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SUMMARY

How do neuronal populations represent concurrent
stimuli? We measured population responses in cat
primary visual cortex (V1) using electrode arrays.
Population responses to two superimposed gratings
were weighted sums of the individual grating res-
ponses. The weights depended strongly on the
relative contrasts of the gratings. When the contrasts
were similar, the population performed an approxi-
mately equal summation. When the contrasts
differed markedly, however, the population per-
formed approximately a winner-take-all competition.
Stimuli that were intermediate to these extremes eli-
cited intermediate responses. This entire range of
behaviors was explained by a single model of con-
trast normalization. Normalization captured both
the spike responses and the local field potential res-
ponses; it even predicted visually evoked currents
source-localized to V1 in human subjects. Normaliza-
tion has profound effects on V1 population res-
ponses and is likely to shape the interpretation of
these responses by higher cortical areas.

INTRODUCTION

Even the simplest sensory stimulus or planned movement

causes a large pool of neurons to be active. The code for both

sensory perception and motor output, therefore, is thought to

lie in the collective activation profile of neuronal populations

(Georgopoulos et al., 1982; Mcllwain, 1986; Nicolelis et al.,

1995; Pouget et al., 2000). This profile has been measured

mostly when a population is faced with an individual sensory

stimulus or a single motor output. In such cases, the profile of

population activity is typically bell shaped, with the strength of

each neuron’s response depending on the match between the

neuron’s preferences and the sensory signal or the planned

movement (Chen et al., 2006; Georgopoulos et al., 1986; Puru-

shothaman and Bradley, 2005).

In nature, however, a sensory system is often confronted with

the conjoint presence of multiple stimuli. Likewise, a motor

system needs to represent a combination of multiple move-

ments. In these circumstances, the population responses will

not simply have a single peak centered on a particular stimulus
or movement, but rather a combination of multiple peaks

(MacEvoy et al., 2009; Pasupathy and Connor, 2002; Treue

et al., 2000). Understanding the rules of this combination is

fundamental to our comprehension of population coding.

To investigate the representation of multiple stimuli in

a neuronal population, we measured responses in primary visual

cortex (V1) to sums of two component gratings. To control the

strength of sensory stimulation, we varied grating contrast. To

control the identity of the stimulated neurons, we varied grating

orientation. Having control of both quantities provided a space

that is ideal to test models of population coding.

We first investigated the impact of stimulus contrast and found

that population responses are contrast-invariant: contrast scales

the population response profiles without changing their shape.

By comparing response properties of populations to those of

the underlying single neurons, we explain how this invariance

relates to the invariance of tuning curves seen in single units

(Finn et al., 2007; Sclar and Freeman, 1982).

We then asked how population responses in V1 represent two

superimposed component gratings (plaids), and we found that

these responses could be well approximated by a weighted

sum, in which the weights applied to the component gratings

depend on contrast. The weights given to the component grat-

ings of the plaid were always smaller than the sum of the weights

to the individual components, consistent with the well-known

phenomenon of cross-orientation suppression (DeAngelis et al.,

1992; Morrone et al., 1982). We also found a profound effect of

relative contrast: a gradual transition between two regimes.

When the component contrasts are similar, the population gives

sizeable weights to both components (equal summation). When

the contrasts are dissimilar, however, the responses overwhelm-

ingly favor the component with higher contrast (winner-take-all

competition).

We were able to capture all these phenomena with a simple

model based on contrast normalization. This model involves

a division between a numerator that sums contributions of indi-

vidual components and a denominator that grows with overall

contrast. The model has been previously applied to individual

neurons that are optimally tuned to one of the component grat-

ings (Carandini et al., 1997; Freeman et al., 2002; Heeger,

1991; Heeger, 1992; Heuer and Britten, 2002). Here we extend

it to entire populations and show that it can accurately describe

their widely different regimes of operation.

To demonstrate the relevance of these findings to visual

perception, we investigate them not only in the spike res-

ponses of anesthetized cats but also in visually evoked currents
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Figure 1. Tuning Curves and Population

Responses to Single Orientation Stimuli

(A) Orientation tuning curves of all responsive sites

(66 of 96), sorted according to preferred orienta-

tion. Each tuning curve is normalized by its mean

across orientations.

(B) Population response to a 45� stimulus:

responses of all sites (dots) as a function of pre-

ferred orientation of each site.

(C) The population response in (B) after binning

sites with similar orientation preference (bin width:

15�). The curve is the best fitting circular Gaussian.

Error bars indicate ±1 SE of responses across sites

in each bin.

(D) Population response to a 0� stimulus for three

contrasts: 12%, 50%, and 100%. The abscissa

indicates preferred orientation relative to stimulus

orientation. Data for stimuli of multiple orientations

(0�, 30�, and 60�) are combined to obtain each

population response. Error bars indicate ±1 SE of

responses across sites in each bin. The curves

fitting the data are circular Gaussians differing

only in amplitude.

(E) Amplitude of the population responses as

a function of stimulus contrast. The curve is the

best-fitting hyperbolic ratio function (c50 = 42.1%,

n = 1.0). All fits are given by Equation (1). Experi-

ment 84-12-16.
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source-localized to V1 of human subjects. Moreover, we show

with simple simulations how normalization in area V1 can have

profound effects on the interpretation of V1 signals by higher

cortical areas and, thus, shape perceptual judgments.

RESULTS

To measure the responses of a large population of neurons in

area V1, we recorded from a 10 3 10-electrode array implanted

in anesthetized cats (Figure 1A). The array covered an area of

16 mm2 so that it included regions with a diversity of orientation

preferences. As a result, spike responses measured at individual

sites exhibited tuning curves whose preferences covered fairly

uniformly the range of orientations (Figure 1A).

As expected, a stimulus of a given orientation evokes across

the population a response whose profile peaks at the neurons

that prefer the stimulus orientation (Figures 1B and 1C). This

profile was well fit by a simple circular Gaussian function G4(q)

centered on stimulus orientation 4 and varying with the preferred

orientation of the neurons q (Figure 1C).

Contrast-Invariance of Population Responses
We asked how these population responses are affected by stim-

ulus contrast, and we found them to be invariant: changing

contrast affected their profile in amplitude but not in width

(Figures 1D and 1E). To test for invariance, we fitted the

responses to an oriented stimulus (4) by a separable model,

the product of the Gaussian function of preferred orientation q

and a function of stimulus contrast c:

R4ðq; cÞ= G4ðqÞfðcÞ: (1)
932 Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc.
We tested this model by choosing a typical function for stim-

ulus contrast (Figure 1E), the hyperbolic ratio that is commonly

applied to individual neurons (Albrecht and Hamilton, 1982;

Heeger, 1992):

fðcÞ= rmax

cn

cn
50 + cn

; (2)

where the parameters rmax, c50, and n determine the overall

responsiveness, the semisaturation contrast, and the exponent

of an accelerating nonlinearity related to spike threshold. The

separable model provided excellent fits to the population

responses. It explained 98.8% of the variance in the example

data set (Figures 1D and 1E) and an average of 98.5% of the

variance in all nine data sets. These results confirm earlier indica-

tions obtained by intrinsic imaging (Carandini and Sengpiel,

2004): population responses to individual orientations are con-

trast invariant.

A factor contributing to this invariance of population

responses is surely the well-known invariance of tuning curves

in individual neurons. Such tuning curves are scaled by stimulus

contrast without changes in shape (Finn et al., 2007; Sclar and

Freeman, 1982). The invariance seen in single neurons, however,

is not sufficient to explain the invariance of population

responses. For example, if neurons that are more sharply tuned

responded only to higher contrasts, then increasing contrast

would narrow the profile of population responses.

The invariance of population responses, indeed, makes

a strong prediction that orientation tuning width and contrast

sensitivity should be distributed independently across neurons.

Increasing contrast, then, would not preferentially engage

neurons that are more or less sharply tuned, thus leaving the
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Figure 2. Relationship between Single Neuron Tuning Curves and

Response Properties of the Population
(A) Orientation tuning curves of single neurons (n = 75, gray), normalized to the

maximum response and centered on preferred orientation. Superimposed is

the average orientation response profile of the population (black).

(B) Contrast response functions. Same format as in (A).

(C) Semisaturation contrast (obtained by fitting Equation 2) plotted as a func-

tion of tuning width (half-width at half-height) as obtained by fitting a circular

Gaussian to each neuron’s response. Tuning width and semisaturation

contrast are independently distributed across neurons in the population.
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width of the population profile unchanged. This intuitive argu-

ment is formalized mathematically in the Appendix in the Supple-

mental Data (available online).

We tested this prediction and indeed found no systematic rela-

tionship between tuning width and contrast sensitivity across

individual neurons (Figure 2). We measured orientation tuning

curves (Figure 2A) and contrast responses (Figure 2B) in 75

well-isolated V1 neurons individually recorded in a separate set

of experiments. We quantified contrast sensitivity of each neuron

by the two parameters of the hyperbolic ratio: semisaturation

contrast c50, and exponent n. We then asked whether these

parameters are independent of the neuron’s tuning width (half-

width at half height). We assessed statistical independence by

calculating quartiles of the marginal distributions and testing

for uniformity of the joint distribution. We saw no departure

from independence between tuning width and semisaturation

contrast c50 (Figure 2C, X2 = 4.57; df = 7; p = 0.71). Similarly, there

was no departure from independence between tuning width and

exponent n (data not shown; X2 = 7.56; df = 7; p = 0.37).

This analysis reveals that the properties of individual neurons

and those of the population can be quite different. The mean

tuning width of the individual neurons was 23� ± 14� (mean ±

SD; n = 75; Figure 2A), comparable to the 22� ± 2� measured

in the population (n = 9 experiments; Figure 1D). The semisatura-

tion contrast was also similar: 20% ± 11% for individual neurons

(median ± MAD; Figure 2B) and 22% ± 9% for the population

(Figure 1E). The exponent, however, was much lower in the pop-

ulation than in most of the individual neurons: 2.2 ± 1.0 (median ±

MAD; Figure 2B) for individual neurons but only 1.0 ± 0.1 for the

population. The contrast responses of the population (Figure 1E),

therefore, are much shallower than those of most individual

neurons.

These similarities and differences between neurons and pop-

ulation are simply explained. We built predicted population

responses by averaging the fitted responses of the individual

neurons after aligning their preferred orientation (Figures 2A

and 2B, black curves). The predicted population tuning profile

has a width of 20�, intermediate to that of individual neurons

and similar to that of the actual population. The predicted popu-

lation contrast response, instead, is much shallower than that of

the average individual neuron: it has a similar semisaturation

contrast (20%) but a lower exponent (1.4). These results echo

the measurements made in the actual population. The shallow

response derives from the fact that individual neurons have

a broad range of semisaturation contrasts (Figure 2B).

Summation and Competition in Population Responses
We then asked how a population represents more than one stim-

ulus and measured responses to plaids (Figure 3A). Plaids were

obtained by superimposing two component gratings with

different orientations; the component contrasts were indepen-

dently varied.

The population responses to these plaids depended strongly

on the relative contrasts of the components (Figure 3B). If the

component contrasts were similar (e.g., 6% and 12%) or iden-

tical (e.g., both 12%), the population response to the plaid ex-

hibited two peaks, one at each of the component orientations.

However, if the component contrasts differed considerably
(e.g., 50% and 12%), the response to the component of higher

contrast (50% horizontal) dominated the population response

to the plaid (Figure 3B, lower right). In these conditions, it is as

if the 12% contrast vertical grating had almost disappeared.

However, when this stimulus was presented alone it elicited

a large response (Figure 3B, lower left).

To characterize these responses we described them with

a weighted-sum model (Figure 3C). In this model, the response

to the plaid with component orientations 41 and 42 and contrasts

c1 and c2 is given by a linear combination of the responses to the

component gratings:

R1 + 2ðc1; c2Þ= w1ðc1; c2ÞR1ðc1Þ+ w2ðc1; c2ÞR2ðc2Þ; (3)

where the responses to the individual components R1(c1) and

R2(c2) are given by Equation (1) with Gaussians centered on 41

and 42, and the scaling factors w1, w2 depend on the combina-

tion of contrasts. Here and elsewhere, we express population

responses (quantities in bold letters) as vectors: they are func-

tions of stimulus orientation. These vectors are in turn affected

by stimulus contrast.

Because the weighted-sum model provided good fits, its

best-fitting weights w1, w2 can be used to describe the rules of

combination. Across contrast combinations, adding the two

component gratings resulted in weights <1, a signature of cross-

orientation suppression. Furthermore, the weights greatly de-

pended on relative component contrasts. Weights were sizeable

for both components if the two contrasts were similar (w1 = 0.99,

w2 = 0.24) or identical (w1 = w2 = 0.77), resulting in two clear

peaks in the activity profile (Figure 3C, left and middle). However,
Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc. 933
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Figure 3. Population Responses to Plaids and Predictions of the

Weighted-Sum Model

(A) Stimuli were gratings of two different orientations (first row and first column)

and plaids obtained by summing the individual component gratings, for

different combinations of component contrasts.

(B) Population responses to these stimuli. Error bars indicate ±1 SE of

responses across sites in each bin. Model predictions for the single grating

responses are given by the separable model of orientation and contrast

(traces).

(C–E) Predictions of the weighted-sum model for the population responses to

plaids with best-fitting weights (C), equal weights (D), and winner-take-all

weights (E). The data are replotted from (B) for comparison. Data in (B)–(E)

are from experiment 83-10-15, plaid angle = 90�.
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if the component contrasts differed considerably, the weight as-

signed to the lower-contrast component was close to zero (w1 =

0.02, w2 = 0.92) resulting in a single peak (Figure 3C, right).

To understand these values of the weights it helps to consider

two extreme scenarios: equal weights and winner-take-all

weights (Figures 3D and 3E). In the first scenario, the population
934 Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc.
applies equal weights to both component responses: w1(c1, c2) =

w2(c1, c2). This scenario entails the presence of two peaks in

population responses to all plaids, leading to reasonable or

excellent fits if component contrasts are similar or identical

(Figure 3D, left and middle), but unacceptable fits if component

contrasts differ considerably (Figure 3D, right). In the second

scenario, instead, the population response completely disre-

gards the grating of lower contrast, w1 = 0 if c1 < c2 and vice

versa. Assuming winner-take-all weights leads to excellent

predictions if component contrasts differ considerably

(Figure 3E, right), but not if they are similar or equal (Figure 3E,

left and middle). Indeed, winner-take-all weights can only predict

a single peak in the activity profile. The sets of weights predicted

by the two scenarios, therefore, have a complementary pattern

of successes and failures.

To extend these qualitative findings we explored population

responses obtained with a broad range of contrast combinations

and with different plaid angles (Figures 4A–4C). As in the

previous examples, these population responses were closely

described by the weighted-sum model (Figure 4A, solid lines).

We searched for the weights w1 and w2 that yielded the best

fits and obtained a pair of weights for each contrast combination

(Figure 4B). With these best-fitting parameters, the weighted-

sum model made excellent predictions (mean fit quality index

q = 94.4% ± 0.5% SE; n = 9; Figure 4C).

The best-fitting weights w1 and w2 depended markedly on

component contrast (Figure 4B). First, the weights for plaids

were consistently below unity, indicating that the response to

a grating forming part of a plaid is smaller than the response to

that grating presented alone (cross-orientation suppression).

Second, with components of similar contrast both weights are

considerable (Figure 4B, diagonal). Third, when component

contrasts differ substantially, the weight given to the component

of lower contrast is much weaker (and sometimes negligible)

than the weight given to the component of higher contrast

(Figure 4B, off the diagonal).

These data therefore reveal a range of behaviors extending

from a regime of equal summation (at work when component

contrasts are similar) to a regime of winner-take-all competition

(at work when contrasts are very dissimilar). In intermediate

contrast conditions the weights are intermediate between these

extremes. To delineate the contrast conditions in which these

two regimes operate, we return to the two extreme scenarios

mentioned earlier: equal weights and winner-take-all weights

(Figures 4D–4G). Assuming equal weights (w1 = w2, Figure 4D)

leads to excellent predictions when component contrasts are

similar (q = 93.8% ± 0.8% SE; Figure 4E, diagonal region), but

results in poor predictions elsewhere (q = 81.7% ± 1.1%).

Assuming winner-take-all weights (w1 = 0 if c1 < c2, Figure 4F)

yields the opposite pattern of successes and failures

(Figure 4G): poor fits when contrasts are similar (q = 72.8% ±

1.2%), and good predictions elsewhere (q = 91.9% ± 0.4%).

Normalization of Population Responses
The weighted-sum model describes accurately how the popula-

tion integrates two superimposed inputs (Figures 4A–4C), but it

does not capture explicitly the effects of component contrast.

For each combination of component contrasts c1 and c2, the
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model requires two free parameters, the weights w1(c1, c2) and

w2(c1, c2). If a new combination of contrasts c1 and c2 were to

be tested, the model would make no prediction for the relevant

weights.

What is needed, therefore, is a model that embodies the

weighted-sum model while explicitly representing the role of

contrast. Such a model should predict approximately equal

weights when component contrasts are similar and approxi-

mately winner-take-all weights when component contrasts are

dissimilar.

A promising candidate is the model of contrast normalization

that has been developed for individual neurons. Normalization

involves a ratio: the numerator sums the contributions of the

different stimuli, weighted nonlinearly by component contrast,

and the denominator scales these contributions on the basis of

overall contrast (Albrecht and Geisler, 1991; Carandini et al.,

1997; Heeger, 1991; Heeger, 1992; Kouh and Poggio, 2008).

Normalization explains cross-orientation suppression for indi-

vidual neurons, the ones that are selective for one of the two orien-

tations in the stimulus (Carandini et al., 1997; Freeman et al.,

2002). Can normalization predict the responses of the whole pop-

ulation, and can it predict the gradual transition between the

regimes of equal summation and winner-take-all competition?

To apply the normalization model to our population responses,

we express it as

R1 + 2ðc1; c2Þ= rmax

cn
1G1 + cn

2G2

cn
50 + cn

rms

; (4)

where rmax, c50, and n are constants, and G1, G2 are the usual

Gaussians centered on the component orientations 41 and 42.

The term crms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 + c2
2

q
is the root-mean-square contrast of

the stimulus. In the model, therefore, the component contrasts

c1 and c2 appear both in the numerator and in the denominator.

If one of these contrasts is zero (i.e., if the stimulus is a single

grating), the model reduces to Equations (1) and (2), and hence

incorporates contrast invariance. If instead both contrasts are

positive, the model provides a closed-form prediction for how

the two components of a plaid should combine to yield a single

population response.

Crucially, the normalization model predicts a gradual transition

of behaviors from equal summation to winner-take-all competi-

tion. As shown in the Appendix in the Supplemental Data, in

two key cases the normalization model approximates the

weighted sum model and we can derive expression for the

weights: when the two component contrasts are similar and

when they are very dissimilar. In the first case, the model approx-

imates the scenario of equal weights, and in the second case it

approximates the scenario of winner-take-all weights.
of the responses to the component gratings (weighted-sum model, curves).

Error bars indicate ±1 SE of responses across sites in each bin.

(B–G) Predicted weights (left) and average fit quality (right) for n = 9 experi-

ments, for the weighted-sum model with best-fitting weights (B and C),

equal weights (D and E), and winner-take-all weights (F and G) presented in

the same format as (A). Plaid angle was 90� in 5 experiments, 45� in 2 exper-

iments, and 30� in 2 experiments. Data in (A) are from experiment 82-6-3, plaid

angle = 90�.

Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc. 935
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These behaviors arise rather intuitively from the combination

of operations in the normalization model (Equation 4). Equal

summation is a natural consequence of the sum in the numer-

ator; winner-take-all competition, in turn, stems from the

scaling of the summation terms by contrast; with the help of an

exponent >1, this exponent introduces imbalances in the effects

of the two gratings when contrasts differ. Across all contrast

conditions, the denominator scales the whole response, causing

the effective weights to be <1 (cross-orientation suppression).

This effect is of course most striking in the regime of winner-

take-all competition, where the denominator reduces the weight

applied to the weaker response to almost zero.

We tested the normalization model on the population

responses and found that it provided good fits in both regimes

(Figure 5). For the example experiment (Figure 5A) the model

captures qualitatively all the fundamental behaviors of the popu-

lation. Fits to other data sets, including those where the compo-

nent gratings had different angles, were of comparable or higher

quality (see Figure S1 available online). The good performance of

the model is confirmed by an analysis of effective weights and fit

quality across experiments (Figures 5B and 5C). The model

captured the regime of equal summation seen when component

contrasts are similar, predicting similar weights for the two

component responses (Figure 5B, diagonal) and yielding good

fits (q = 91.5% ± 1.0%; Figure 5C). The model also captured

the regime of winner-take-all competition, predicting progres-

sively smaller weights for gratings whose contrast decreases

relative to the other grating (Figure 5B, off-diagonal) and again

yielding good fits (q = 91.7% ± 0.6% SE; Figure 5C). Median

parameters of the normalization model were n = 1.5 ± 0.13,

c50 = 13.1 ± 4.2, and s = 19.0 ± 2.1.

Importantly, in the normalization model the gradual transition

from one regime to the other is explicitly controlled by the

component contrasts, without requiring a change in model

parameters. The normalization model, indeed, performs almost

as well as the weighted-sum model with optimal weights. Yet it

requires only five parameters: one for overall responsiveness,

rmax, two for contrast responses (c50 and n), and two for the

circular Gaussian G (width and vertical offset). The weighted-

sum model, by comparison, requires the same five parameters

plus two weights w1(c1, c2) and w2(c1, c2) for each combination

of positive grating contrasts c1 and c2. For our data sets that

makes 5 + 16 = 21 free parameters, more than four times the

five free parameters in the normalization model.

Normalization in Subthreshold Responses
The physiological mechanisms underlying response normaliza-

tion in individual V1 neurons are at the moment unclear and

may rest on a combination of factors (Carandini et al., 1997; Car-

andini et al., 2002; Chance et al., 2002; Finn et al., 2007; Freeman

et al., 2002; Priebe and Ferster, 2006). It is therefore of interest

to know to what degree normalization is present in the sub-

threshold responses as opposed to spiking responses.

To measure subthreshold activity in populations of neurons,

we analyzed local field potential (LFP) responses measured

with the same 10 3 10 electrode array that measures the spike

responses. The LFP comprises the combined subthreshold

activity of the neurons surrounding the electrode (Katzner
936 Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc.
et al., 2009). To obtain the highest signal-to-noise ratios, we

pooled these LFPs across all responsive sites of the array and

across all animals (n = 4). To distinguish the responses to the

test from the responses to the mask, we employed a frequency

tagging method typically used in EEG research (Candy et al.,

2001; Morrone and Burr, 1986; Regan, 1989): we made the

test and mask contrast-reverse at different frequencies. These

frequencies effectively tag the LFP responses, which oscillate

at twice the frequency of reversal (Katzner et al., 2009).

This design provides an opportunity to test the same normal-

ization model that we have applied to spike responses. Because

of the pooling across sites, we can no longer study population

responses as a function of preferred orientation. By tagging

the two stimuli by frequency, though, we can distinguish the

responses to test and mask. The predicted responses Rj,

accordingly, depend on stimulus tag, j = 1 for the test and j = 2

for the mask:
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Curves are fits of the normalization model. Error bars indicate standard error

across subjects.

(A and B) LFPs obtained from area V1 in anesthetized cats in response to the

test stimulus (A) and the mask stimulus (B). Response amplitudes were ex-

tracted at twice the stimulus frequency. Open symbols are conditions in which

the test is presented alone, closed symbols indicate conditions in which a 25%

contrast mask is added.

(C and D) Source-imaged VEP signals obtained from area V1 in human

observers using current source density modeling and fMRI retinotopic

mapping. Format as in (A) and (B). Responses in individual experiments

were normalized to yield a value of 1 when the test stimulus was presented

alone at 25% contrast.
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Rjðc1; c2Þ= rmax

cn
j

cn
50 + cn

rms

: (5)

Because adding a superimposed grating affects only the denom-

inator, in this design cross-orientation suppression provides

a frank reduction in tagged responses.

The LFP signals agreed closely with these predictions (Figures

6A and 6B). First, the LFPs evoked by the test grew and eventu-

ally saturated as the test contrast increased (Figure 6A, open

symbols). The normalization model closely predicted this satura-

tion (Figure 6A, curves). Second, these LFPs were reduced by

adding a 25% mask grating (Figure 6A, closed symbols). The

normalization model closely matched this effect, correctly pre-

dicting a rightward shift of the contrast response function (Fig-

ure 6A, curves). Third, the suppressive interactions between

test and mask were mutual: increasing test contrast reduced

the LFPs evoked by the mask (Figure 6B, closed symbols). The

model did the same (Figure 6B, curves).

Because the predictions of the normalization model were

accurate (98.2% explained variance), the model’s parameters

can be used to compare subthreshold responses to spike

responses. We found that subthreshold population responses

measured from LFPs saturated at lower contrasts (c50 = 13%;

n = 1.5) than those measured earlier from population spike

responses (c50 = 22%; n = 1.0). A similar difference between

contrast responses of subthreshold potentials and spikes has

been seen in individual neurons and may be a simple conse-

quence of spike threshold (Finn et al., 2007).

Normalization in Human V1
Does normalization govern the population responses only under

anesthesia or can it be used to explain responses in the awake

cortex? Does it apply to humans? We sought an answer to these

questions by measuring the electroencephalogram (EEG) of

human subjects with a sensor net of 128 electrodes. From these

signals, we obtained visual evoked potentials (VEPs). Human

VEP responses to plaid stimuli exhibit suppressive interactions

between the grating components (Burr and Morrone, 1987;

Candy et al., 2001; Ross and Speed, 1991), and such interac-

tions may be explained by normalization (Candy et al., 2001).

The VEP is a close approximation to the pooled LFP measured

within the underlying cortex (Schroeder et al., 1991). To measure

it, therefore, we used stimuli similar to those used to measure

LFP in anesthetized cats: we made the test and mask gratings

reverse in contrast at different frequencies. Test and mask thus

caused distinct responses that oscillated at twice the reversal

frequencies (Candy et al., 2001). To extract responses origi-

nating specifically from area V1, we estimated the current source

density across the entire cortex and then defined a region of

interest based on maps of retinotopy measured with fMRI

(Appelbaum et al., 2006).

The amplitudes of the visually evoked currents source-local-

ized to V1 in humans were remarkably similar to the pooled

LFP signals in anesthetized cats (Figures 6C and 6D). First,

increasing test contrast increased the responses to the test

(Figure 6C, open symbols). Second, adding the mask to the

test reduced these responses (Figure 6D, closed symbols). Third,

increases in test contrast reduced the responses to the mask
stimulus (Figure 6D). Therefore, in the population responses

measured in human subjects (just as in those measured from

anesthetized animals), there is competition between the stimuli.

The human V1 population responses, again, were closely pre-

dicted by the normalization model (Equation 5) with fit parame-

ters that were almost identical to those estimated for cat LFPs

(Figures 6C and 6D, curves). As in anesthetized cats, the model

(Equation 5) captures the competitive interactions between test

and mask: the contrast response function to the test is shifted

to the right in the presence of a mask (Figure 6C, curves), and

responses to the mask decrease as the test contrast increases

(Figure 6D, curves). As in cat LFPs, these predictions were accu-

rate (96.2% explained variance). The model parameters for
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Figure 7. Model of the Effects of V1 Normalization on a Pattern-

Selective MT Neuron

(A) Weights of a model MT neuron as a function of preferred direction of V1

neurons.

(B) V1 population response (left) and response of the MT neuron (right, filled

circle) to a single grating of 50% contrast drifting in a direction of 180�. Grat-

ings of different directions of motion will elicit shifted versions of the V1 popu-

lation response (data not shown), which combine into the MT tuning curve

(black line).

(C) Responses to a plaid of equal component contrast (component directions

are 120� and 240�, plaid motion direction is 180�). V1 population response

(left), with normalization (black) and without normalization (gray). Response

of the MT neuron to the plaid (right, filled circle). Plaids of different global

motion directions will elicit shifted versions of the V1 population response

(data not shown), which are combined into the MT tuning for plaids (black

trace: with V1 normalization; gray trace: without V1 normalization). The MT

neuron responds most strongly when the global motion direction of the plaid

is 180�.

(D) Responses to the same plaid, but with unequal component contrast. Same

format as in (C). With normalization in V1, the MT neuron’s tuning for plaid

direction shifts toward 240� (i.e., toward the plaid) with directions of 180�

(high contrast) and 300� (low contrast).
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fitting these human V1 responses (c50 = 12%; n = 1.4) were

similar to those for fitting pooled LFP responses in anesthetized

cats (c50 = 13%; n = 1.5). The similarity of subthreshold popula-

tion responses in anesthetized cats and human observers indi-

cates that V1 responses in both species and across behavioral

states are governed by the same functional mechanism: contrast

normalization.

Impact of V1 Normalization on Higher Areas
We finally asked what consequences our findings may have on

the decoding of V1 signals by higher cortical areas. We have

seen that normalization explains the regimes of equal summation

and competition observed in V1 and that competition can be so

extreme as to correspond to a winner-take-all effect. Such

profound competition is bound to have consequences on

downstream areas.

To investigate these consequences, we implemented a well-

established model of a pattern-selective neuron in area MT

(Figures 7A–7C). When stimulated with plaids, such neurons

respond to the global direction of the plaid rather than the direc-

tion of motion of the individual components (Movshon et al.,

1985). A successful model for these neurons (Rust et al., 2006;

Simoncelli and Heeger, 1998) postulates that they sum the

activity of a population of V1 neurons with weights appropriate

to obtain the desired preferred direction (Figure 7A). We imple-

mented this model for a model MT neuron whose direction tuning

curve measured with drifting gratings peaks at 180� (Figure 7B).

The neuron exhibits the same selectivity when the stimulus is

a plaid composed of two gratings differing in direction by 120�:

it responds most strongly when the global direction of the plaid

is 180� (Figure 7C, black curve). The model incorporates contrast

normalization in V1, but none of these phenomena rests on such

normalization: neglecting normalization simply results in larger

responses, without changes in tuning (Figure 7C, gray curves).

Normalization in area V1, however, can profoundly affect the

responses of this MT neuron to a plaid with unequal component

contrasts (Figure 7D). When component contrasts are 25% and

75%, normalization of population responses in area V1 leads to

marked competition. The lower-contrast stimulus almost disap-

pears from the population responses of V1, so the model MT

neuron responds mostly to the higher contrast stimulus. Its

tuning for plaid direction shifts toward 240� (i.e., the plaid direc-

tion in which the higher contrast grating drifts at 180�) (Figure 7D,

black curve). The model MT neuron, in other words, has largely

lost its ability to represent the overall motion of the plaid. This

effect is almost entirely explained by normalization: neglecting

normalization would lead to much smaller effects (Figure 7D,

gray curve). This simple example, therefore, illustrates how

normalization of population responses in area V1 can have

profound consequences for the response properties of areas

downstream in the visual hierarchy.

DISCUSSION

We investigated the representation of concurrent stimuli in the

population responses of visual cortex. When the visual system

is faced with multiple simultaneous orientations and contrasts,

the population response can be described as a weighted sum
938 Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc.
of the responses to the individual stimulus components. The

weights applied to the stimulus components depend on the

specific combination of stimulus strengths and lead to a

range of behaviors from equal summation to winner-take-all

competition.

Our results agree qualitatively but not precisely with a recent

study that has explored population responses to a subset of

our stimuli—namely, plaids whose components have identical

contrast (MacEvoy et al., 2009). This study reported that popula-

tion response to such plaids resembled the average of the

responses to the component gratings, independent of overall
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contrast. This behavior corresponds to equal-weights summa-

tion with weights of 0.5. Similar to their results, we find that the

weights for same-contrast plaids do not depend on overall

contrast (ANOVA, F = 0.61; df = 3; p = 0.5). However, we consis-

tently found weights higher than 0.5 (average of 0.67 ± 0.14 SD;

n = 9). The discrepancy may be due to differences in recorded

signals (spikes versus blood related signals) and in species

(cat versus tree shrew).

Our study, in fact, extends this previous finding by providing

a more direct measure of neuronal responses, by probing the

responses to plaids in which component contrasts differ, by

showing that they obey a weighted-sum law across all contrast

combinations, and by providing a unifying normalization model

that accounts for the responses. The model has few free param-

eters, and exhibits a gradual transition between regimes of equal

summation and winner-take-all competition that depends on the

stimulus contrasts.

By applying and validating a normalization model to popula-

tions, moreover, we substantially extend prior studies of normal-

ization in individual neurons. The normalization model has been

shown to predict the responses of single neurons to stimuli that

were tailored to the recorded neuron (Carandini et al., 1997;

Freeman et al., 2002; Heeger, 1992). These prior results,

however, concern only a subset of the neurons in a population:

those that are stimulated optimally by either component of the

plaids. Such neurons inhabit two of the 12 orientation preference

bins in which we have divided the population. It was not known

whether their collective action could be explained by a single

normalization model. Moreover, the majority of neurons—those

in the remaining 10 bins—are driven optimally by neither grating.

It was unknown whether the normalization model would have

predicted their responses.

While performing the apparently mundane task of contrast gain

control, normalization provides a single mechanism that can

gradually turn from equal summation to winner-take-all competi-

tion. Work in single neurons had well established that normaliza-

tion could capture the effects of cross-orientation suppression

and thus predict sublinear summation of responses to the indi-

vidual components. As revealed by our measurements, however,

the normalization model exhibits an unintuitive behavior: a strong

population response to a single stimulus can be dramatically

suppressed by adding a stimulus of higher contrast, so much

that the population response to the compound stimulus seems

to represent only the stimulus with higher contrast.

The ability of the normalization model to capture population

activity in response regimes ranging from equal summation to

winner-take-all competition resonates with a recent proposal

of a canonical divisive computation (Kouh and Poggio, 2008).

Although the mathematical expressions for the two divisive

computations are similar, there are also important differences.

First, the normalization model acts on the representation of

a stimulus in the population activity; this representation is

weighted by stimulus strength, not by synaptic strength.

Second, the normalization model accounts for all responses

with a single set of parameters, not by postulating different

circuits with different sets of parameters. Hence, the normaliza-

tion model predicts that the same neural circuitry can operate

across all stimulus conditions.
The neural circuitry underlying response normalization is far

from clear and may involve a combination of synaptic inhibition

(Carandini et al., 1997), modulation of input noise (Chance

et al., 2002; Finn et al., 2007), and nonlinearities in the input

from the LGN (Carandini et al., 1997; Freeman et al., 2002; Priebe

and Ferster, 2006). Our results of profound suppression of LFP

responses in the presence of multiple stimuli indicate that spike

threshold in area V1 may not play a major role in response

normalization. This result certainly agrees with measurements

of cross-orientation suppression in the membrane potential of

V1 simple cells (Priebe and Ferster, 2006).

Similar to LFPs in anesthetized cats, normalization also affects

population responses recorded from human V1. Our data are in

general agreement with earlier measurements of cross-orienta-

tion suppression in the human VEP (Candy et al., 2001; Morrone

and Burr, 1986). We extend the results of these studies in three

ways. First, by using source-localization combined with fMRI

retinotopic mapping, we concentrate on responses of area V1

rather than the whole occipital cortex. Second, we relate directly

these population responses in humans to measurements of LFP

obtained in cats with similar stimulation methods. Third, we

demonstrate that both LFP and source-imaged VEP responses

can be predicted quantitatively by a normalization model with

similar parameter values.

The normalization observed in the human primary visual cortex

should have behavioral consequences during the perception of

superimposed orientations: perceptual thresholds for the test

stimulus should be elevated in the presence of a mask. Such

threshold elevations have indeed been found in a number of

psychophysical experiments and are well characterized (Petrov

et al., 2005). Also in agreement with our findings, psychophysical

experiments exploiting reflexive ocular following movements

suggest an intriguing combination of summation and winner-

take-all mechanisms depending on the relative contrast of

competing image motions (Sheliga et al., 2006).

With simple simulations, we show that normalization in the

population responses of V1 can have profound effects on

neurons in higher visual areas. Strikingly, normalization in V1

makes our model MT neuron lose its pattern-selectivity when

the two components of a plaid have dissimilar contrast. This

prediction may not be far from truth. First, it is consistent with

a recent abstract reporting exactly such behavior in actual MT

neurons (Kumbhani et al., 2008). Second, it is consistent with

similar behaviors seen in the responses of MT neurons to

multiple stimuli at different positions in their receptive field, which

exhibit summation for stimuli with similar contrast and competi-

tion for stimuli with different contrast (Britten and Heuer, 1999;

Heuer and Britten, 2002). Third, our prediction is consistent

with the tendency of human observers to perceive plaids of

different component contrast as moving in the direction of the

component of higher contrast (Stone et al., 1990).

The normalization model for population responses could serve

as a front-end of models of attentional selection. Attention

enhances the processing of behaviorally relevant information

and reduces the impact of irrelevant information; effects of atten-

tion have been likened to changes in effective stimulus contrast

(Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000). In our

experiments, which do not engage attentional modulation, the
Neuron 64, 931–942, December 24, 2009 ª2009 Elsevier Inc. 939
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sensory representation of multiple stimuli overemphasizes the

more salient object. Attention could act on top of these purely

sensory effects: spatial attention could further accentuate the

existing asymmetry of the sensory representation (Ghose and

Maunsell, 2008; Moran and Desimone, 1985; Reynolds et al.,

1999; Treue and Martinez-Trujillo, 1999), and feature-based

attention could additionally sharpen the population response to

the attended feature (Martinez-Trujillo and Treue, 2004). In line

with these ideas, the effects of attention on psychophysical

performance have been modeled as competitive interactions

between visual filters (Lee et al., 1999). Furthermore, it has

recently been proposed that attention might use existing normal-

ization circuits to modulate neuronal responses to sensory

stimuli (Reynolds and Heeger, 2009).

Normalization, in summary, makes population responses op-

erate not only in a regime of equal summation, where the

response to summed stimuli resembles the scaled sum of the

responses, but also in a regime of winner-take-all competition,

where the response to summed stimuli resembles the response

to the stronger stimulus alone. Effects of this kind have been

observed in single neurons of regions as diverse as cortical

area MT (Britten and Heuer, 1999; Heuer and Britten, 2002)

and inferior colliculus (Keller and Takahashi, 2005). They may

be due to normalization operating in the population responses

in those regions or in earlier stages. These results suggest that

normalization may be a fundamental operation, one that shapes

population responses more profoundly than might have been

expected from earlier studies.
EXPERIMENTAL PROCEDURES

MUA and LFP Recordings

Experiments were conducted at the Smith-Kettlewell Eye Research Institute

under the supervision of the Institutional Animal Care and Use Committee.

Detailed methods for these experiments are published elsewhere (Katzner

et al., 2009). Briefly, young adult cats were anesthetized with Sodium Pentho-

tal (0.5–2 mg/kg/hr, i.v.) and Fentanyl (typically 10 mg/kg/hr, i.v.), supple-

mented by inhalation of O2 mixed with N2O (typically in a ratio of 70:30).

Eye-movements were prevented by a neuromuscular blocker (Pancuronium

Bromide, 0.15 mg/kg/hr, i.v.). A 10 3 10 electrode array (400 mm spacing,

1.5 mm electrode length) was implanted in area V1 to record multiunit activity

(MUA) and local field potentials (LFP). Insertion depths were about 0.8–1 mm,

resulting in recordings confined mostly to layers 2–3. A Cerebus 128-channel

system (Blackrock, Utah) was used to sample the data.
Stimuli for MUA Analysis

Stimuli were contrast-reversing sinusoidal gratings presented monocularly on

a CRT monitor (refresh rate 125 Hz, mean luminance 32 cd/m2). Gratings were

modulated sinusoidally in contrast with a temporal frequency of 4 Hz (9 exper-

iments). Spatial frequency was adjusted to optimally drive the majority of sites

in the electrode array. Gratings were presented in a circular window (30� diam-

eter) and lasted 2 s. The contrast of the gratings was 0%, 6%, 12%, 25%, and

50%. Plaids were obtained by summing two gratings. For each experiment,

the angle between component orientations in the plaid was fixed. To reduce

effects of adaptation, each experiment consisted of three pairs of orientations

(e.g., 0�/90�, 30�/120�, 60�/150�). Data for different pairs were collapsed after

adjusting for the difference between stimulus orientation and neuronal prefer-

ence. In addition, we recorded responses to 100% contrast gratings of

12 different orientations to obtain orientation tuning curves for each site in

the array. The stimuli were shown in random order in blocks presented at least

eight times.
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Analysis of MUA

In each channel of the multielectrode array, we set thresholds to �4 SD of the

background noise. Threshold crossing were considered multiunit activity and

were pooled together for each site. For each site, orientation preference was

defined as the vector average of firing rate responses to the 12 full-contrast

tuning stimuli. Only responsive sites with at least minimal tuning (circular vari-

ance <0.85) were considered in all further analyses (Ringach et al., 2002).

Using this criterion, on average 42 ± 13 sites (median ± MAD) were included.

For the computation of population responses, sites were binned (15� bin width)

according to their preferred orientation. Before averaging across sites,

responses for each site were normalized to their average response to the

tuning stimuli.

Stimuli for LFP Analysis

The stimuli used in the LFP experiments were identical to the stimuli used in the

MUA experiments with the following exception: the two components were

modulated with a temporal frequency of 3.5 and 5 Hz. Data were obtained in

four experiments.

Analysis of LFPs

LFPs were sampled at 2 kHz with a wide front-end filter (0.3 Hz to 500 Hz). We

further low-pass filtered the LFP below 90 Hz to exclude any contamination by

multiunit responses. LFPs were averaged across all electrodes in the Utah

array that were responsive (circular variance of multiunit responses to 12

different orientations <0.85). Amplitudes at twice the stimulus frequency

were extracted from the averaged data using Fourier analysis.

Single Unit Recordings

The analysis in Figure 2 was performed on 75 well-isolated neurons recorded

in previous experiments in nine cats. Details on stimuli and preparation are

described elsewhere (Freeman et al., 2002).

EEG Recordings

Methods for VEP recordings and source localization are described elsewhere

(Appelbaum et al., 2006). Briefly, the EEG was acquired with 128-channel

HydroCell Sensor Nets and a Netstation digitization system (EGI, Eugene

OR) in five subjects. For each subject, the 3D locations of the sensors were

recorded using a ‘‘Fastrak’’ radio-frequency 3D digitizer (Polhemus, Colches-

ter, VT) and coregistered to their T1-weighted anatomical magnetic resonance

(MR) scans, from which a three-shell boundary element model of the skull and

scalp was computed.

Stimuli for EEG Analysis

Stimuli were presented foveally on a CRT monitor (refresh rate 72 Hz, mean

luminance 32 cd/m2). Stimuli were viewed binocularly and consisted of

contrast-reversing gratings, modulated at temporal frequencies of 4.5 Hz

(test) and 3.6 Hz (mask). Gratings were presented within a circular window

spanning 5� of visual angle, and their spatial frequency was 1 cpd. The test

gratings had 0%, 6%, 12%, 25%, or 50% contrast; the mask gratings had

0 or 25% contrast. Each combination of grating contrasts was presented at

least 15 times. Each trial lasted 11.1 s. During the trial, subjects attended to

a stream of simultaneously presented letters and were instructed to indicate

the presence of a probe letter ‘‘T’’ among distracters ‘‘L.’’

Analysis of EEG Signals

EEG signals were postprocessed using custom software to remove artifacts

due to head motion and blinks. To localize the sources of the VEP activity,

cortically constrained minimum norm source estimates (Hämäläinen and

Ilmoniemi, 1994) were computed and related to each subject’s visual areas

as defined by fMRI retinotopic mapping (Engel et al., 1997). We extracted

the time course of activity from area V1 and obtained the responses to test

and mask grating by Fourier analysis.

Modeling

The models used to fit MUA are given by Equations (1)–(4) in the main text.

Before fitting the models, we subtracted spontaneous activity to the gray
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screen from all responses. The model used to fit LFP and VEP responses is

given by Equation (5). All models were fitted by a least-squares algorithm.

Fit quality was assessed by one of two measures. The first measure is

the percentage of variance in the responses r explained by the model predic-

tions m:

v = 1�
Pn

i = 1ðri �miÞ2Pn
i = 1ðri � rÞ2

;

where the indices i indicate the bin of orientation preference and r indicates the

mean of the responses. The second measure (fit quality index) is the root mean

square deviation between responses and model, normalized to the mean of

the observed responses:

q = 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1
ðri�miÞ2

n

r

r
:

Simulation of MT Responses

A population of direction-selective V1 neurons was modeled using the average

parameters obtained from fitting our population recordings with the normaliza-

tion model (Equation 4, width, semisaturation contrast, and exponent), and

assuming an equal spacing of preferred direction across neurons. The weight-

ing profile of the MT neuron is given by a Gaussian with a sigma of 65� (inspired

by the neuron in Figure 5E of Rust et al., 2006). V1 population responses to

plaids of 120� angle were simulated using the normalization model (Equation

4) and multiplied by the MT weighting profile. Responses below zero were

set to zero.
SUPPLEMENTAL DATA

Supplemental data includes an Appendix and one figure and may be found

with this article online at http://www.cell.com/neuron/supplemental/S0896-

6273(09)00886-1.
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