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SUMMARY

How do neuronal populations represent concurrent
stimuli? We measured population responses in cat
primary visual cortex (V1) using electrode arrays.
Population responses to two superimposed gratings
were weighted sums of the individual grating res-
ponses. The weights depended strongly on the
relative contrasts of the gratings. When the contrasts
were similar, the population performed an approxi-
mately equal summation. When the contrasts
differed markedly, however, the population per-
formed approximately a winner-take-all competition.
Stimuli that were intermediate to these extremes eli-
cited intermediate responses. This entire range of
behaviors was explained by a single model of con-
trast normalization. Normalization captured both
the spike responses and the local field potential res-
ponses; it even predicted visually evoked currents
source-localized to V1 in human subjects. Normaliza-
tion has profound effects on V1 population res-
ponses and is likely to shape the interpretation of
these responses by higher cortical areas.

INTRODUCTION

Even the simplest sensory stimulus or planned movement
causes a large pool of neurons to be active. The code for both
sensory perception and motor output, therefore, is thought to
lie in the collective activation profile of neuronal populations
(Georgopoulos et al., 1982; Mcllwain, 1986; Nicolelis et al.,
1995; Pouget et al., 2000). This profile has been measured
mostly when a population is faced with an individual sensory
stimulus or a single motor output. In such cases, the profile of
population activity is typically bell shaped, with the strength of
each neuron’s response depending on the match between the
neuron’s preferences and the sensory signal or the planned
movement (Chen et al., 2006; Georgopoulos et al., 1986; Puru-
shothaman and Bradley, 2005).

In nature, however, a sensory system is often confronted with
the conjoint presence of multiple stimuli. Likewise, a motor
system needs to represent a combination of multiple move-
ments. In these circumstances, the population responses will
not simply have a single peak centered on a particular stimulus

or movement, but rather a combination of multiple peaks
(MacEvoy et al., 2009; Pasupathy and Connor, 2002; Treue
et al.,, 2000). Understanding the rules of this combination is
fundamental to our comprehension of population coding.

To investigate the representation of multiple stimuli in
a neuronal population, we measured responses in primary visual
cortex (V1) to sums of two component gratings. To control the
strength of sensory stimulation, we varied grating contrast. To
control the identity of the stimulated neurons, we varied grating
orientation. Having control of both quantities provided a space
that is ideal to test models of population coding.

We first investigated the impact of stimulus contrast and found
that population responses are contrast-invariant: contrast scales
the population response profiles without changing their shape.
By comparing response properties of populations to those of
the underlying single neurons, we explain how this invariance
relates to the invariance of tuning curves seen in single units
(Finn et al., 2007; Sclar and Freeman, 1982).

We then asked how population responses in V1 represent two
superimposed component gratings (plaids), and we found that
these responses could be well approximated by a weighted
sum, in which the weights applied to the component gratings
depend on contrast. The weights given to the component grat-
ings of the plaid were always smaller than the sum of the weights
to the individual components, consistent with the well-known
phenomenon of cross-orientation suppression (DeAngelis et al.,
1992; Morrone et al., 1982). We also found a profound effect of
relative contrast: a gradual transition between two regimes.
When the component contrasts are similar, the population gives
sizeable weights to both components (equal summation). When
the contrasts are dissimilar, however, the responses overwhelm-
ingly favor the component with higher contrast (winner-take-all
competition).

We were able to capture all these phenomena with a simple
model based on contrast normalization. This model involves
a division between a numerator that sums contributions of indi-
vidual components and a denominator that grows with overall
contrast. The model has been previously applied to individual
neurons that are optimally tuned to one of the component grat-
ings (Carandini et al., 1997; Freeman et al., 2002; Heeger,
1991; Heeger, 1992; Heuer and Britten, 2002). Here we extend
it to entire populations and show that it can accurately describe
their widely different regimes of operation.

To demonstrate the relevance of these findings to visual
perception, we investigate them not only in the spike res-
ponses of anesthetized cats but also in visually evoked currents
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Figure 1. Tuning Curves and Population
Responses to Single Orientation Stimuli

(A) Orientation tuning curves of all responsive sites
(66 of 96), sorted according to preferred orienta-
tion. Each tuning curve is normalized by its mean
across orientations.

(B) Population response to a 45° stimulus:
responses of all sites (dots) as a function of pre-
ferred orientation of each site.
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(C) The population response in (B) after binning
sites with similar orientation preference (bin width:
15°). The curve is the best fitting circular Gaussian.
Error bars indicate +1 SE of responses across sites
in each bin.

(D) Population response to a 0° stimulus for three
contrasts: 12%, 50%, and 100%. The abscissa
indicates preferred orientation relative to stimulus
orientation. Data for stimuli of multiple orientations
(0°, 30°, and 60°) are combined to obtain each
population response. Error bars indicate +1 SE of
responses across sites in each bin. The curves
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source-localized to V1 of human subjects. Moreover, we show
with simple simulations how normalization in area V1 can have
profound effects on the interpretation of V1 signals by higher
cortical areas and, thus, shape perceptual judgments.

RESULTS

To measure the responses of a large population of neurons in
area V1, we recorded from a 10 x 10-electrode array implanted
in anesthetized cats (Figure 1A). The array covered an area of
16 mm? so that it included regions with a diversity of orientation
preferences. As a result, spike responses measured at individual
sites exhibited tuning curves whose preferences covered fairly
uniformly the range of orientations (Figure 1A).

As expected, a stimulus of a given orientation evokes across
the population a response whose profile peaks at the neurons
that prefer the stimulus orientation (Figures 1B and 1C). This
profile was well fit by a simple circular Gaussian function G(6)
centered on stimulus orientation ¢ and varying with the preferred
orientation of the neurons 6 (Figure 1C).

Contrast-Invariance of Population Responses

We asked how these population responses are affected by stim-
ulus contrast, and we found them to be invariant: changing
contrast affected their profile in amplitude but not in width
(Figures 1D and 1E). To test for invariance, we fitted the
responses to an oriented stimulus (¢) by a separable model,
the product of the Gaussian function of preferred orientation 6
and a function of stimulus contrast c:

Ro(8,0) =Gy (0)f(c). 1)
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fitting the data are circular Gaussians differing
only in amplitude.

(E) Amplitude of the population responses as
a function of stimulus contrast. The curve is the
best-fitting hyperbolic ratio function (cso = 42.1%,
n = 1.0). All fits are given by Equation (1). Experi-
ment 84-12-16.
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We tested this model by choosing a typical function for stim-
ulus contrast (Figure 1E), the hyperbolic ratio that is commonly
applied to individual neurons (Albrecht and Hamilton, 1982;
Heeger, 1992):

"
rmaxn—7
Cgo + c”

f(c) = @
where the parameters ryax, Cso, and n determine the overall
responsiveness, the semisaturation contrast, and the exponent
of an accelerating nonlinearity related to spike threshold. The
separable model provided excellent fits to the population
responses. It explained 98.8% of the variance in the example
data set (Figures 1D and 1E) and an average of 98.5% of the
variance in all nine data sets. These results confirm earlier indica-
tions obtained by intrinsic imaging (Carandini and Sengpiel,
2004): population responses to individual orientations are con-
trast invariant.

A factor contributing to this invariance of population
responses is surely the well-known invariance of tuning curves
in individual neurons. Such tuning curves are scaled by stimulus
contrast without changes in shape (Finn et al., 2007; Sclar and
Freeman, 1982). The invariance seen in single neurons, however,
is not sufficient to explain the invariance of population
responses. For example, if neurons that are more sharply tuned
responded only to higher contrasts, then increasing contrast
would narrow the profile of population responses.

The invariance of population responses, indeed, makes
a strong prediction that orientation tuning width and contrast
sensitivity should be distributed independently across neurons.
Increasing contrast, then, would not preferentially engage
neurons that are more or less sharply tuned, thus leaving the
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width of the population profile unchanged. This intuitive argu-
ment is formalized mathematically in the Appendix in the Supple-
mental Data (available online).

We tested this prediction and indeed found no systematic rela-
tionship between tuning width and contrast sensitivity across
individual neurons (Figure 2). We measured orientation tuning
curves (Figure 2A) and contrast responses (Figure 2B) in 75
well-isolated V1 neurons individually recorded in a separate set
of experiments. We quantified contrast sensitivity of each neuron
by the two parameters of the hyperbolic ratio: semisaturation
contrast c5g, and exponent n. We then asked whether these
parameters are independent of the neuron’s tuning width (half-
width at half height). We assessed statistical independence by
calculating quartiles of the marginal distributions and testing
for uniformity of the joint distribution. We saw no departure
from independence between tuning width and semisaturation
contrast csg (Figure 2C, X? = 4.57; df = 7; p = 0.71). Similarly, there
was no departure from independence between tuning width and
exponent n (data not shown; X2 = 7.56; df = 7; p = 0.37).

This analysis reveals that the properties of individual neurons
and those of the population can be quite different. The mean
tuning width of the individual neurons was 23° + 14° (mean =+
SD; n = 75; Figure 2A), comparable to the 22° + 2° measured
in the population (n = 9 experiments; Figure 1D). The semisatura-
tion contrast was also similar: 20% + 11% for individual neurons
(median + MAD; Figure 2B) and 22% + 9% for the population
(Figure 1E). The exponent, however, was much lower in the pop-
ulation than in most of the individual neurons: 2.2 + 1.0 (median +
MAD; Figure 2B) for individual neurons but only 1.0 + 0.1 for the
population. The contrast responses of the population (Figure 1E),
therefore, are much shallower than those of most individual
neurons.

These similarities and differences between neurons and pop-
ulation are simply explained. We built predicted population
responses by averaging the fitted responses of the individual
neurons after aligning their preferred orientation (Figures 2A
and 2B, black curves). The predicted population tuning profile
has a width of 20°, intermediate to that of individual neurons
and similar to that of the actual population. The predicted popu-
lation contrast response, instead, is much shallower than that of
the average individual neuron: it has a similar semisaturation
contrast (20%) but a lower exponent (1.4). These results echo
the measurements made in the actual population. The shallow
response derives from the fact that individual neurons have
a broad range of semisaturation contrasts (Figure 2B).

Summation and Competition in Population Responses
We then asked how a population represents more than one stim-
ulus and measured responses to plaids (Figure 3A). Plaids were
obtained by superimposing two component gratings with
different orientations; the component contrasts were indepen-
dently varied.

The population responses to these plaids depended strongly
on the relative contrasts of the components (Figure 3B). If the
component contrasts were similar (e.g., 6% and 12%) or iden-
tical (e.g., both 12%), the population response to the plaid ex-
hibited two peaks, one at each of the component orientations.
However, if the component contrasts differed considerably
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Figure 2. Relationship between Single Neuron Tuning Curves and
Response Properties of the Population

(A) Orientation tuning curves of single neurons (n = 75, gray), normalized to the
maximum response and centered on preferred orientation. Superimposed is
the average orientation response profile of the population (black).

(B) Contrast response functions. Same format as in (A).

(C) Semisaturation contrast (obtained by fitting Equation 2) plotted as a func-
tion of tuning width (half-width at half-height) as obtained by fitting a circular
Gaussian to each neuron’s response. Tuning width and semisaturation
contrast are independently distributed across neurons in the population.

(e.9., 50% and 12%), the response to the component of higher
contrast (50% horizontal) dominated the population response
to the plaid (Figure 3B, lower right). In these conditions, it is as
if the 12% contrast vertical grating had almost disappeared.
However, when this stimulus was presented alone it elicited
a large response (Figure 3B, lower left).

To characterize these responses we described them with
a weighted-sum model (Figure 3C). In this model, the response
to the plaid with component orientations ¢4 and ¢, and contrasts
c4 and ¢, is given by a linear combination of the responses to the
component gratings:

R1 +2(C1 s Cg) =Wy (C1 s C2)R1 (C1 ) + W2(C1 s Cg)Rg(Cg)7 (3)

where the responses to the individual components R4(c4) and
R»(co) are given by Equation (1) with Gaussians centered on ¢+
and o,, and the scaling factors w4, w, depend on the combina-
tion of contrasts. Here and elsewhere, we express population
responses (quantities in bold letters) as vectors: they are func-
tions of stimulus orientation. These vectors are in turn affected
by stimulus contrast.

Because the weighted-sum model provided good fits, its
best-fitting weights w4, w, can be used to describe the rules of
combination. Across contrast combinations, adding the two
component gratings resulted in weights <1, a signature of cross-
orientation suppression. Furthermore, the weights greatly de-
pended on relative component contrasts. Weights were sizeable
for both components if the two contrasts were similar (w4 = 0.99,
wo = 0.24) or identical (w4 = wy = 0.77), resulting in two clear
peaks in the activity profile (Figure 3C, left and middle). However,
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Figure 3. Population Responses to Plaids and Predictions of the
Weighted-Sum Model

(A) Stimuli were gratings of two different orientations (first row and first column)
and plaids obtained by summing the individual component gratings, for
different combinations of component contrasts.

(B) Population responses to these stimuli. Error bars indicate +1 SE of
responses across sites in each bin. Model predictions for the single grating
responses are given by the separable model of orientation and contrast
(traces).

(C-E) Predictions of the weighted-sum model for the population responses to
plaids with best-fitting weights (C), equal weights (D), and winner-take-all
weights (E). The data are replotted from (B) for comparison. Data in (B)-(E)
are from experiment 83-10-15, plaid angle = 90°.

if the component contrasts differed considerably, the weight as-
signed to the lower-contrast component was close to zero (w4 =
0.02, w, = 0.92) resulting in a single peak (Figure 3C, right).

To understand these values of the weights it helps to consider
two extreme scenarios: equal weights and winner-take-all
weights (Figures 3D and 3E). In the first scenario, the population
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applies equal weights to both component responses: w4(c+, C2) =
ws(Cq, Cp). This scenario entails the presence of two peaks in
population responses to all plaids, leading to reasonable or
excellent fits if component contrasts are similar or identical
(Figure 3D, left and middle), but unacceptable fits if component
contrasts differ considerably (Figure 3D, right). In the second
scenario, instead, the population response completely disre-
gards the grating of lower contrast, wy = 0 if ¢4 < ¢, and vice
versa. Assuming winner-take-all weights leads to excellent
predictions if component contrasts differ considerably
(Figure 3E, right), but not if they are similar or equal (Figure 3E,
left and middle). Indeed, winner-take-all weights can only predict
a single peak in the activity profile. The sets of weights predicted
by the two scenarios, therefore, have a complementary pattern
of successes and failures.

To extend these qualitative findings we explored population
responses obtained with a broad range of contrast combinations
and with different plaid angles (Figures 4A-4C). As in the
previous examples, these population responses were closely
described by the weighted-sum model (Figure 4A, solid lines).
We searched for the weights w4 and w, that yielded the best
fits and obtained a pair of weights for each contrast combination
(Figure 4B). With these best-fitting parameters, the weighted-
sum model made excellent predictions (mean fit quality index
q =94.4% + 0.5% SE; n = 9; Figure 4C).

The best-fitting weights w4y and w, depended markedly on
component contrast (Figure 4B). First, the weights for plaids
were consistently below unity, indicating that the response to
a grating forming part of a plaid is smaller than the response to
that grating presented alone (cross-orientation suppression).
Second, with components of similar contrast both weights are
considerable (Figure 4B, diagonal). Third, when component
contrasts differ substantially, the weight given to the component
of lower contrast is much weaker (and sometimes negligible)
than the weight given to the component of higher contrast
(Figure 4B, off the diagonal).

These data therefore reveal a range of behaviors extending
from a regime of equal summation (at work when component
contrasts are similar) to a regime of winner-take-all competition
(at work when contrasts are very dissimilar). In intermediate
contrast conditions the weights are intermediate between these
extremes. To delineate the contrast conditions in which these
two regimes operate, we return to the two extreme scenarios
mentioned earlier: equal weights and winner-take-all weights
(Figures 4D-4G). Assuming equal weights (w; = ws, Figure 4D)
leads to excellent predictions when component contrasts are
similar (g = 93.8% + 0.8% SE; Figure 4E, diagonal region), but
results in poor predictions elsewhere (@ = 81.7% + 1.1%).
Assuming winner-take-all weights (w; = 0 if c; < c», Figure 4F)
yields the opposite pattern of successes and failures
(Figure 4G): poor fits when contrasts are similar (q = 72.8% +
1.2%), and good predictions elsewhere (g = 91.9% + 0.4%).

Normalization of Population Responses

The weighted-sum model describes accurately how the popula-
tion integrates two superimposed inputs (Figures 4A-4C), but it
does not capture explicitly the effects of component contrast.
For each combination of component contrasts ¢; and c,, the
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Figure 4. Predicted Weights and Fit Quality of the Weighted-Sum
Model

(A) The complete stimulus set: gratings of different contrasts and their combi-
nations (plaids). Population responses to plaids are fitted by the weighted sum

model requires two free parameters, the weights w4(c4, c,) and
wy(Cq, Co). If a new combination of contrasts ¢4 and c, were to
be tested, the model would make no prediction for the relevant
weights.

What is needed, therefore, is a model that embodies the
weighted-sum model while explicitly representing the role of
contrast. Such a model should predict approximately equal
weights when component contrasts are similar and approxi-
mately winner-take-all weights when component contrasts are
dissimilar.

A promising candidate is the model of contrast normalization
that has been developed for individual neurons. Normalization
involves a ratio: the numerator sums the contributions of the
different stimuli, weighted nonlinearly by component contrast,
and the denominator scales these contributions on the basis of
overall contrast (Albrecht and Geisler, 1991; Carandini et al.,
1997; Heeger, 1991; Heeger, 1992; Kouh and Poggio, 2008).
Normalization explains cross-orientation suppression for indi-
vidual neurons, the ones that are selective for one of the two orien-
tations in the stimulus (Carandini et al., 1997; Freeman et al.,
2002). Can normalization predict the responses of the whole pop-
ulation, and can it predict the gradual transition between the
regimes of equal summation and winner-take-all competition?

To apply the normalization model to our population responses,
we express it as
CqG1 + Cng

=l )

Ri.2(C1,C2) o+
50 rms

where rmax, Cs0, @and n are constants, and Gy, G, are the usual
Gaussians centered on the component orientations ¢4 and ¢».
The term cms = c? +c§ is the root-mean-square contrast of
the stimulus. In the model, therefore, the component contrasts
¢4 and ¢, appear both in the numerator and in the denominator.
If one of these contrasts is zero (i.e., if the stimulus is a single
grating), the model reduces to Equations (1) and (2), and hence
incorporates contrast invariance. If instead both contrasts are
positive, the model provides a closed-form prediction for how
the two components of a plaid should combine to yield a single
population response.

Crucially, the normalization model predicts a gradual transition
of behaviors from equal summation to winner-take-all competi-
tion. As shown in the Appendix in the Supplemental Data, in
two key cases the normalization model approximates the
weighted sum model and we can derive expression for the
weights: when the two component contrasts are similar and
when they are very dissimilar. In the first case, the model approx-
imates the scenario of equal weights, and in the second case it
approximates the scenario of winner-take-all weights.

of the responses to the component gratings (weighted-sum model, curves).
Error bars indicate +1 SE of responses across sites in each bin.

(B-G) Predicted weights (left) and average fit quality (right) for n = 9 experi-
ments, for the weighted-sum model with best-fitting weights (B and C),
equal weights (D and E), and winner-take-all weights (F and G) presented in
the same format as (A). Plaid angle was 90° in 5 experiments, 45° in 2 exper-
iments, and 30° in 2 experiments. Data in (A) are from experiment 82-6-3, plaid
angle = 90°.
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These behaviors arise rather intuitively from the combination
of operations in the normalization model (Equation 4). Equal
summation is a natural consequence of the sum in the numer-
ator; winner-take-all competition, in turn, stems from the
scaling of the summation terms by contrast; with the help of an
exponent >1, this exponent introduces imbalances in the effects
of the two gratings when contrasts differ. Across all contrast
conditions, the denominator scales the whole response, causing
the effective weights to be <1 (cross-orientation suppression).
This effect is of course most striking in the regime of winner-
take-all competition, where the denominator reduces the weight
applied to the weaker response to almost zero.

We tested the normalization model on the population
responses and found that it provided good fits in both regimes
(Figure 5). For the example experiment (Figure 5A) the model
captures qualitatively all the fundamental behaviors of the popu-
lation. Fits to other data sets, including those where the compo-
nent gratings had different angles, were of comparable or higher
quality (see Figure S1 available online). The good performance of
the model is confirmed by an analysis of effective weights and fit
quality across experiments (Figures 5B and 5C). The model
captured the regime of equal summation seen when component
contrasts are similar, predicting similar weights for the two
component responses (Figure 5B, diagonal) and yielding good
fits (@ = 91.5% = 1.0%; Figure 5C). The model also captured
the regime of winner-take-all competition, predicting progres-
sively smaller weights for gratings whose contrast decreases
relative to the other grating (Figure 5B, off-diagonal) and again
yielding good fits (g = 91.7% =+ 0.6% SE; Figure 5C). Median
parameters of the normalization model were n = 1.5 + 0.13,
Cso=13.1+x4.2,and 0 =19.0 + 2.1.

Importantly, in the normalization model the gradual transition
from one regime to the other is explicitly controlled by the
component contrasts, without requiring a change in model
parameters. The normalization model, indeed, performs almost
as well as the weighted-sum model with optimal weights. Yet it
requires only five parameters: one for overall responsiveness,
rmax,» two for contrast responses (cso and n), and two for the
circular Gaussian G (width and vertical offset). The weighted-
sum model, by comparison, requires the same five parameters
plus two weights w4(c4, €») and ws(c4, ) for each combination
of positive grating contrasts ¢4 and c,. For our data sets that
makes 5 + 16 = 21 free parameters, more than four times the
five free parameters in the normalization model.

Normalization in Subthreshold Responses

The physiological mechanisms underlying response normaliza-
tion in individual V1 neurons are at the moment unclear and
may rest on a combination of factors (Carandini et al., 1997; Car-
andini et al., 2002; Chance et al., 2002; Finn et al., 2007; Freeman
et al., 2002; Priebe and Ferster, 2006). It is therefore of interest
to know to what degree normalization is present in the sub-
threshold responses as opposed to spiking responses.

To measure subthreshold activity in populations of neurons,
we analyzed local field potential (LFP) responses measured
with the same 10 x 10 electrode array that measures the spike
responses. The LFP comprises the combined subthreshold
activity of the neurons surrounding the electrode (Katzner
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Figure 5. Predicted Population Responses, Weights, and Fit Quality
of the Normalization Model

(A) Population responses are fitted by the normalization model with a single set
of parameters. Error bars indicate +1 SE of responses across sites in each bin.
(B) Weights predicted by the normalization model.

(C) Average fit quality of the normalization model. Data in (A) are from experi-
ment 82-6-3, plaid angle = 90°.

et al., 2009). To obtain the highest signal-to-noise ratios, we
pooled these LFPs across all responsive sites of the array and
across all animals (n = 4). To distinguish the responses to the
test from the responses to the mask, we employed a frequency
tagging method typically used in EEG research (Candy et al.,
2001; Morrone and Burr, 1986; Regan, 1989): we made the
test and mask contrast-reverse at different frequencies. These
frequencies effectively tag the LFP responses, which oscillate
at twice the frequency of reversal (Katzner et al., 2009).

This design provides an opportunity to test the same normal-
ization model that we have applied to spike responses. Because
of the pooling across sites, we can no longer study population
responses as a function of preferred orientation. By tagging
the two stimuli by frequency, though, we can distinguish the
responses to test and mask. The predicted responses R;,
accordingly, depend on stimulus tag, j = 1 for the test and j = 2
for the mask:
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n
Rj (C‘l 5 C2) :rmaxm- (5)
Because adding a superimposed grating affects only the denom-
inator, in this design cross-orientation suppression provides
a frank reduction in tagged responses.

The LFP signals agreed closely with these predictions (Figures
6A and 6B). First, the LFPs evoked by the test grew and eventu-
ally saturated as the test contrast increased (Figure 6A, open
symbols). The normalization model closely predicted this satura-
tion (Figure 6A, curves). Second, these LFPs were reduced by
adding a 25% mask grating (Figure 6A, closed symbols). The
normalization model closely matched this effect, correctly pre-
dicting a rightward shift of the contrast response function (Fig-
ure 6A, curves). Third, the suppressive interactions between
test and mask were mutual: increasing test contrast reduced
the LFPs evoked by the mask (Figure 6B, closed symbols). The
model did the same (Figure 6B, curves).

Because the predictions of the normalization model were
accurate (98.2% explained variance), the model’s parameters
can be used to compare subthreshold responses to spike
responses. We found that subthreshold population responses
measured from LFPs saturated at lower contrasts (cso = 13%;
n = 1.5) than those measured earlier from population spike
responses (Cso = 22%; n = 1.0). A similar difference between
contrast responses of subthreshold potentials and spikes has
been seen in individual neurons and may be a simple conse-
quence of spike threshold (Finn et al., 2007).

Normalization in Human V1

Does normalization govern the population responses only under
anesthesia or can it be used to explain responses in the awake
cortex? Does it apply to humans? We sought an answer to these
questions by measuring the electroencephalogram (EEG) of
human subjects with a sensor net of 128 electrodes. From these
signals, we obtained visual evoked potentials (VEPs). Human
VEP responses to plaid stimuli exhibit suppressive interactions
between the grating components (Burr and Morrone, 1987;
Candy et al., 2001; Ross and Speed, 1991), and such interac-
tions may be explained by normalization (Candy et al., 2001).

The VEP is a close approximation to the pooled LFP measured
within the underlying cortex (Schroeder et al., 1991). To measure
it, therefore, we used stimuli similar to those used to measure
LFP in anesthetized cats: we made the test and mask gratings
reverse in contrast at different frequencies. Test and mask thus
caused distinct responses that oscillated at twice the reversal
frequencies (Candy et al., 2001). To extract responses origi-
nating specifically from area V1, we estimated the current source
density across the entire cortex and then defined a region of
interest based on maps of retinotopy measured with fMRI
(Appelbaum et al., 2006).

The amplitudes of the visually evoked currents source-local-
ized to V1 in humans were remarkably similar to the pooled
LFP signals in anesthetized cats (Figures 6C and 6D). First,
increasing test contrast increased the responses to the test
(Figure 6C, open symbols). Second, adding the mask to the
test reduced these responses (Figure 6D, closed symbols). Third,
increases in test contrast reduced the responses to the mask

Responses Responses
to test to mask
Cat V1
A B
1.2
1.0 ® test+
0.8 mask
0.6 #
0.4
test
0.2 alone
B o o000
0 _— —_—
6 12 25 50 6 12 25 50
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- .
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D
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0.4
O O
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Test contrast (%)

Figure 6. Normalization in Large-Scale Subthreshold Activity in Cats
and Humans

Curves are fits of the normalization model. Error bars indicate standard error
across subjects.

(A and B) LFPs obtained from area V1 in anesthetized cats in response to the
test stimulus (A) and the mask stimulus (B). Response amplitudes were ex-
tracted at twice the stimulus frequency. Open symbols are conditions in which
the test is presented alone, closed symbols indicate conditions in which a 25%
contrast mask is added.

(C and D) Source-imaged VEP signals obtained from area V1 in human
observers using current source density modeling and fMRI retinotopic
mapping. Format as in (A) and (B). Responses in individual experiments
were normalized to yield a value of 1 when the test stimulus was presented
alone at 25% contrast.

stimulus (Figure 6D). Therefore, in the population responses
measured in human subjects (just as in those measured from
anesthetized animals), there is competition between the stimuli.

The human V1 population responses, again, were closely pre-
dicted by the normalization model (Equation 5) with fit parame-
ters that were almost identical to those estimated for cat LFPs
(Figures 6C and 6D, curves). As in anesthetized cats, the model
(Equation 5) captures the competitive interactions between test
and mask: the contrast response function to the test is shifted
to the right in the presence of a mask (Figure 6C, curves), and
responses to the mask decrease as the test contrast increases
(Figure 6D, curves). As in cat LFPs, these predictions were accu-
rate (96.2% explained variance). The model parameters for
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fitting these human V1 responses (cso = 12%; n = 1.4) were
similar to those for fitting pooled LFP responses in anesthetized
cats (c50 = 13%; n = 1.5). The similarity of subthreshold popula-
tion responses in anesthetized cats and human observers indi-
cates that V1 responses in both species and across behavioral
states are governed by the same functional mechanism: contrast
normalization.

Impact of V1 Normalization on Higher Areas

We finally asked what consequences our findings may have on
the decoding of V1 signals by higher cortical areas. We have
seen that normalization explains the regimes of equal summation
and competition observed in V1 and that competition can be so
extreme as to correspond to a winner-take-all effect. Such
profound competition is bound to have consequences on
downstream areas.

To investigate these consequences, we implemented a well-
established model of a pattern-selective neuron in area MT
(Figures 7A-7C). When stimulated with plaids, such neurons
respond to the global direction of the plaid rather than the direc-
tion of motion of the individual components (Movshon et al.,
1985). A successful model for these neurons (Rust et al., 2006;
Simoncelli and Heeger, 1998) postulates that they sum the
activity of a population of V1 neurons with weights appropriate
to obtain the desired preferred direction (Figure 7A). We imple-
mented this model for a model MT neuron whose direction tuning
curve measured with drifting gratings peaks at 180° (Figure 7B).
The neuron exhibits the same selectivity when the stimulus is
a plaid composed of two gratings differing in direction by 120°:
it responds most strongly when the global direction of the plaid
is 180° (Figure 7C, black curve). The model incorporates contrast
normalization in V1, but none of these phenomena rests on such
normalization: neglecting normalization simply results in larger
responses, without changes in tuning (Figure 7C, gray curves).

Normalization in area V1, however, can profoundly affect the
responses of this MT neuron to a plaid with unequal component
contrasts (Figure 7D). When component contrasts are 25% and
75%, normalization of population responses in area V1 leads to
marked competition. The lower-contrast stimulus almost disap-
pears from the population responses of V1, so the model MT
neuron responds mostly to the higher contrast stimulus. Its
tuning for plaid direction shifts toward 240° (i.e., the plaid direc-
tion in which the higher contrast grating drifts at 180°) (Figure 7D,
black curve). The model MT neuron, in other words, has largely
lost its ability to represent the overall motion of the plaid. This
effect is almost entirely explained by normalization: neglecting
normalization would lead to much smaller effects (Figure 7D,
gray curve). This simple example, therefore, illustrates how
normalization of population responses in area V1 can have
profound consequences for the response properties of areas
downstream in the visual hierarchy.

DISCUSSION
We investigated the representation of concurrent stimuli in the
population responses of visual cortex. When the visual system

is faced with multiple simultaneous orientations and contrasts,
the population response can be described as a weighted sum
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Figure 7. Model of the Effects of V1 Normalization on a Pattern-
Selective MT Neuron

(A) Weights of a model MT neuron as a function of preferred direction of V1
neurons.

(B) V1 population response (left) and response of the MT neuron (right, filled
circle) to a single grating of 50% contrast drifting in a direction of 180°. Grat-
ings of different directions of motion will elicit shifted versions of the V1 popu-
lation response (data not shown), which combine into the MT tuning curve
(black line).

(C) Responses to a plaid of equal component contrast (component directions
are 120° and 240°, plaid motion direction is 180°). V1 population response
(left), with normalization (black) and without normalization (gray). Response
of the MT neuron to the plaid (right, filled circle). Plaids of different global
motion directions will elicit shifted versions of the V1 population response
(data not shown), which are combined into the MT tuning for plaids (black
trace: with V1 normalization; gray trace: without V1 normalization). The MT
neuron responds most strongly when the global motion direction of the plaid
is 180°.

(D) Responses to the same plaid, but with unequal component contrast. Same
format as in (C). With normalization in V1, the MT neuron’s tuning for plaid
direction shifts toward 240° (i.e., toward the plaid) with directions of 180°
(high contrast) and 300° (low contrast).

of the responses to the individual stimulus components. The
weights applied to the stimulus components depend on the
specific combination of stimulus strengths and lead to a
range of behaviors from equal summation to winner-take-all
competition.

Our results agree qualitatively but not precisely with a recent
study that has explored population responses to a subset of
our stimuli—namely, plaids whose components have identical
contrast (MacEvoy et al., 2009). This study reported that popula-
tion response to such plaids resembled the average of the
responses to the component gratings, independent of overall
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contrast. This behavior corresponds to equal-weights summa-
tion with weights of 0.5. Similar to their results, we find that the
weights for same-contrast plaids do not depend on overall
contrast (ANOVA, F = 0.61; df = 3; p = 0.5). However, we consis-
tently found weights higher than 0.5 (average of 0.67 + 0.14 SD;
n = 9). The discrepancy may be due to differences in recorded
signals (spikes versus blood related signals) and in species
(cat versus tree shrew).

Our study, in fact, extends this previous finding by providing
a more direct measure of neuronal responses, by probing the
responses to plaids in which component contrasts differ, by
showing that they obey a weighted-sum law across all contrast
combinations, and by providing a unifying normalization model
that accounts for the responses. The model has few free param-
eters, and exhibits a gradual transition between regimes of equal
summation and winner-take-all competition that depends on the
stimulus contrasts.

By applying and validating a normalization model to popula-
tions, moreover, we substantially extend prior studies of normal-
ization in individual neurons. The normalization model has been
shown to predict the responses of single neurons to stimuli that
were tailored to the recorded neuron (Carandini et al., 1997;
Freeman et al., 2002; Heeger, 1992). These prior results,
however, concern only a subset of the neurons in a population:
those that are stimulated optimally by either component of the
plaids. Such neurons inhabit two of the 12 orientation preference
bins in which we have divided the population. It was not known
whether their collective action could be explained by a single
normalization model. Moreover, the majority of neurons —those
in the remaining 10 bins—are driven optimally by neither grating.
It was unknown whether the normalization model would have
predicted their responses.

While performing the apparently mundane task of contrast gain
control, normalization provides a single mechanism that can
gradually turn from equal summation to winner-take-all competi-
tion. Work in single neurons had well established that normaliza-
tion could capture the effects of cross-orientation suppression
and thus predict sublinear summation of responses to the indi-
vidual components. As revealed by our measurements, however,
the normalization model exhibits an unintuitive behavior: a strong
population response to a single stimulus can be dramatically
suppressed by adding a stimulus of higher contrast, so much
that the population response to the compound stimulus seems
to represent only the stimulus with higher contrast.

The ability of the normalization model to capture population
activity in response regimes ranging from equal summation to
winner-take-all competition resonates with a recent proposal
of a canonical divisive computation (Kouh and Poggio, 2008).
Although the mathematical expressions for the two divisive
computations are similar, there are also important differences.
First, the normalization model acts on the representation of
a stimulus in the population activity; this representation is
weighted by stimulus strength, not by synaptic strength.
Second, the normalization model accounts for all responses
with a single set of parameters, not by postulating different
circuits with different sets of parameters. Hence, the normaliza-
tion model predicts that the same neural circuitry can operate
across all stimulus conditions.

The neural circuitry underlying response normalization is far
from clear and may involve a combination of synaptic inhibition
(Carandini et al., 1997), modulation of input noise (Chance
et al.,, 2002; Finn et al., 2007), and nonlinearities in the input
from the LGN (Carandini et al., 1997; Freeman et al., 2002; Priebe
and Ferster, 2006). Our results of profound suppression of LFP
responses in the presence of multiple stimuli indicate that spike
threshold in area V1 may not play a major role in response
normalization. This result certainly agrees with measurements
of cross-orientation suppression in the membrane potential of
V1 simple cells (Priebe and Ferster, 2006).

Similar to LFPs in anesthetized cats, normalization also affects
population responses recorded from human V1. Our data are in
general agreement with earlier measurements of cross-orienta-
tion suppression in the human VEP (Candy et al., 2001; Morrone
and Burr, 1986). We extend the results of these studies in three
ways. First, by using source-localization combined with fMRI
retinotopic mapping, we concentrate on responses of area V1
rather than the whole occipital cortex. Second, we relate directly
these population responses in humans to measurements of LFP
obtained in cats with similar stimulation methods. Third, we
demonstrate that both LFP and source-imaged VEP responses
can be predicted quantitatively by a normalization model with
similar parameter values.

The normalization observed in the human primary visual cortex
should have behavioral consequences during the perception of
superimposed orientations: perceptual thresholds for the test
stimulus should be elevated in the presence of a mask. Such
threshold elevations have indeed been found in a number of
psychophysical experiments and are well characterized (Petrov
etal., 2005). Also in agreement with our findings, psychophysical
experiments exploiting reflexive ocular following movements
suggest an intriguing combination of summation and winner-
take-all mechanisms depending on the relative contrast of
competing image motions (Sheliga et al., 2006).

With simple simulations, we show that normalization in the
population responses of V1 can have profound effects on
neurons in higher visual areas. Strikingly, normalization in V1
makes our model MT neuron lose its pattern-selectivity when
the two components of a plaid have dissimilar contrast. This
prediction may not be far from truth. First, it is consistent with
a recent abstract reporting exactly such behavior in actual MT
neurons (Kumbhani et al., 2008). Second, it is consistent with
similar behaviors seen in the responses of MT neurons to
multiple stimuli at different positions in their receptive field, which
exhibit summation for stimuli with similar contrast and competi-
tion for stimuli with different contrast (Britten and Heuer, 1999;
Heuer and Britten, 2002). Third, our prediction is consistent
with the tendency of human observers to perceive plaids of
different component contrast as moving in the direction of the
component of higher contrast (Stone et al., 1990).

The normalization model for population responses could serve
as a front-end of models of attentional selection. Attention
enhances the processing of behaviorally relevant information
and reduces the impact of irrelevant information; effects of atten-
tion have been likened to changes in effective stimulus contrast
(Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000). In our
experiments, which do not engage attentional modulation, the
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sensory representation of multiple stimuli overemphasizes the
more salient object. Attention could act on top of these purely
sensory effects: spatial attention could further accentuate the
existing asymmetry of the sensory representation (Ghose and
Maunsell, 2008; Moran and Desimone, 1985; Reynolds et al.,
1999; Treue and Martinez-Trujillo, 1999), and feature-based
attention could additionally sharpen the population response to
the attended feature (Martinez-Trujillo and Treue, 2004). In line
with these ideas, the effects of attention on psychophysical
performance have been modeled as competitive interactions
between visual filters (Lee et al., 1999). Furthermore, it has
recently been proposed that attention might use existing normal-
ization circuits to modulate neuronal responses to sensory
stimuli (Reynolds and Heeger, 2009).

Normalization, in summary, makes population responses op-
erate not only in a regime of equal summation, where the
response to summed stimuli resembles the scaled sum of the
responses, but also in a regime of winner-take-all competition,
where the response to summed stimuli resembles the response
to the stronger stimulus alone. Effects of this kind have been
observed in single neurons of regions as diverse as cortical
area MT (Britten and Heuer, 1999; Heuer and Britten, 2002)
and inferior colliculus (Keller and Takahashi, 2005). They may
be due to normalization operating in the population responses
in those regions or in earlier stages. These results suggest that
normalization may be a fundamental operation, one that shapes
population responses more profoundly than might have been
expected from earlier studies.

EXPERIMENTAL PROCEDURES

MUA and LFP Recordings

Experiments were conducted at the Smith-Kettlewell Eye Research Institute
under the supervision of the Institutional Animal Care and Use Committee.
Detailed methods for these experiments are published elsewhere (Katzner
et al., 2009). Briefly, young adult cats were anesthetized with Sodium Pentho-
tal (0.5-2 mg/kg/hr, i.v.) and Fentanyl (typically 10 pg/kg/hr, i.v.), supple-
mented by inhalation of O, mixed with NoO (typically in a ratio of 70:30).
Eye-movements were prevented by a neuromuscular blocker (Pancuronium
Bromide, 0.15 mg/kg/hr, i.v.). A 10 x 10 electrode array (400 um spacing,
1.5 mm electrode length) was implanted in area V1 to record multiunit activity
(MUA) and local field potentials (LFP). Insertion depths were about 0.8-1 mm,
resulting in recordings confined mostly to layers 2-3. A Cerebus 128-channel
system (Blackrock, Utah) was used to sample the data.

Stimuli for MUA Analysis

Stimuli were contrast-reversing sinusoidal gratings presented monocularly on
a CRT monitor (refresh rate 125 Hz, mean luminance 32 cd/m?). Gratings were
modulated sinusoidally in contrast with a temporal frequency of 4 Hz (9 exper-
iments). Spatial frequency was adjusted to optimally drive the majority of sites
in the electrode array. Gratings were presented in a circular window (30° diam-
eter) and lasted 2 s. The contrast of the gratings was 0%, 6%, 12%, 25%, and
50%. Plaids were obtained by summing two gratings. For each experiment,
the angle between component orientations in the plaid was fixed. To reduce
effects of adaptation, each experiment consisted of three pairs of orientations
(e.g., 0°/90°, 30°/120°, 60°/150°). Data for different pairs were collapsed after
adjusting for the difference between stimulus orientation and neuronal prefer-
ence. In addition, we recorded responses to 100% contrast gratings of
12 different orientations to obtain orientation tuning curves for each site in
the array. The stimuli were shown in random order in blocks presented at least
eight times.
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Analysis of MUA

In each channel of the multielectrode array, we set thresholds to ~4 SD of the
background noise. Threshold crossing were considered multiunit activity and
were pooled together for each site. For each site, orientation preference was
defined as the vector average of firing rate responses to the 12 full-contrast
tuning stimuli. Only responsive sites with at least minimal tuning (circular vari-
ance <0.85) were considered in all further analyses (Ringach et al., 2002).
Using this criterion, on average 42 + 13 sites (median + MAD) were included.
For the computation of population responses, sites were binned (15° bin width)
according to their preferred orientation. Before averaging across sites,
responses for each site were normalized to their average response to the
tuning stimuli.

Stimuli for LFP Analysis

The stimuli used in the LFP experiments were identical to the stimuli used in the
MUA experiments with the following exception: the two components were
modulated with a temporal frequency of 3.5 and 5 Hz. Data were obtained in
four experiments.

Analysis of LFPs

LFPs were sampled at 2 kHz with a wide front-end filter (0.3 Hz to 500 Hz). We
further low-pass filtered the LFP below 90 Hz to exclude any contamination by
multiunit responses. LFPs were averaged across all electrodes in the Utah
array that were responsive (circular variance of multiunit responses to 12
different orientations <0.85). Amplitudes at twice the stimulus frequency
were extracted from the averaged data using Fourier analysis.

Single Unit Recordings

The analysis in Figure 2 was performed on 75 well-isolated neurons recorded
in previous experiments in nine cats. Details on stimuli and preparation are
described elsewhere (Freeman et al., 2002).

EEG Recordings

Methods for VEP recordings and source localization are described elsewhere
(Appelbaum et al., 2006). Briefly, the EEG was acquired with 128-channel
HydroCell Sensor Nets and a Netstation digitization system (EGI, Eugene
OR) in five subjects. For each subject, the 3D locations of the sensors were
recorded using a “Fastrak” radio-frequency 3D digitizer (Polhemus, Colches-
ter, VT) and coregistered to their T1-weighted anatomical magnetic resonance
(MR) scans, from which a three-shell boundary element model of the skull and
scalp was computed.

Stimuli for EEG Analysis

Stimuli were presented foveally on a CRT monitor (refresh rate 72 Hz, mean
luminance 32 cd/m?. Stimuli were viewed binocularly and consisted of
contrast-reversing gratings, modulated at temporal frequencies of 4.5 Hz
(test) and 3.6 Hz (mask). Gratings were presented within a circular window
spanning 5° of visual angle, and their spatial frequency was 1 cpd. The test
gratings had 0%, 6%, 12%, 25%, or 50% contrast; the mask gratings had
0 or 25% contrast. Each combination of grating contrasts was presented at
least 15 times. Each trial lasted 11.1 s. During the trial, subjects attended to
a stream of simultaneously presented letters and were instructed to indicate
the presence of a probe letter “T” among distracters “L.”

Analysis of EEG Signals

EEG signals were postprocessed using custom software to remove artifacts
due to head motion and blinks. To localize the sources of the VEP activity,
cortically constrained minimum norm source estimates (Hamaélédinen and
limoniemi, 1994) were computed and related to each subject’s visual areas
as defined by fMRI retinotopic mapping (Engel et al., 1997). We extracted
the time course of activity from area V1 and obtained the responses to test
and mask grating by Fourier analysis.

Modeling
The models used to fit MUA are given by Equations (1)—(4) in the main text.
Before fitting the models, we subtracted spontaneous activity to the gray
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screen from all responses. The model used to fit LFP and VEP responses is
given by Equation (5). All models were fitted by a least-squares algorithm.

Fit quality was assessed by one of two measures. The first measure is
the percentage of variance in the responses r explained by the model predic-
tions m:

1_ 27:1(”/’ 7m1)2~

S =n?
where the indices i indicate the bin of orientation preference and 7 indicates the
mean of the responses. The second measure (fit quality index) is the root mean
square deviation between responses and model, normalized to the mean of
the observed responses:

V=

Simulation of MT Responses

A population of direction-selective V1 neurons was modeled using the average
parameters obtained from fitting our population recordings with the normaliza-
tion model (Equation 4, width, semisaturation contrast, and exponent), and
assuming an equal spacing of preferred direction across neurons. The weight-
ing profile of the MT neuron is given by a Gaussian with a sigma of 65° (inspired
by the neuron in Figure 5E of Rust et al., 2006). V1 population responses to
plaids of 120° angle were simulated using the normalization model (Equation
4) and multiplied by the MT weighting profile. Responses below zero were
set to zero.

SUPPLEMENTAL DATA

Supplemental data includes an Appendix and one figure and may be found
with this article online at http://www.cell.com/neuron/supplemental/S0896-
6273(09)00886-1.
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