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Despite tremendous variation in the appearance of visual
objects, primates can recognize a multitude of objects,
each in a fraction of a second, with no apparent effort.
However, the brain mechanisms that enable this funda-
mental ability are not understood. Drawing on ideas from
neurophysiology and computation, we present a grap-
hical perspective on the key computational challenges of
object recognition, and argue that the format of neuronal
population representation and a property that we term
‘object tangling’ are central. We use this perspective to
show that the primate ventral visual processing stream
achieves a particularly effective solution in which single-
neuron invariance is not the goal. Finally, we speculate on
the key neuronal mechanisms that could enable this
solution, which, if understood, would have far-reaching
implications for cognitive neuroscience.

Introduction
Our daily activities rely heavily on the accurate and rapid
identification of objects in our visual environment. The
apparent ease of with which we recognize objects belies the
magnitude of this feat: we effortlessly recognize objects
from among tens of thousands of possibilities and we do so
within a fraction of a second, in spite of tremendous
variation in the appearance of each one. Understanding
the brain mechanisms that underlie this ability would be a
landmark achievement in neuroscience.

Object recognition is computationally difficult for many
reasons, but the most fundamental is that any individual
object can produce an infinite set of different images on the
retina, due to variation in object position, scale, pose and
illumination, and the presence of visual clutter (e.g. [1–5]).
Indeed, although we typically see an object many times, we
effectively never see the same exact image on our retina
twice.Althoughseveral computational effortshaveattacked
this so-called ‘invariance problem’ (e.g. [1,3,6–12]), a robust,
real-world machine solution still evades us and we lack a
satisfyingunderstanding of how theproblem is solvedby the
brain. We believe that these two achievements will be
accomplished nearly simultaneously by an approach that
takes into account both the computational issues and the
biological clues and constraints.

Because it is easy to get lost in the sea of previous
studies and ideas, the goal of this manuscript is to clear
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the table, bring forth key ideas in the context of the primate
brain, and pull those threads together into a coherent
framework. Below, we use a graphical perspective to pro-
vide intuition about the object recognition problem, show
that the primate ventral visual processing stream pro-
duces a particularly effective solution in the inferotem-
poral (IT) cortex, and speculate on how the ventral visual
stream approaches the problem. Along the way, we argue
that some approaches are only tangential to, or even
distract from, understanding object recognition.

What is object recognition?
We define object recognition as the ability to accurately
discriminate each named object (‘identification’) or set of
objects (‘categorization’) from all other possible objects,
materials, textures other visual stimuli, and to do this
over a range of identity-preserving transformations of
the retinal image of that object (e.g. image transformations
resulting from changes in object position, distance, and
pose). Of course, vision encompasses many disparate chal-
lenges that may interact with object recognition, such as
material and texture recognition, object similarity esti-
mation, object segmentation, object tracking and trajectory
prediction. Exploring such possible interactions is not our
goal. Instead, we aim to see how far a clear focus on the
problem of object recognition will take us. We concentrate
on what we believe to be the core of the brain’s recognition
system – the ability to rapidly report object identity or
category after just a single brief glimpse of visual input
(<300 ms; see Box 1) [13,14].

What computational processes must underlie object
recognition?
To solve a recognition task, a subjectmust use some internal
neuronal representation of the visual scene (population
pattern of activity) tomake a decision (e.g. [15,16]): is object
A present or not? Computationally, the brain must apply a
decision function [16] to divide an underlying neuronal
representational space into regions where object A is pre-
sent and regions where it is not (Figure 1b; one function for
each object to be potentially reported). Because brains
compute with neurons, the subject must have neurons
somewhere in its nervous system – ‘read-out’ neurons –
that can successfully report if object A was present [17]. Of
course, there are many relevant mechanistic issues, for
example, how many such neurons are involved in comput-
ing the decision, where are they in the brain, is their
operation fixed or dynamically created with the task at
d. doi:10.1016/j.tics.2007.06.010
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Box 1. Frequently asked questions

Feed-forward versus feedback?

We do not mean to imply that all recognition is a result of feed-

forward mechanisms (e.g. Figure 2 in the main text). However, the

psychophysical and physiological data suggest that transformation

to support recognition ‘in a glimpse’ takes <300 ms from time of

stimulus onset [13,14,19]. Even the earliest IT spikes (�125 ms

latency) can already support robust recognition [19]. This places

serious constraints on the types of feedback that might be involved.

For example, such data argue against the possibility that an initial IT

(or higher) representation is created (e.g. for prior model selection

or feature attention set) and information is fed back down the

hierarchy to V1 and then back up the hierarchy, before a good IT

representation occurs. However, these data do not preclude feed-

back within cortical areas or possibly between neighboring cortical

areas (e.g. V2 to V1; see Figure 2 in the main text). They also do not

mean that priors cannot be used (see below). Also, not all

recognition occurs in a glimpse and does involve top-down feed-

back processes (e.g. attentional shifts).

What about visual clutter?

We have focused on what happens to an object’s neuronal image as

a result of identity-preserving transformations that are easily

parameterized (e.g. pose, position, size). However, one major source

of real-world image variation is clutter – backgrounds and other

potentially occluding objects, which might, in turn, cast shadows

and other variations in object illumination. Although not as obvious,

this variation results in the same types of object manifolds as

already described (relatively low-dimensional, continuous and

highly curved in retinal image space). Thus, the essence of the

problem is still the same in that it is another source of identity-

preserving variation that tends to tangle the object manifolds.

What about using priors to improve recognition?

In severely occluding clutter or severely foreshortened views,

different objects can produce the same retinal image (one situation

where object manifolds touch). Such cases are fundamentally

ambiguous and can only be ‘solved’ with prior assumptions (e.g.

[11,65]). This might not be done in a glimpse and might require

large-scale feedback (see above). However, this does not mean that

priors cannot be involved in recognition in a glimpse. Indeed, we

think priors are involved in an implicit, largely feed-forward way in

that, at each ventral stream processing stage, neuronal tuning

functions ‘looking’ at the previous stage over-represent features and

feature contingencies that are most often encountered in the world,

rather than, say, white noise [57,59] (see text). That is, we argue that

real-world primate object recognition uses implicit priors all of the

time, and top-down priors some of the time, depending on task

demands.
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hand, and how do they code choices in their spikes?
However, these are not the central computational issues
of object recognition. The central issues are: what is the
format of the representation used to support the decision
(the substrate on which the decision functions directly
operate); and what kinds of decision functions (i.e. read-
out tools) are applied to that representation?

These central computational issues are two sides of the
same coin. For example, one can view object recognition as
the problem of finding very complex decision functions
(highly non-linear) that operate on the retinal image repres-
entation. Alternatively, one can view it as the problem of
finding operations that progressively transform that retinal
representation into a new form of representation, followed
by the application of relatively simple decision functions
(e.g. linear classifiers [18]). From a computational perspect-
ive, the difference is largely terminology, but we and others
www.sciencedirect.com
(e.g. [16,19]) argue that the latter viewpoint is more
productive because it starts to take the problem apart in
a way that is consistent with the architecture and response
properties of the ventral visual stream, and because
such simple decision functions are easily implemented in
a single, biologically plausible neuronal processing step (a
thresholded sum over weighted synapses). This view also
meshes well with conventional pattern recognition wisdom
– choice of representation is often more important than the
‘strength’ of the classifier used. As shown below, a variety of
recognition tasks can be solved in IT cortex population
responses using simple, linear classifiers [19], suggesting
that our focus on such operations is not unreasonable.
Finally, even from this viewpoint, one is completely free
to consider the possibility that the algorithms that imple-
ment ‘representation’ are not different from those applied
during ‘decision’. Thus, with little loss of generality, below
we treat object recognition fundamentally as a problem of
data representation and re-representation, and we use
simple decision functions (linear classifiers) to examine
those representations.

Why is object recognition hard? Object manifold
tangling
Object recognition is hard because useful forms of visual
representation are hard to build. A major impediment to
understanding such representations arises from the fact
that vision operates in high-dimensional space. Our eyes
fixate the world in�300ms intervals before moving on to a
new location. During each brief glimpse, a visual image is
projected into the eye, transduced by �100 million retinal
photoreceptors and conveyed to the brain in the spiking
activity pattern of �1 million retinal ganglion cells. Such a
representation can be conceptualized as a high-dimen-
sional extension of a simple three-dimensional Cartesian
space in which each axis of the space is the response of one
retinal ganglion cell (e.g. [20,21]) (Figure 1). Even ignoring
temporal information and measuring the response of each
neuron to each glimpse as its mean spiking rate, each
image projected into the eye is one point in an �1 million
dimensional retinal ganglion cell representation (Box 1).

To gain intuition about high-dimensional visual
representations, note that, within this immense retinal
representation space, different encounters with the same
physical object lie in contiguous regions. For example, con-
sider one glimpse of a particular face. That single glimpse of
that face, in exactly that position, scale, pose, lighting and
background, produces just one pattern of activity on your
retina – it is just one point in retinal image space (internal
neuronal ‘noise’would introducea small amount of variation
in each point, but is ignored here because it is not funda-
mental to our arguments). Now imagine all the possible
retinal images that face could ever produce (e.g. due to
changes in its pose, position and size) and the corresponding
setofpoints in retinal imagespace.That setofpotentialdata
points arises from a continuous, low-dimensional, curved
surface inside the retinal image space called an object
‘manifold’ (Figure1a) [3,20,21].Different objects havediffer-
ent manifolds (Figure 1b–d).

Given this framework, we consider a simple world with
just two possible objects (Joe and Sam, see Figure 1) to



Figure 1. Illustration of object tangling. In a neuronal population space, each cardinal axis is one neuron’s activity (e.g. firing rate over an �200 ms interval) and the

dimensionality of the space is equal to the number of neurons. Although such high-dimensional spaces cannot be visualized, the three-dimensional views portrayed here

provide fundamental insight. (a) A given image of a single object (here, a particular face) is one point in retinal image space. As the face’s pose is varied, the point travels

along curved paths in the space, and all combinations of left/right and up/down pose (two degrees of freedom) lie on a two-dimensional surface, called the object manifold

(in blue). Although only two degrees of freedom are shown for clarity, the same idea applies when other identity-preserving transformations (e.g. size, position) are applied.

(b) The manifolds of two objects (two faces, red and blue) are shown in a common neuronal population space. In this case, a decision (hyper-) plane can be drawn cleanly

between them. If the world only consisted of this set of images, this neuronal representation would be ‘good’ for supporting visual recognition. (c) In this case, the two

object manifolds are intertwined, or tangled. A decision plane can no longer separate the manifolds, no matter how it is tipped or translated. (d) Pixel (retina-like) manifolds

generated from actual models of faces (14,400-dimensional data; 120 � 120 images) for two face objects were generated from mild variation in their pose, position, scale

and lighting (for clarity, only the pose-induced portion of the manifold is displayed). The three-dimensional display axes were chosen to be the projections that best

separate identity, pose azimuth and pose elevation. Even though this simple example only exercises a fraction of typical real-world variation, the object manifolds are

hopelessly tangled. Although the manifolds appear to cross in this three-dimensional projection, they do not cross in the high-dimensional space in which they live.
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graphically show the difference between a ‘good’ and ‘bad’
representation for directly supporting object recognition.
The representation in Figure 1b is good: it is easy to
determine if Joe is present, in spite of pose variation, by
simply placing the linear decision function (i.e. a hyper-
plane) between Joe’s manifold and the other potential
images in the visual world (just images of Sam in this
case, but see Figure I in Box 2). By contrast, the repres-
entation in Figure 1c is bad: the object manifolds are
tangled, such that it is impossible to reliably separate
Joe from the rest of the visual world with a linear decision
function. Figure 1d shows that this problem is not aca-
demic – the manifolds of two real-world objects are hope-
lessly tangled together in the retinal representation.

Note, however, that the two manifolds in Figure 1c,d do
not cross or superimpose – they are like two sheets of paper
crumpled together. This means that, although the retinal
representation cannot directly support recognition, it
www.sciencedirect.com
implicitly contains the information to distinguish which
of the two individuals was seen. We argue that this
describes the computational crux of ‘everyday’ recognition:
the problem is typically not a lack of information or noisy
information, but that the information is badly formatted in
the retinal representation – it is tangled (but also see Box
1). Although Figure 1 shows only two objects, the same
arguments apply when more objects are in the world of
possible objects – it just makes the problem harder, but for
exactly the same reasons.

One way of viewing the overarching goal of the brain’s
object recognition machinery, then, is as a transformation
from visual representations that are easy to build (e.g.
center-surround filters in the retina), but are not easily
decoded (as in Figure 1c,d), into representations that we do
not yet know how to build (e.g. representations in IT), but
are easily decoded (e.g. Figure 1b). Although the idea of
representational transformation has been stated under



Box 2. The power, and challenge, of high-dimensional representations

Although Figures 1d and 3a,b in the main text shows that object

manifolds are less tangled in some neuronal population representa-

tions than others, they also necessarily hide the full complexity and

power of high-dimensional representations. One false impression

these figures might create is that the untangling perspective only

applies when the world contains just two possible objects. However,

these three-dimensional pictures are just projections of a high-

dimensional space in which it is easy for a large number of possible

object manifolds to be represented such that they are mutually

separable yet still maintain correspondence of transformation vari-

ables (e.g. pose, position and size). Figure I shows an example with

five hypothetical object manifolds. All panels show three-dimensional

projections (views) of exactly the same seven-dimensional represen-

tation. Projections exist in which a hyperplane cleanly separates each

object manifold from the others (Figure Ic,d). At the same time, the

manifolds are coordinated in that projections also exist that are useful

for discriminating the pose of the object, for example (Figure Ib). It

may seem almost magical that just looking at the same representa-

tion from a different perspective can bring each of the manifolds out

to one side of the space. Indeed, this would be impossible in three

dimensions, but it is straightforward in many dimensions.

Another false impression that Figures 1 and 3 in the main text might

create is that a linear decision plane approach would necessarily

result in many large recognition errors (over-generalization), because

the decision plane accepts everything on one side of it as being

‘object present’, including points that might be arbitrarily far from the

object manifold. However, this is not a serious limitation because the

full volume of a real neuronal representation space usually cannot be

reached (i.e. not all patterns of population response are possible). For

example, because neurons have minimum and maximum response

values (e.g. firing rates), the reachable space is limited to a hyper-

rectangle. Dependencies between the neural response functions (e.g.

due to common inputs) further limit the reachable space. Indeed,

because the simulated IT neurons in Figure 3b are Gaussian

functions, no stimulus exists that can produce a population response

that is very far out on the ‘Joe detected’ side of Joe’s object manifold.

Figure Ie explores this idea further. Nevertheless, such spaces can

support extremely rich representations because the reachable

hypersurface has many degrees of freedom and a massive surface

area.

In sum, one can imagine a good high-dimensional object

representation where all object manifolds lie near the ‘edges’ of

the reachable part of the population space (Figure Ie) and are

mutually orthogonal (Figure Ia–d). The population of IT cells

suggested by existing data (see Figure 3b) is consistent with this

viewpoint.

Figure I. The challenges of thinking in high-dimensional spaces. (a–d) Three-dimensional projections of the same exact seven-dimensional population representation.

Each colored plane is one of five perfectly flat object manifolds (analogous to the manifolds in Figures 1 and 3 in the main text). In the projection in (a), it is difficult to see

how each manifold could be separated from the others using decision hyperplanes; it might be possible to separate the purple manifold from the rest, but it does not

seem possible to cleanly separate the red or blue manifolds from the others. However, panels (c and d) show projections (views) of the same representation in which the

red and blue object manifolds are easily separated from the rest. Likewise, whereas the degrees of freedom of the manifolds (analogous to ‘pose’ in Figures 1 and 3) do

not line up in (a,c and d), there nonetheless exist projections where they do line up (b). Such a projection would be useful for reading out the pose of the object,

independent of identity. Panel (e) illustrates that not all potential locations of a population representation are reachable. It shows a population space spanned by just

three simulated neurons, each with Gaussian tuning in a two-dimensional input space (inset). The responses of these three neurons are plotted to the right. Because the

neuronal response functions are overlapping (non-independent), it is only possible to reach points in the output space that are on the gray surface shown here. If one

uses a hyperplane (shown in green) to demarcate a region corresponding to an object (shown in red), then one need not worry about falsely including extraneous over-

generalized points on the ‘object-detected’ side of the plane (e.g. the point labeled unreachable point), because the neuronal population can never give that pattern of

response.
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many guises (e.g. 2 1/2D sketch and feature selection
[18,22,23]), we argue below that the untangling perspect-
ive goes farther, suggesting the kinds of transformations
the ventral visual system should perform. However, first
we look at the primate ventral visual stream from this
untangling perspective.
www.sciencedirect.com
The ventral visual stream transformation untangles
object manifolds
In humans and other primates, information processing to
support visual recognition takes place along the ventral
visual stream (for reviews, see [5,24,25]). We, and others
(e.g. [1,26]), consider this stream to be a progressive series
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of visual re-representations, from V1 to V2 to V4 to IT
cortex (Figure 2). Beginning with the studies of Gross [27],
a wealth of work has shown that single neurons at the
highest level of the monkey ventral visual stream – the IT
cortex – display spiking responses that are probably useful
for object recognition. Specifically, many individual IT
neurons respond selectively to particular classes of objects,
such as faces or other complex shapes, yet show some
tolerance to changes in object position, size, pose and
illumination, and low-level shape cues. (Also see e.g.
Ref. [28] for recent related results in humans.)

How can the responses of individual ventral stream
neurons provide insight into object manifold untangling
in the brain? To approach this, we have focused on char-
acterizing the initial wave of neuronal population ‘images’
that are successively produced along the ventral visual str-
eam as the retinal image is transformed and re-represented
on its way to the IT cortex (Figure 2). For example, we and
our collaborators recently found that simple linear classi-
fiers can rapidly (within <300 ms of image onset) and
accurately decide the category of an object from the firing
rates of an IT population of�200 neurons, despite variation
in object position and size [19]. It is important to note that
using ‘stronger’ (e.g. non-linear) classifiers did not substan-
tially improve recognition performance and the same
Figure 2. Neuronal populations along the ventral visual processing stream. The rhesu

monkeys have high visual acuity, rely heavily on vision (�50% of macaque neocortex

monkey visual areas have been mapped and are hierarchically organized [26], and th

(colored areas, see text). We show a lateral schematic of a rhesus monkey brain (ada

population representation. The lower panels schematically illustrate these populations in

– their relative size loosely reflects their relative output dimensionality (approximate num

(here, a face) is transduced into neuronal activity at the retina and is progressively and

transformation (T). Solid arrows indicate the direction of visual information flow based o

both within and between areas (dashed arrows, see Box 1). The gray arrows across the

considered in Figures 1d and 3a,b, respectively. RGC, retinal ganglion cells; LGN, later

www.sciencedirect.com
classifiers fail when applied to a simulated V1 population
of equal size [19]. This shows thatperformance isnota result
of the classifiers themselves, but the powerful form of visual
representation conveyed by the IT cortex. Thus, compared
with early visual representations, object manifolds are less
tangled in the IT population representation.

To show this untangling graphically, Figure 3 illustrates
the manifolds of the faces of Sam and Joe from Figure 1d
(retina-like representation) re-represented in the V1 and IT
cortical population spaces. To generate these, we took popu-
lations of simulated V1-like response functions (e.g. Refs
[29,30]) and IT-like response functions (e.g. Refs [31,32]),
and applied them to all the images of Joe and Sam.
This reveals that the V1 representation, like the retinal
representation, still contains highly curved, tangled object
manifolds (Figure 3a), whereas the same object manifolds
are flattened and untangled in the IT representation
(Figure 3b). Thus, from the point of view of downstream
decisionneurons, the retinal andV1 representations are not
in a good format to separate Joe from the rest of the world,
whereas the IT representation is. In sum, the experimental
evidence suggests that the ventral stream transformation
(culminating in IT) solves object recognition by untangling
objectmanifolds.For eachvisual image striking the eye, this
total transformation happens progressively (i.e. stepwise
s monkey is currently our best model of the human visual system. Like humans,

is devoted to vision) and easily perform visual recognition tasks. Moreover, the

e ventral visual stream is known to be critical for complex object discrimination

pted from Ref. [26]). We conceptualize each stage of the ventral stream as a new

early visual areas and at successively higher stages along the ventral visual stream

ber of feed-forward projection neurons). A given pattern of photons from the world

rapidly transformed and re-represented in each population, perhaps by a common

n neuronal latency (�100 ms latency in IT), but this does not preclude fast feedback

bottom indicate the population representations for the retina, V1 and IT, which are

al geniculate nucleus.



Figure 3. Untangling object manifolds along the ventral visual stream. As visual information progresses through the ventral visual pathway, it is progressively re-

represented in each visual area and becomes better and better at directly supporting object recognition. (a) A population of 500 V1 neurons was simulated as a bank of

Gabor filters with firing thresholds. Display axes in this 500-dimensional population space were chosen to maximally separate two face stimuli undergoing a range of

identity-preserving transformations (pose, size, position and lighting direction), as in Figure 1. Manifolds are shown for the two objects (red and blue) undergoing two-axis

pose variation (azimuth and elevation). As with the retina-like space shown in Figure 1c, object manifolds corresponding to the two objects are hopelessly tangled together.

Below, the responses of an example single unit are shown in response to the two faces undergoing one axis of pose variation. (b) By contrast, a population of simulated IT

neurons gives rise to object manifolds that are easily separated. 500 IT neurons were simulated with broad (but not flat) unimodal Gaussian tuning with respect to identity-

preserving transformations and with varying levels of preference for one or the other face, analogous to what is observed in single unit recording in IT. In addition to being

able to separate object manifolds corresponding to different identities, such a representation also allows one to recover information about object pose. The lines going

through the two manifolds show that the manifolds are coordinated – they are lined up in such a way that multiple orthogonal attributes of the object can be extracted using

the same representation. It is important to note that, in contrast to the V1 simulation, we do not yet know how to generate single unit responses like this from real images.

(c) A textbook idealized IT representation also produces object manifolds that are easy to separate from one another in terms of identity. Here, IT neurons were simulated

with idealized, perfectly invariant receptive fields. However, although this representation may be good for recovering identity information, it ‘collapses’ all other information

about the images.
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along the cortical stages), but rapidly (i.e.<100 ms from V1
to IT, �20 ms per cortical stage). But what is this trans-
formation? That is, how does the ventral stream do this?

How does the ventral visual stream untangle object
manifolds?
We do not yet know the answer to this question. Hubel and
Wiesel’s [30] observation that visual cortex complex cells
can pool over simple cells to build tolerance to identity-
preserving transformations (especially position) has been
computationally implemented and extended to higher cor-
tical levels, including the IT [1,12,33]. However, beyond
this early insight, systems neuroscience has not provided a
breakthrough.

Some neurophysiological effort has focused on
characterizing IT neuronal tolerance to identity-preser-
ving transformations (e.g. Refs [31,32,34–38]), which is
central to object tangling. However, much more effort
has been aimed at understanding the effects of behavioral
states, for example, task and attention (e.g. Refs [39–45]).
Although important, these studies sidestep the untangling
problem, because such effects can be measured without
understanding the format of representation.

Substantial effort has also recently been aimed at
understanding the features or shape dimensions of visual
images to which V4 and IT neurons are most sensitive (e.g.
Refs [25,46–51]). Such studies are important for defining
the feature complexity of ventral stream neuronal tuning,
which is related to manifold untangling (because ‘object’ or
www.sciencedirect.com
feature conjunctionmanifolds arewhatmust be untangled).
Ongoing, ambitious approaches to understanding the res-
ponse functions of individual neurons (i.e. the non-linear
operatorson thevisual image)would, if successful, lead toan
implicit understanding of object representation. However,
given the enormity of this task, it is not surprising that
progress has been slow.

The object untangling perspective leads to a
complementary but qualitatively different approach. First,
it shifts thinking away from single IT neuron response
properties [17] – which is akin to studying feathers to
understand flight [22] – toward thinking about ideal popu-
lation representations, with the computational goals of the
task clearly considered (see Figure 3b versus 3c) [52].
Second, it suggests the immediate goal of determining
how well each ventral stream neuronal representation
has untangled object manifolds and shows how to quanti-
tatively measure untangling (see linear classifiers above,
Figure 1). Third, this perspective points to better ways to
compare computational models to neuronal data: whereas
model predictions at the single-unit level are typically
grossly under-constrained, population-level comparisons
might be more meaningful (e.g. the predicted degree of
untangling at each ventral stream stage). Fourth, it sugg-
ests a clear focus on the causes of tangling – identity-
preserving transformations – rather than the continuing
primary focus on ‘shape’ or ‘features’. Indeed, because we
do not understand the dimensions of ‘shape’, we speculate
that computational approaches that focus on building
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tolerance across identity-preserving transformationswhile
simply preserving sensitivity to other real-world image
variation will be vastly more tractable. Finally, this per-
spective steers experimental effort toward testing hypothe-
tical mechanisms thatmight underlie untangling (e.g. Refs
[53,54]), and directs complementary computational effort
toward finding new biologically plausible algorithms that
progressively untangle object manifolds (e.g. Refs [1,7]; see
below).

Flattened object manifolds are a good solution

Figure 3 suggests a strategy for building good object
representations: if the goal is to untangle manifolds corre-
sponding to different objects, thenwe seek transformations
that ‘flatten’ these manifolds, while keeping them separate
(i.e. preserving ‘shape’ information). This perspective is
partly a restatement of the problem of invariant object
recognition, but not an entirely obvious one. For example,
the textbook conception of IT cortex suggests a different set
of goals for each IT neuron: high shape selectivity and high
‘invariance’ to identity-preserving image transformations.
To illustrate how object manifold untangling gives a fresh
perspective, Figure 3b,c shows two simulated IT popu-
lations that have both successfully untangled object iden-
tity, but that have very different single-unit response
properties. In Figure 3c, each single unit has somehow
met the textbook ideal of being selective for object identity,
yet invariant to identity-preserving transformations. At
the IT population level, this results in the untangling of
object manifolds by ‘collapsing’ each manifold to a single
point. By comparison, in Figure 3b, every single IT unit has
good sensitivity to object identity, but only limited toler-
ance to object transformation (e.g. position, scale, view)
and, by textbook standards, seems less than ideal. How-
ever, at the population level, this also results in untangled
object manifolds, but in a way that has ‘flattened’ and
coordinated, rather than discarded, information about
the transformation variables (e.g. pose, position and scale).
This suggests that a properly untangled IT representation
(e.g. Figure 3b, Box 2) can not only directly support object
recognition, but also support tasks such as pose, position
and size estimation, as previously suggested by theorists
(e.g. [3,19]). Indeed, real IT neurons are not, for example,
position and size invariant, in that they have limited
spatial receptive fields [32,36]. It is now easy to see that
this ‘limitation’ is an advantage.

Ways the brain might flatten object manifolds

Although object manifold flattening might be partly
accomplished by hard-wired transformations (e.g. Refs
[1,33]), one could also learn the structure of manifolds
from the statistics of natural images (e.g. Refs [20,21]),
potentially allowing them to be flattened. Although most
previous manifold learning efforts have emphasized learn-
ing structure in the ambient pixel/retina space in one step,
we impose no such requirement. In particular, the trans-
formations need only flatten object manifolds progress-
ively, in a series of rapidly executed, successive steps
(consistent with physiological data along the ventral
stream [5]). Progressive flattening is a matter of both
emphasis and substance: there is no need to swallow the
www.sciencedirect.com
entire problem whole – flattening at local, small scales can
ultimately produce flattening at a global scale. Indeed, the
manifold untangling perspective makes sense at a variety
of scales – V1 neurons in a local neighborhood only ‘see’ the
world through a small aperture (they cannot see whole
objects), but they can perform flattening operations with
respect to their inputs; V2 can do the same on its V1 inputs
and so on. Thus, we believe that the most fruitful compu-
tational algorithms will be those that a visual system
(natural or artificial) could apply locally and iteratively
at each cortical processing stage (e.g. Refs [1,12,33,55]) in a
largely unsupervised manner (e.g. Ref. [56]), and that
achieve some local object manifold flattening. Even though
no single cortical stage or local ensemble within a stage
would ‘understand’ its global role, we imagine the end
result to be globally flattened, coordinated object manifolds
with preserved shape selectivity (Figure 3b, Box 2).

Three computational ideas that are consistent with
physiology might, together, enable manifold flattening.
First, the visual system projects incoming information into
an even higher dimensional overcomplete space (e.g. �100
times more V1 neurons than retinal ganglion neurons)
(Figure 2). This ‘spreads out’ the data into a much larger
space. The additional constraint of response sparseness
can reduce the size of the subspace that any given incoming
visual image ‘lives’ in and thus makes it easier to find
projections where object manifolds are flat and separable
(see Refs [57,58]). A second related idea is that, at each
processing stage, neuronal resources (i.e. neuronal tuning
functions on inputs from the previous stage) are allocated
in a way that matches the distribution of visual infor-
mation encountered in the real world (e.g. Refs [59,60]).
This would increase the effective over-completeness of
visual representations of real-world objects (and thus help
flatten object manifolds). Indeed, a variety of biologically
plausible algorithms recently developed in other contexts
(e.g. [58,61]) might have a yet to be discovered role in
achieving coordinated flattening within local neuronal
populations. For example, divisive normalization is a
powerful non-linearity that can literally ‘bend’ representa-
tional spaces.

A third, potentially key, idea is that time implicitly
supervises manifold flattening. Several theorists have
noticed that the temporal evolution of a retinal image
provides clues to learning which image changes are iden-
tity-preserving transformations and which are not [6,7,62–
64]. In the language of object tangling, this is equivalent to
saying that temporal image evolution spells out the
degrees of freedom of object manifolds. The ventral stream
might use this temporal evolution to achieve progressive
flattening of object manifolds across neuronal processing
stages. Indeed, recent studies in our laboratory [53] and
others [54] have begun to connect this computational idea
with biological vision, showing that invariant object recog-
nition can be predictably manipulated by the temporal
statistics of the environment.

Much work must now be done to continue down this
path of discovery – we still do not understand object
recognition. Nevertheless, it is a very exciting time as
there is a rapid blurring of lines between traditionally
separate disciplines, and we hope that the perspective
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presented here will galvanize efforts on one of the most
exciting problems in cognitive and systems neuroscience.
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