deviations between the model

and the fixed RF are drawn in white and were com-

puted over all bins sharing the same location along

the horizontal axis. Same neuron as in Figure 4.

(B) Average histogram over the entire population of

neurons.

(C and D) Model validation on responses to drifting

gratings. Same format as in (A) and (B). The drifting

gratings varied in luminance and contrasts (as in

Figure 1B). The fixed RF was estimated with gratings

of intermediate luminance and contrast.
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variance explained and 6% of spikes occurring in bursts, median

values) than on trials with many bursts (54% variance explained,

14% spikes in bursts).

Conversely, adding to the model a mechanism of slow adap-

tation would be unlikely to improve the predictions (Figure 9).

We estimated the impact of slow adaptation by measuring

Figure 7. Frequency Analysis of Model Performance on Natural
Sequences

(A) Power in the responses of an LGN neuron to natural sequences (blue) and in

the corresponding predictions of the model (black, Figure 3A).

(B) Phase difference between the measured and predicted responses. (A and

B) Averages over all movie sequences (line) ± 1 SD (shading), same neuron as

in Figure 4.

(C and D) Averages over the population (lines) ± 1 SD (shading).

(E) Response of the example neuron (black) and predictions of the model (red)

for a representative segment of a natural sequence.

(F) Low-frequency components in the measured (black) and predicted (red) re-

sponses for the same segment as in (E). Responses in (F) were filtered between

0 and 25 Hz, corresponding to frequencies below the frame rate of the natural

movies.

(G) High-frequency components in the measured (black) and predicted (red)

responses for the same segment as in (E). Responses in (G) were filtered be-

tween 25 and 50 Hz, corresponding to frequencies above the frame rate of

the natural movies. Scale bars, 250 ms (horizontal) and 100 spikes/s (vertical).
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responses not only to the original natural sequences (Figure 9A,

black) but also to modified movies (red), in which the first 6 s

have been replaced by a blank screen. We compared the

responses to the original and modified movies during a 2 s test

period following the 6 s adaptation period. Responses in the

two conditions are indistinguishable both for the example cell

(Figure 9B) and over the entire population of neurons (Figure 9C).

Total linear regression yields slopes of 1.01 ± 0.04 (95% confi-

dence interval, bootstrap estimate) for the example cell and

0.99 ± 0.01 for the population, and intercepts of �0.01 ± 0.07

and 0.02 ± 0.01. In another test of the similarity of the responses,

we used the average responses to half of the trials of the original

movies to predict the responses during the other half of the trials

of the same movies (Figure 9D, horizontal axis) or of the corre-

sponding modified movies (vertical axis). On average over all

neurons, these two predictions explained the same fraction of

stimulus-driven variance in the responses (the average difference

between the corresponding fractions is 0.01% ± 0.01%, SE).

Thus, slow adaptation is unlikely to be shaping the responses

to the naturalistic sequences.

DISCUSSION

We have presented a general model of how LGN neurons

respond to visual stimulation. The model operates on arbitrary

image sequences and bridges an important gap by relating

past studies that employed laboratory stimuli to more recent

work that employed natural stimuli. Despite the growing litera-

ture on responses to natural stimuli, few studies could quantita-

tively relate their findings to the vast amount of data obtained us-

ing laboratory stimuli (Felsen and Dan, 2005; Rust and Movshon,

2005). A crucial achievement of the model is that it correctly cap-

tures how the RF is shaped by light adaptation and contrast gain

control in response to natural stimuli. This represents a key step

toward a complete model of LGN responses.

Our approach was to use simple stimuli to constrain most of

the model’s parameters, and to then keep these parameters

fixed when predicting responses to more complex stimuli such

as natural movies. A similar approach was taken in a seminal

study by Dan et al. (1996). These authors defined a model that

works on arbitrary image sequences (a spatiotemporal linear

RF), found the parameters of that model with simple laboratory

stimuli (white noise), and applied the model to naturalistic stimuli
Figure 8. Impact of Bursting on Model Predictions

(A) Relation between the average burstiness of LGN neurons in the

responses to natural sequences (horizontal axis) and the quality of

the corresponding model predictions (as in Figures 4A–4D, black)

(vertical axis). For each neuron, burstiness is the ratio of the num-

ber of spikes occurring in bursts over the total number of spikes.

The example neuron of Figure 4 is drawn in black.

(B) Quality of model predictions on trials with few bursts (light gray)

and many bursts (dark gray). Relative burstiness (horizontal axis)

and relative quality of predictions (vertical axis) are computed by

subtracting the burstiness and quality of predictions computed

over all trials from the values computed across the two subsets of

trials. Each neuron corresponds to two points (i.e., high and low

burstiness) in symmetric positions with respect to the origin. Histo-

grams (top and right) are marginal distributions computed sepa-

rately for trials with many (dark gray) and few (light gray) bursts.
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Figure 9. Lack of Slow Adaptation in the Res-

ponses to Naturalistic Sequences

(A) Measured responses to a segment of a naturalistic

sequence. Responses to the original movie (black) are

compared to responses to modified movie (red), in which

the first 6 s (adapt) have been replaced by a blank screen.

Same neuron shown in Figure 4. Scale bar, 100 spikes/s.

(B) Joint histogram of responses to the original and mod-

ified movies during the test period, starting 250 ms after

the end of the adaptation period (adapt) and lasting 2 s.

Red line is the unity line. Same neuron as in (A).

(C) Average over the entire population of neurons (n = 31).

(D) Similarity of responses to the original and modified

movies during the test period, assessed by trying to pre-

dict one based on the other. We used the average re-

sponses to half (typically five) of the trials of the original

movies to predict the responses during the other half of

the trials of the same movies (horizontal axis) or of the

corresponding modified movies (vertical axis). Circles

and error bars are medians and SD of the stimulus-driven

variance explained by the predictions, computed over all

possible ways to subdivide all trials into two groups. The

example cell (A and B) is drawn in red.
(the film Casablanca). This work was the very first step in the

direction that we advocate. We have provided a second step

by testing a model that greatly extends a simple linear RF, which

we endowed with fast adaptation mechanisms.

With few parameters, the model captures the amplitude and

the time course of the responses to gratings of different mean

light levels, contrasts, sizes, temporal frequencies, and spatial

frequencies. Moreover, the model predicts much of the re-

sponses to complex, rapidly changing stimuli, down to a time

scale of about 20 ms (the sampling interval required to measure

responses to 25 Hz). Specifically, the model captures how these

responses are affected by changes in luminance and contrast

level, overcoming many of the shortcomings of simpler models.

Our results indicate that the main effects of light adaptation

and contrast gain control are similar under laboratory and natural

stimulation conditions. Nonlinear mechanisms may operate dif-

ferently for different classes of stimuli (Olshausen and Field,

2005), and it is reassuring to find that this is not the case for

two such important mechanisms. Indeed, the model performed

as well on complex naturalistic images as it did on sequences

of gratings and was consistently able to yield a close-to-optimal

RF in the face of sequences with substantial variations in lumi-

nance and contrast, without the need for introducing prior knowl-

edge about the statistics of the stimulus.

However, we may also have found some evidence for differ-

ences in the operation of fast adaptation with artificial and natu-

ral stimuli: for natural stimuli but not for gratings, the model

undercompensates the errors of a fixed linear RF (Figure 6).

These differences might reflect changes in the spatial profile of

the RF with stimulus type. The spatial profile of the RF in our

model is fixed; the responses of the RF center and surround

are equally affected by the adaptation mechanisms. This as-

sumption is consistent with the finding that the tuning of gan-

glion cell responses for spatial frequencies is independent of

the mean luminance (Troy et al., 1999). It is also consistent

with the finding that the tuning of LGN responses for spatial
frequencies is independent of stimulus contrast (Bonin et al.,

2005) and is supported by the very success of the model at pre-

dicting the responses to gratings of various contrasts and sizes

(Figure 3). Nonetheless, recent evidence suggests that the ef-

fects of contrast gain control on RF center and surround are me-

diated by different mechanisms (Beaudoin et al., 2007); it is

therefore possible that contrast gain control affects the RF cen-

ter and surround differently.

These differences seen in LGN with artificial and natural stimuli

may contribute to related effects observed in the next stage of

visual processing, the primary visual cortex (V1). The RF of V1

neurons was found to vary with the type of stimulus used (David

et al., 2004; Sharpee et al., 2006), and similar results were seen in

the neurons’ responsiveness (Felsen et al., 2005; Smyth et al.,

2003). As a result, models of V1 responses constrained with ar-

tificial stimuli may not perform well when tested on natural stimuli

(David et al., 2004; Olshausen and Field, 2005; Weliky et al.,

2003).

To define the model of contrast gain control, we drew on pre-

vious work that defined and quantified a divisive ‘‘suppressive

field,’’ a mechanism that computes a local measure of contrast

and operates divisively on the output of the RF (Bonin et al.,

2005, 2006). Here we posited that this division is obtained by in-

creasing the conductance of the contrast gain control RC stage.

We confirmed the validity of this choice by showing how increas-

ing the size of a grating decreases not only the RF’s gain but also

the RF’s integration time, exactly in the same way as a matched

increase in contrast (Figure 3). To restate this result in terms of

much of the existing literature, our model correctly predicted

that ‘‘size tuning’’ (or ‘‘surround suppression’’) should operate

by the same mechanism as ‘‘contrast saturation’’: both in terms

of gain and of integration time, an increase in contrast was indis-

tinguishable from an increase in size. Because at steady state it

reduces to the earlier divisive model, the present model also pre-

dicts well-known nonlinear properties of LGN responses: not

only ‘‘contrast saturation’’ and ‘‘size tuning’’ as shown here,
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but also ‘‘masking’’ and ‘‘surround suppression’’ (Bonin et al.,

2005).

The goal of our model is to provide a functional account of LGN

responses, not a biophysical description. The model relies on RC

circuits because their effects are intuitive and they provide an ex-

cellent account for the data. However, its success should not be

taken as support for the obvious biophysical interpretation of

these RC circuits, which involves the membrane conductance

of LGN or retinal neurons. The effects of fast adaptation could

arise from many alternative biophysical mechanisms. For exam-

ple, our RC model is mathematically similar to an earlier account

of contrast gain control in the retina based on high-pass filters

(Shapley and Victor, 1981); this model in turn suggests a different

biophysical interpretation. Current research in retina is making

steady progress in identifying the biophysical mechanisms un-

derlying fast adaptation and is illuminating their variety (e.g.,

Beaudoin et al., 2007; Dunn et al., 2007).

To improve the model’s predictions, especially at fine time

scales, the most valuable addition would be a spiking mecha-

nism, possibly one capable of bursts. In our model, firing rates

are modeled as rectified membrane potentials, an approximation

which is accurate at time scales down to tens of milliseconds

(Carandini and Ferster, 2000). At shorter time scales, the re-

sponses are more affected by the spike generation mechanism.

In particular, we have shown that the presence of spike bursts

has a detrimental effect on model predictions (Figure 8). These

are thought to be more prominent in responses to natural stimuli

(Denning and Reinagel, 2005; Lesica and Stanley, 2004; Wang

et al., 2007), and therefore accounting for them should improve

model predictions. We have concentrated our efforts on the

fast adaptation mechanisms, whose effects on the responses

to naturalistic stimuli involve stages of image processing. Adding

an appropriate spike mechanism to the model, however, may not

be trivial. Models that successfully predict individual-spike

responses have thus far been limited to a simple linear front

end (Keat et al., 2001; Pillow et al., 2005). Constraining the

parameters of a spiking model with a nonlinear front end is a

major computational challenge.

The model might be further improved by testing a number of

novel predictions. For instance, the model predicts that at high

temporal frequencies local contrast increasingly reflects not

only the root-mean-square contrast of the stimulus, but also its

mean luminance (Figure S4). Similarly, steps in mean luminance

are predicted to engage contrast gain control in addition to light

adaptation, even when the spatial root-mean-contrast of a stim-

ulus remains constant (Figure S3). Disentangling these effects in

neurons will be challenging, and most likely will be possible only

with appropriately chosen artificial stimuli.

Similarly, much could be learned by testing the model on

a wider array of natural stimuli. Obviously, our naturalistic se-

quences represent only a small subset of possible natural stimuli.

The model may perform better or worse for different classes

of natural stimuli. In particular, the contributions of the various

nonlinear mechanisms discussed above (i.e., fast adaptation,

bursting, and slow adaptation) might vary considerably across

different natural stimuli.

Finally, the model should be extended to account for other cell

types. The model was designed to account for the responses of
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X cells, which correspond to 50% of retinal ganglion cells in the

cat (Masland, 2001; Rodieck et al., 1993; Wassle, 2004). The

model does not account for additional nonlinearities present in

the responses of Y cells. Since Y-type responses are thought

to be mediated by subunits similar to those computing local con-

trast (Enroth-Cugell and Freeman, 1987; Hochstein and Shapley,

1976a; Victor and Shapley, 1979), it might be straightforward to

extend the model to capture also those nonlinearities. This would

most likely result in better predictions for a minority of cells in our

sample.

Even though our model does not capture the operation of all

known nonlinear mechanisms, it promises to be a useful tool to

understand the computations performed by the early visual sys-

tem. Fast adaptation in the retina and LGN are likely to affect also

later stages of visual processing, and indeed similar putative

effects of fast adaptation have been found along the hierarchy

of visual areas (Carandini et al., 2005). By using the model as

a building block in cascaded models of the visual system (Rust

et al., 2006), it will be possible to disentangle computations per-

formed by the later stages from those already implemented in

the retina and LGN. Moreover, given that the model can be ap-

plied to arbitrary stimuli, it can serve as a ‘‘null hypothesis’’ that

might explain additional, possibly yet to be discovered, nonlinear

phenomena that are not obviously related to fast adaptation.

Finally, a general model of fast adaptation will be invaluable to

test specific hypotheses (Laughlin, 1981; Schwartz and Simon-

celli, 2001; Van Hateren, 1993) about the function of adaptation

in natural vision.

EXPERIMENTAL PROCEDURES

Here we describe the experimental procedures and the model that we applied

to the data. A more intuitive explanation of the model is given in the Results;

a careful explanation of parameter fitting is given in the Supplemental Experi-

mental Procedures.

Physiological Recordings

Adult cats were anesthetized with ketamine (20 mg/kg) mixed with aceproma-

zine (0.1 mg/kg) or xylazine (1 mg/kg). Anesthesia was maintained with a con-

tinuous intravenous infusion of penthotal (0.5–4 mg kg�1 h�1). Animals were

paralyzed with pancuronium bromide (0.15 mg kg�1 h�1) and artificially re-

spired with a mixture of O2 and N2O (typically 1:2). EEG, electrocardiogram,

and end-tidal CO2 were continuously monitored. The Animal Care and

Use Committee of the Smith-Kettlewell Eye Research Institute approved all

procedures.

A craniotomy was performed above the right LGN (Horsley-Clarke �A6L9).

The location of LGN was determined from the sequence of ocular dominance

changes during penetration. Extracellular signals were recorded with Quartz-

coated Platinum/Tungsten Microelectrodes (Thomas Recording, Giessen,

Germany). Firing rates were obtained by convolving spike trains with a Gaussian

window (SD 5 ms).

Visual stimuli were displayed using the Psychophysics Toolbox (Brainard,

1997; Pelli, 1997) and presented monocularly on a calibrated CRT screen

with mean luminance of 32 cd/m2 and refresh rate of 125 Hz, placed typically

at a distance of 57 cm. Stimuli lasted 0.5–17 s and were presented in blocks of

3 to 15 repeats. Stimuli within blocks were presented in randomized order.

Each block included one or more blank (gray) stimuli.

We used three kind of stimuli: drifting gratings, complex naturalistic stimuli

(‘‘CatCam’’ and Tarzan movies), and complex artificial stimuli. The CatCam

movies were collected as part of a project by Peter König’s laboratory

(http://www.cogsci.uni-osnabrueck.de/�NBP/). All movies were presented

through a circular window extending beyond the borders of the receptive field

http://www.cogsci.uni-osnabrueck.de/~NBP/
http://www.cogsci.uni-osnabrueck.de/~NBP/
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and had a refresh rate of 25 Hz. The movies differed in their mean luminance

and contrast. For instance, the four example movies discussed in the Results

have an average mean luminance of 40 (CatCam), 15 (Tarzan), and 32 cd/m2

(low and high contrast) and an average spatial root-mean-square-contrast of

26 (CatCam), 51 (Tarzan), 10 (low contrast), and 48% (high contrast). The com-

plex artificial stimuli were sequences of flashed gratings with random spatial

frequency (six to eight values), spatial phase (four values), and orientation

(four to eight values) (Ringach et al., 1997).

We report on the responses of 49 neurons in the LGN of seven adult cats. Of

these neurons, 22 were located in the first contralateral layer (presumably lam-

ina A), 23 in the first ipsilateral layer (presumably lamina A1), two in subsequent

layers, and two were unclassified. We classified neurons into ON-center (30

cells) and OFF-center (19 cells) by mapping the RF with rapid sequences of

flashed gratings (Ringach et al., 1997). We classified neurons into X type (41

cells) and Y type (8 cells) based on standard criteria (Hochstein and Shapley,

1976b). The eccentricity of the RF ranged between 2.2� and 19.9� for 80% of

the cells, with a median of 10.3�.

Quality of Fits

Unless otherwise stated, fits minimize square error between measured re-

sponses and model predictions. Square error is given by
P

ijðmij � rjÞ2 where

mij denote the observed response to trial i of stimulus j, and ri represent the

response predicted by the model.

To quantify how well the model predictions rt capture the measured re-

sponses mt (both consisting of t = 1, ., M samples) we estimated the fraction

of stimulus-driven (accountable) variance in the responses accounted for by

the model (Machens et al., 2004; Sahani and Linden, 2003):

b =
s2

m � s2
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is an estimate of the variance in mt that is due to noise. Angular brackets indi-

cate the average over d presentations of the same stimulus. A perfect model is

one that yields b = 1, or 100%, while b = 0 indicates that a constant value would

have been better than the proposed model.

Model Definition

The input to the model (Figure 3A) is an arbitrary luminance distribution

s(x,y,t), and its output is the time-varying firing rate r(t). The model consists

of six consecutive stages: (1) a fixed linear filter, (2) light adaptation, (3)

subtractive adaptation, (4) contrast gain control, (5) a fixed temporal filter,

(6) rectification.

Linear Filtering

The first stage yields the convolution rlin(t) of the fixed linear filter hlin(x,y,t) and

the stimulus s(x,y,t):

rlinðtÞ= ½hlin � s�ðx0; y0; tÞ; (1)

where x0, y0 are coordinates of the filter center. The filter has a center-surround

organization:

hlinðx; y; tÞ= qcðx; yÞflinðtÞ � msqsðx; yÞflinðt � dÞ;

where qc and qs are Gaussians of widths hc and hs and unity volume, ms is the

surround strength, d is the delay between center and surround, and flin(t) is the
temporal weighting function, given by a difference of Gamma functions ui(t)

(Cai et al., 1997):

flinðtÞ= p,½u1ðtÞ � ku2ðtÞ�; kR0 (2)

where p sets the amplitude of the filter and

uiðtÞ= Pt � kR

m
exp

�
k� t

fi

�
(3)

with fi ; k>0; PR indicating rectification, and j = 1,2. We imposed f1> f2, to en-

sure a physiologically plausible shape of flin(t).

Light Adaptation

The second stage consists of a batch of nL RC circuits in series which capture

the effects of light adaptation. For nL = 1, response rlum is computed by solving:

d

dt
rlumðtÞ=

1

CL

ðrlinðtÞ � gLðtÞrlumðtÞÞ; (4)

where capacitance CL is fixed for a given neuron and conductance gL depends

on stimulus luminance. For the neurons in our sample, nL is typically > 1 and

rlum is obtained by solving Equation 4 nL times. In this case, only the conduc-

tance of the first RC circuit depends on luminance; for all other RC circuits we

set gL = 1. The capacitance of the nL RC circuits is chosen such that all have the

same time constant tL = CL/gL.

The conductance gL is proportional to a measure of local luminance LLocal:

gLðtÞ= aLLocalðtÞ (5)

Local luminance LLocal(t) is computed by integrating stimulus luminance over

a small region of space and a short interval of time:

LLocalðtÞ= ½hla � s�ðx0; y0; tÞ; (6)

with

hlaðx; y; tÞ= qsðx; yÞflaðtÞ;

that is we set the spatial profile of the light adaptation filter to be identical to the

surround of the fixed linear filter.

The temporal profile of the filter is a Gamma function:

flaðtÞ= PtRexp

�
� t

fla

�

with fla = 35 ms for all neurons.

Subtractive Adaptation

To simplify the operation of subsequent stages in the model, we redefine rlum

such that its steady-state value in response to a static, spatially uniform stim-

ulus of luminance L is zero:

r�lumðtÞhrlumðtÞ �
1

a

ð
hlinðx0; y0; tÞdxdydt:

To make sure that the same is true also for a static stimulus with an arbitrary

spatial luminance distribution, we define an additional, subtractive, adaptation

stage:

rsaðtÞ= r�lumðtÞ �
�
fsa � r�lum

�
ðtÞ;

where the responses after light adaptation are weighted by a Gamma function:

fsaðtÞ= PtRexp

�
� t

fsa

�

with fsa = 200ms for all neurons.

Contrast Gain Control

The effects of contrast gain control are also captured by a batch of nC RC cir-

cuits in series. For nC = 1, the RC circuit has fixed capacitance CC and a variable

conductance gC that depends on stimulus contrast, and is thus described by:

d

dt
rconðtÞ=

1

CC

ðrsaðtÞ � gCðtÞrconðtÞÞ (7)

For nC > 1, we obtain rcon by integrating Equation 7 nC times. As above, only

the conductance of the first RC circuit depends on contrast; for all other RC

circuits we set gC = 1. The capacitance of the nC RC circuits is chosen such

that all have the same time constant tC = CC/gC.
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The conductance gC depends on a measure of local contrast CLocal:

gCðtÞ= ½bCLocalðtÞ�g (8)

We compute local contrast from the responses of a large population of sub-

units covering the RF of the LGN neuron (Bonin et al., 2005; Shapley and Victor,

1979). The processing performed by the subunits is identical to that performed

by the LGN neuron except for a shift in RF position. The subunit centers are

chosen to uniformly cover the RF of the LGN neuron. The distance Dxsu

between neighboring subunits is:

Dxsu =
p,hc

2
;

where 2hc is the standard deviation of the RF center qc. For each LGN neuron,

we modeled the responses of 169 subunits, covering a 13 3 13 square grid.

Local contrast is then defined as:

ClocalðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i = 1:N

qsuðxi ; yiÞ
	

Pri
saðtÞR

2
+ P� ri

saðtÞR
2

s

(9)

Where the index i runs over all subunits, and the two terms in the summand

correspond to a population of ON-center cells and a population of OFF-center

cells. The subunits are weighted by a Gaussian qsu centered on the LGN RF.

The size hsu of qsu is twice the size hc of the RF center.

We conservatively imposed Clocal to have a lower bound:

ClocalðtÞ> = Cmin;

where for any given neuron Cmin is the smallest contrast at which we estimated

the temporal weighting function of the neuron.

Temporal Filtering

After contrast gain control, the responses are convolved with a second band-

pass filter:

rbpðtÞ= ½fbp � rcon�ðtÞ (10)

where fbp(t) is a difference of Gamma functions (Equation 2).

Because of this second band-pass filter, the selectivity for temporal fre-

quency of the LGN neuron differs from the selectivity of the subunits comput-

ing local contrast (Bonin et al., 2005).

Rectification

Finally, we obtain firing rates by rectifying the membrane potential:

rðtÞ= PrmaxrbpðtÞ+ r0R (11)

where rmax sets the overall gain of the neuron and r0 is the resting membrane

potential.

Parameter Estimation

We separately constrained the stages of the model in a series of steps. In each

step we fitted the model to responses to gratings whose attributes were tai-

lored to isolate only one (or few) stages. Moreover, we didn’t fit the full model

(Figure 3A) to all these sets of responses, but rather at each stage resorted to

the simplest implementation of the model that allowed us to explain the

responses at hand. Having estimated the parameters of the model from the

responses to gratings, we then use the model to predict the responses to

natural stimuli. These procedures are described in detail in the Supplemental

Experimental Procedures.

Model Validation

Predictions of the Fixed Linear RF

To compute the predictions of fixed linear RFs (Figures 4I–5L) we used the

same parameters used to predict responses to natural sequences (Figures

4A–4D), while imposing that local luminance and local contrast be constant

over time. The range of local luminance and local contrast applied matched

that used to characterize the neurons (Figure 1B). We then determined the

values of local luminance and local contrast yielding the best predictions.

We either optimized local luminance and local contrast for each sequence

separately or over all sequences at once. Each of the resulting pairs of local

luminance and local contrast values corresponds to a fixed linear RF, which

is optimal for a given sequence, or over all sequences at once.
636 Neuron 58, 625–638, May 22, 2008 ª2008 Elsevier Inc.
Analysis of Errors

To validate the model, we compared its predictions to those of the optimal RF

over all sequences (Figure 6). We computed the difference between the mea-

sured responses and the predictions of the optimal RF and compared the

result to the difference between model predictions (Figure 6) and those of

the optimal RF. We estimated the joint distribution of deviations by downsam-

pling responses to 100 Hz and binning the result with a 21 3 21 grid of linearly

spaced bins. To compute the distribution across neurons, we normalized the

responses of each neuron by the firing rate corresponding to the 95th percen-

tile of its firing rate distribution over the duration of the natural sequences.

Frequency Analysis of Model Performance

To evaluate model performance at different time scales, we calculated the

power spectrum SXðfÞ and the cross-spectrum SXY ðfÞ between measured

responses and model predictions (Bendat and Piersol, 2000):

SXðfÞ= jXðfÞj2

SXY ðfÞ= YðfÞX�ðfÞ

where XðfÞ and YðfÞ are the Fourier transforms of two continuous time series

x(t) and y(t). We obtained estimates of these quantities via multitaper analysis

(Mitra and Pesaran, 1999). We used 21 taper functions with time-bandwidth

product nw = 11 and applied them to the responses measured over the entire

length of a given stimulus.

To compute the power spectrum of the responses (Figures 7A and 7B), we

set x(t) = rj(t) and y(t) = mj(t), where rj(t) and mj(t) are the predicted and measured

responses for stimulus j:

mjðtÞ=
�
mijðtÞ

�
i

and mij(t) denote the observed response to trial i of stimulus j, and angular

brackets indicate the average over d presentations of the same stimulus.

To compute the relative phase between measured and predicted responses

we first obtained the phase of SXY for each trial i by setting x(t) = rj(t) and

y(t) = mij(t) and then computed the circular average over all trials.

Effect of Bursting

Following standard criteria, we defined bursts as sequences of spikes pre-

ceded by at least 100 ms of silence (i.e., no spikes) and containing spikes

separated by interspike intervals of 4 ms or less (Guido et al., 1992; Lu et al.,

1992). The burstiness of responses (Figure 8) can then be defined as the per-

centage of spikes that are contained in a burst (Lesica and Stanley, 2004).

Effect of Slow Adaptation

We tested for the effects of slow adaptation by measuring responses to mod-

ified natural sequences (CatCam and Tarzan) in which the first 6 s were re-

placed by a blank screen. We analyzed responses falling into a 2 s temporal

window starting 250 ms after the offset of the blank screen. The delay of

250 ms was used to avoid contamination of the responses by transients due

to the sudden stimulus onset. To reduce the correlations across subsequent

samples, for this analysis we downsampled the responses to 333 Hz. We then

computed total linear regression between the responses to the two movies by

finding the line with the smallest summed, squared, orthogonal distance to the

data points. We used bootstrapping (Efron and Tibshirani, 1993) to find

confidence intervals for the parameters of the best fitting line (1000 samples).

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/4/625/DC1/.
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