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As information propagates along the ventral visual hierarchy,
neuronal responses become both more specific for particular image
features and more tolerant of image transformations that preserve
those features. Here, we present evidence that neurons in area V2
are selective for local statistics that occur in natural visual textures,
and tolerant of manipulations that preserve these statistics. Texture
stimuli were generated by sampling from a statistical model, with
parameters chosen to match the parameters of a set of visually
distinct natural texture images. Stimuli generated with the same
statistics are perceptually similar to each other despite differences,
arising from the sampling process, in the precise spatial location of
features. We assessed the accuracy with which these textures could
be classified based on the responses of V1 and V2 neurons recorded
individually in anesthetized macaque monkeys. We also assessed
the accuracy with which particular samples could be identified,
relative to other statistically matched samples. For populations of up
to 100 cells, V1 neurons supported better performance in the sample
identification task, whereas V2 neurons exhibited better perfor-
mance in texture classification. Relative to V1, the responses of V2
show greater selectivity and tolerance for the representation of
texture statistics.
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Visual perception in primates arises from the responses of
neurons in a variety of areas within the cerebral cortex.

These responses are typically characterized by measuring selec-
tivity for specific visual attributes, such as light intensity or color,
and local structural properties, such as spatial position, orien-
tation, and spatial frequency. Stimulus selectivity, along with the
complementary notion of “invariance” or “tolerance” to irrelevant
variation, provides a de facto language for describing the func-
tional roles and relationships of neurons in visual areas. For ex-
ample, simple cells in the primary visual cortex, area V1, are
selective for orientation (1) and spatial frequency (2–4). Complex
cells exhibit similar selectivity, but are also more tolerant to
changes in spatial position (1, 5, 6). Component cells in area MT
(or V5) exhibit selectivity for orientation and speed, but (relative
to their V1 inputs) are more tolerant of changes in location and
spatial frequency, whereas MT pattern cells are tolerant to
changes in orientation (and, more generally, spatial structure) (7).
Neurons in the inferotemporal visual cortex (IT) are selective

for visual images of particular objects, but are tolerant to identity-
preserving transformations, such as translation, rotation, or back-
ground context (8, 9). This tolerance increases from area V4 to IT
(10), suggesting that an increase in selectivity is balanced by an
increase in tolerance, preserving overall response levels and their
distribution across neurons (11). However, the selectivity and tol-
erance of visual representations in midventral areas, particularly
area V2, have been more difficult to establish because we lack
knowledge of the relevant visual attributes. V2 neurons receive
much of their afferent drive from V1, have receptive fields that are
roughly twice the size of the receptive fields in V1, and exhibit
similar selectivity for orientation and spatial frequency (12, 13).
Indeed, the responses of V2 neurons to many forms of artificial

stimuli, including gratings, curves, and texture-defined patterns, are
only modestly different from the responses of neurons in V1 (14–17).
Recent work suggests that local statistical measurements that

capture the appearance of visual textures might provide a feature
space for characterizing the responses of V2 neurons (18–20).
Sensitivity to multipoint correlations in arrays of binary (black
and white) pixels first arises in V2 (20), and is strongest for those
correlations that are most informative about binarized natural
images (21) and most perceptually salient (22). This sensitivity to
higher order correlations is also present for more naturalistic
stimuli. Images of natural visual texture evoke correlated re-
sponses in rectified V1-like filters tuned for differing orientation,
scale, and position (23). V2 neurons are well driven by synthetic
texture stimuli containing these naturally occurring correlations,
and less so by texture stimuli that lack them (19). Moreover, the
performance of human observers in detecting these correlations
is predicted by the differential increase in average V2 response
levels (19). All of these results provide evidence that area V2
plays a role in representing the higher order statistics of visual
textures. However, the ways in which this representation sup-
ports visual tasks, such as discrimination, have yet to be explored.
Here, we provide a more direct test of the link between V2

and the representation of the higher order statistics of natural
textures. We generated stimuli that are matched to the statistics
of naturally occurring homogeneous texture images. These
stimuli are perceptually similar to one another, and similar to the
original texture image, despite marked differences in the position
and detailed arrangement of their local features (23–25). This
property can be used to generate pronounced distortions in pe-
ripheral viewing that remain imperceptible so long as the dis-
tortions preserve texture statistics over spatial regions the size of
V2 receptive fields (18). If V2 is encoding these local statistics,
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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within a texture family and more selective for the statistical pa-
rameters that define the family.
To quantify this observation, we used a nested ANOVA to

partition the total variance in firing rate for each neuron into
three components representing variation across families (Fig. 1,
columns), across samples within a family (Fig. 1, rows), and
across repeated presentations of each sample (residual spiking
variability across rows of each raster in Fig. 1 B and C). We first
note that a smaller portion of V2 response variance was explained
by the stimulus, compared with V1 (Fig. 2 A and B, Insets), con-
sistent with previous reports (26). The reduction in explainable
variance in V2 was accompanied by a reduction in the population
average firing rate compared with V1 [8.3 impulses per second
(ips) in V2 compared with 13.6 ips in V1], and may reflect a greater
effect of anesthesia in V2.
Although variance across samples dominated the responses of

most V1 neurons (Fig. 2A), many V2 neurons exhibited as much
or more variance across families (Fig. 2B). However, the absolute
levels of variance across and within families are affected by our
particular choice of texture stimuli. To eliminate the influence of
the stimulus ensemble, we compared the ratio of variance across
and within families for neurons in V1 and V2 (Fig. 2 C and D).
This ratio is similar to the F-statistic from our ANOVA analysis,
with a large value indicating high tolerance to the statistical vari-
ation of samples within families for our stimulus set. We found a
significantly larger value of the variance ratio in our population of
V2 neurons compared with V1 (Fig. 2 C andD; P < 0.001, t test on
the log variance ratio). Twenty-nine percent of neurons in V2
were more variable in their firing rate across vs. within families
compared with 16% of V1 neurons. These data indicate that on
the whole, the V2 population exhibited more stable responses
across samples within a family.

Analyzing the Influence of Receptive Field Properties on Tolerance.
We wondered whether this difference in tolerance was a con-
sequence of well-known differences in receptive field properties
between V1 and V2. For example, V2 contains a larger pro-
portion of neurons that can be classified as complex [as opposed
to simple (1, 13)], and the receptive fields of V2 neurons at a
given eccentricity are about twice as large as the receptive fields
in V1 (12, 27). Both of these properties would be expected to
contribute to the variance ratio. Specifically, simple cells are
sensitive to phase and should exhibit more response variation
than complex cells across samples. Similarly, neurons with small
receptive fields have a more limited area over which to compute
statistics; thus their responses are expected to fluctuate with
changes in local statistics across samples (note that the statistics
of sample images within a family are identical only when mea-
sured across the entire image).
To examine these and other effects on the variance ratio, we

measured responses of a subset of our V1 and V2 populations to
drifting sinusoidal gratings, and used these measured responses
to quantify 10 conventional receptive field properties. We then
used a stepwise regression separately in both areas to determine
which of these properties might explain the across-to-within-
family variance ratios (Methods). Altogether, receptive field
properties accounted for only a limited amount of diversity of the
variance ratios in both areas (Fig. 3I; V1, R2 = 0.28; V2, R2 = 0.42).
This result was not due to data insufficiency in our estimation of
the variance ratio, because one-half of our data could predict the
other accurately (V1, R2 = 0.89 ± 0.02; V2, R2 = 0.86 ± 0.02; mean
and SD of bootstrapped distribution) (Methods). As expected, we
found that size and the spatial phase sensitivity of receptive fields
were significantly correlated with the variance ratio, and this re-
lationship held for both V1 and V2 (Fig. 3 A–D). For V1 neurons,
no other properties were significantly correlated (Fig. 3 E and G).
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Fig. 2. Nested ANOVA analysis of single-unit responses in V1 and V2. (A and B) Response variance of single units in V1 and V2 is partitioned into a component
across families, a component within families (across samples), and a residual component across stimulus repetitions (noise). The position of each point
indicates, for a single neuron, the percentage of variance corresponding to the first two of these components. (Insets) Distribution of the sum of these
first two components. Points outlined in black correspond to the example single units shown in Fig. 1. (C and D) Distributions of the ratio of across-family
to across-sample variance for V1 and V2. The geometric mean variance ratio was 0.4 in V1 and 0.63 in V2 (indicated by triangles). The difference was
significant (P < 0.001, t test in the log domain).
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However, in V2, orientation tuning (Fig. 3F) and contrast sensi-
tivity (Fig. 3H) were also correlated with the variance ratio: Neu-
rons with weaker orientation tuning and lower contrast sensitivity
appeared to be more tolerant. To summarize these effects, we
decomposed R2 using the averaging-over-orderings technique (28)
and examined the contribution of each property to the explained
variance in V1 and V2 (Fig. 3I). This analysis confirmed the dif-
ferent pattern of contributions for the two areas. We conclude
that although some of the increase in tolerance of V2 over V1
may be due to conventionally assessed differences in receptive
field properties, some other factor is needed to explain fully the
enhanced tolerance of V2 neurons.

Visualizing Selectivity and Tolerance of Neuronal Populations. We
visualized the representation of texture stimuli within each
neural population by transforming their responses from the high-
dimensional response space (dimensionality = number of neu-
rons) to a 2D space. Ideally, such a mapping would capture local
and global aspects of the representation as much as possible. We
used the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm, which solves this problem by minimizing the difference be-
tween the high- and low-dimensional distributions of neighbor
distances (29, 30). The choice of two dimensions is purely for in-
terpretability and visualization, and is not meant to imply anything
about the underlying dimensionality of representation in either area.
We normalized the firing rate of each neuron and applied

t-SNE to the V1 and V2 populations separately (Fig. 4 A and B).
Each of the 225 points represents population responses to a
single texture sample, colored according to the family to which it
belongs. Points that lie close together correspond to images that
evoked similar responses from the neural population. Within V1,
the groups of images from the same family generally produce

scattered population responses, and the closest neighbors of
most images do not correspond to samples from the same texture
family (Fig. 4A). When applied to V2, the visualization reveals
that population responses often cluster by texture family (Fig. 4B),
with all of the samples from several families tightly grouped.

Decoding Neuronal Populations. The low-dimensional t-SNE visu-
alization (Fig. 4) provides an intuition for how the representation
in V2 differs from V1, which can be more precisely quantified
using a neural population decoder. To this end, we analyzed the
ability of V1 and V2 representations to support two different
perceptual discrimination tasks. For the first task, we built a
Poisson maximum likelihood decoder to discriminate between
the 15 different samples within a texture family based on the
responses within a neural population (Methods and Fig. 5A).
Performance in both areas, averaged across all texture families,
increased as the number of neurons included in the analysis in-
creased, but V1 outperformed V2 for all population sizes (Fig. 5B).
The representation of image content in V1 thus provides more
information for discriminating between specific samples. For the
second task, we built another decoder to discriminate between the
15 different texture families (Methods and Fig. 5A). We tested this
decoder’s ability to generalize across samples by training on a subset
of samples and testing on samples not used in the training. For both
V1 and V2, and for all population sizes, absolute performance on
this task was worse than on the sample classification task, although
the difference was much larger in V1 (Fig. 5B). However, in con-
trast to the sample classification task, V2 outperformed V1 for all
population sizes. To examine whether this result could be a con-
sequence of the differences in receptive field properties described
above (Fig. 3), we excluded neurons classified as simple from both
areas and selected subpopulations matched for classical receptive
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Ziemba et al. PNAS | Published online May 12, 2016 | E3143

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



field (CRF) size. This matching procedure had little effect on V2
performance in either task, but did reduce V1 performance on the
sample task and increase V1 performance on the family task
(Methods). However, performance in the two areas remained sig-
nificantly different, suggesting more complex forms of selectivity
are involved.

Comparing Selectivity of Neuronal Populations. To elucidate the V2
response properties that allow it to outperform V1 in family
classification, we examined the dependence of performance on
the differences in statistics between pairs of texture families. We
built a Poisson maximum likelihood decoder to best discriminate
between each pair of texture families (105 different comparisons).
Comparing performance in V1 and V2 reveals two prominent
features (Fig. 6A). First, performance in V1 and V2 was highly
correlated across the different texture discriminations (r = 0.82, P <
0.001), suggesting that some of the features that drive performance

in V1 are also responsible for performance in V2. Second, V2
neurons performed better for nearly all pairs, and this improve-
ment was approximately independent of the performance seen in
V1 (Fig. 6A). A straight-line fit suggests that if V1 discrimination
performance were at chance, V2 performance would be 65%
correct [discriminability (d′) = 0.54]. To understand this relation-
ship, we sought to separate those stimulus properties that drive
performance in both V1 and V2 from those stimulus properties that
underlie the increase in performance of V2 over V1.
We chose texture families for this study that differed in their

spectral content: the relative amount of energy at different ori-
entations and spatial frequencies. V1 neurons are highly selec-
tive for spectral content (4), and this selectivity is maintained in
V2 (13). We wondered whether the spectral characteristics of the
stimuli could explain V1 performance. Across all 105 pairs of
texture families, we measured the magnitude of the difference in
spectral statistics between the two families. We then predicted

V2

V1 Texture family

Latent
dimension 1

Latent
dimension 2

A

B

Fig. 4. Two-dimensional visualization of neural population responses in V1 and V2. (A) V1 population response to each visual texture stimulus, displayed in a
2D coordinate system that captures the responses of 102 V1 neurons [computed using t-SNE (30)]. Each point represents one texture image, with color in-
dicating the texture family. The larger, desaturated disks in the background indicate the centroid of all samples within each family. (B) Same analysis for the
responses of 103 V2 neurons.
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V1 discrimination performance from the statistical differences,
over all pairs (Methods and Fig. 6B). The spectral differences
predicted V1 performance well (r = 0.7, P < 0.001), and the same
model also provided a good prediction for V2 performance (r =
0.59, P < 0.001). Reoptimizing the weights to predict V2 re-
sponses barely improved the correlation (r = 0.6, P < 0.001),
consistent with the notion that the spectral information repre-
sented in V2 is directly inherited from V1. However, the spectral
statistics captured little of the difference in performance be-
tween V1 and V2 (r = 0.22, P < 0.05).
These analyses suggest that the superior performance of V2

must be due to the higher order (i.e., beyond second order)
correlations present in the texture model. To test this theory, we
extracted the parameters that capture higher order statistics
through correlations of filter response magnitudes across position,
frequency, and orientation, and projected out the portion cap-
tured by the spectral statistics. We then predicted the difference in
V1 and V2 performance (Fig. 6C). Differences in the higher order

statistics, in contrast to spectral statistics, provided a good pre-
diction for the V1/V2 performance difference (r = 0.61, P < 0.001).
In summary, V1 discrimination performance was well captured

by the spectral statistics of naturalistic textures. This same set of
statistics captured a significant portion of V2 discrimination
performance, but most of the superiority of V2 over V1 comes
from higher order statistics.

Discussion
Our results support the hypothesis that populations of V2 neurons
represent statistics of the activity of local ensembles of V1 neu-
rons, which capture the appearance of naturally occurring tex-
tures. Using a set of stimuli for which these statistics are tightly
controlled, we showed that, relative to neurons in V1, V2 neurons
exhibit increased selectivity for these statistics, accompanied by an
increased tolerance for randomized image variations that do not
affect these statistics. This “tolerance to statistical resampling”
complements the more widely discussed visual invariances to
geometric distortions (e.g., translation, rotation, dilation) (8, 10)
or changes in the intensity, color, or position of a light source (9, 31).
Our results also help to integrate and interpret other findings.

The selectivity of V2 neurons for many artificial stimuli, including
gratings, angles, curves, anomalous contours, and texture-defined
patterns, is nearly the same as the selectivity of V1 neurons (14–
17, 32–35). This result would be expected if V2 neurons are se-
lective for a broad set of V1 response statistics and not for a small
subset of specialized combinations of V1 inputs, as assumed by
these approaches. On the other hand, the tolerance of V2 cells
identified here does seem consistent with the previously identified
behaviors of “complex unoriented” V2 cells (36), which are se-
lective for patches of light of a particular size but tolerant to
changes in position over a much larger region. Such a property
may explain why orientation selectivity so strongly predicted tol-
erance in V2 but less so in V1. This relationship might also reflect
greater heterogeneity of orientation tuning within V2 receptive
fields (16), providing a substrate for computing local orientation
statistics.
Our results complement recent work demonstrating V2 se-

lectivity for third- and fourth-order pixel statistics. Yu et al. (20)
examined responses of V1 and V2 neurons to binary images
synthesized with controlled pixel statistics up to fourth order, and
found that neuronal selectivity for multipoint (i.e., third and
fourth order) correlations is infrequent in V1 but common in V2.
The strength of this work derives from the well-defined stimulus
ensemble, which covers the full set of statistics up to fourth or-
der, and allows a thorough assessment of the selectivity for in-
dividual statistics in the responses of single neurons. On the
other hand, the restriction to statistics of a particular order, al-
though mathematically natural, is not necessarily aligned with the
restrictions imposed by the computational capabilities of bi-
ological visual systems, and this may explain why selectivity of V2
neurons for these statistics is only modestly greater than selectivity
of V1 neurons. The stimuli in our experiments are constrained by
statistics that are defined in terms of an idealized response model
for a V1 population. Although they also constrain multipoint pixel
statistics, they do not isolate them in pure form, and they span too
large a space to allow a thorough experimental characterization of
selectivity in individual cells. On the other hand, they represent
quantities that may be more directly related to the construction of
V2 responses from V1 afferents, and they allow direct synthesis of
stimuli bearing strong perceptual resemblance to their ecological
counterparts (18, 23, 24, 37).
The particular statistics we matched to create our texture

families are surely not represented fully and only in V2, and this
may explain why the reported difference in selectivity and tolerance
between V1 and V2, although robust, is not qualitative. In partic-
ular, these statistics include both the local correlation of oriented
linear filter responses (equivalent to a partial representation of
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(A) Schematic of sample (black) and family (red) classification. For sample
classification, holdout data were classified among the 15 different samples
for each family. Performance for each of the families was then averaged
together to get total performance. For family classification, the decoder was
trained on multiple samples within each family, and then used to classify
held out data into each of the 15 different families. (B) Comparison of pro-
portion of correct classification of V1 and V2 populations for family classifi-
cation (red) and sample classification (black). We computed performance
measures for both tasks using five different population sizes, indicated by the
dot size (n = 1, n = 3, n = 10, n = 30, and n = 100). Chance performance for both
tasks was 1/15. Error bars represent 95% confidence intervals of the boot-
strapped distribution over included neurons and cross-validation partitioning.
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average spectral power across the image) as well as pairwise cor-
relations between the magnitudes of responses of oriented filters
tuned to different orientations, spatial frequencies, and positions.
We created different families from the statistics extracted from
15 original photographs, which differed in both the spectral and
higher order statistics. We found that the spectral differences
between different families accounted for a substantial portion of
the discrimination performance of both V1 and V2 populations.
However, V2 nearly always outperformed V1, and this superiority
was well predicted by the differences in higher order statistics.
This finding suggests that an artificial stimulus set in which fami-
lies differ only in higher order statistics would better differentiate
the discrimination performance of V1 and V2.
How do V2 neurons achieve higher classification and discrim-

ination performance than their V1 inputs? There are two possible
answers: reducing variability in the representation of individual
families or increasing the mean separation in the representations
of different families. The first of these possibilities can be achieved
by combining many V1 inputs so as to average out their trial-by-
trial variability. Larger receptive fields may be an indication of
such a construction: Indeed, larger receptive fields are associated
with higher variance ratios and better family classification per-
formance. However, when we matched receptive field sizes between
the two areas, V2 still performed better in family classification.
Thus, we posit that V2 neurons are also taking advantage of the
second option, transforming their V1 inputs to make family differ-
ences more explicit in their average responses. This transformation
amounts to “untangling” the representation of visual features that
were not directly decodable in the V1 representation (38). Specifi-
cally, V1 neurons do not appear to signal the presence of higher
order correlations with a consistent change in firing rate, whereas V2
neurons do (19, 20). As a result, larger differences in higher order
correlations between families explain a significant portion of the
increased discrimination performance in V2 (Fig. 6C).
Perceptually, invariances related to statistical resampling were

originally proposed by Julesz (39) as a testable prediction of
statistical texture models, and have been used to test and refine
such models in both vision (21–24) and audition (40). Theories
regarding the statistical summary nature of “crowding” effects in
peripheral vision (41–44) have also been tested for such per-
ceptual invariances (18, 37), and are consistent with the repre-
sentation of texture statistics in area V2. Although our analysis
of V2 responses is qualitatively consistent with these perceptual
observations, the connection is difficult to test quantitatively. In
particular, the statistics in our texture stimuli were computed by
averaging over the full stimulus aperture, which was held to a
fixed size of 4° for all cells to allow a reasonable interpretation of
population decoding. This size was generally larger than the
receptive fields of the neurons (Fig. 3 C and D). Thus, most
neurons saw only a portion of the stimuli, over which the sta-
tistics would not have been fully matched. Finally, recall that the
transformation from V1 to V2 is part of a cascade, and it may
well be that perception relies more on downstream areas, such as
V4, where neurons may show even more selectivity and tolerance
for the statistics we used (31, 45).
The visual world is often described in terms of forms or “things”

made up of lines, edges, contours, and boundaries, and these
symbolic descriptions have played a dominant role in developing
theories for both biological and machine representations of visual
information. However, textures and “stuff” (46) are ubiquitous in
natural visual scenes, and are not easily captured with edge or
contour descriptions. The results presented here suggest that V2
neurons combine V1 afferents to represent perceptually relevant
statistical features of visual textures. It is currently unknown
whether this statistical description of the visual world is also suf-
ficient to account for perception of visual form. Recent work
suggests that textural statistics, such as used here, can account for
aspects of peripheral vision that are not exclusive to the perception
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Fig. 6. Texture discrimination performance of neural populations. (A)
Comparison of V1 and V2 performance on pairwise texture discrimina-
tion. Performance values were plotted on coordinates that varied linearly
in discriminability (d′). The right and top axes indicate corresponding
values of performance expressed as the proportion correct. Each point
represents one of 105 pairwise comparisons among the 15 texture fami-
lies. The dashed line indicates the best fit using total least squares. (B)
Comparison of V1 and V2 performance with the performance of a model
capturing spectral statistics. The magnitude of difference in spectral sta-
tistics for each texture family pair was weighted to account best for the
performance of V1. Both V1 performance and V2 performance were
plotted against this spectral prediction. (C ) Comparison of the difference
in V1 and V2 performance with the strength of higher order correlation
differences. The magnitude of difference in higher order correlations for
each texture family pair was weighted to predict best the difference in V1
and V2 performance.
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of texture (18, 37). Additionally, recent successes in machine rec-
ognition of complex objects using multistage neural networks call
into question the need for explicit boundary, contour, or edge in-
formation in high-level vision. Indeed, the model responses at
different stages of these neural networks have provided a good
basis for accounting for neural responses in both midlevel and
late stages of visual cortex (47, 48), and attempts to visualize the
selectivities of model units at midlevel stages have often revealed
texture-like visual structure (49). Thus, the two-stage representa-
tion we describe here may provide a foundation for the represen-
tation of the more complex and structured signals found in images
of objects or of entire visual scenes (41).

Methods
Physiology.
Recording. The data analyzed here were also used in a previous article (19),
and the full methods are provided there. In brief, we recorded from 13
anesthetized, paralyzed, adult macaque monkeys (two Macaca nemestrina
and 11 Macaca cynomolgus). Our standard methods for surgical preparation
have been documented in detail previously (50). We maintained anesthesia
with infusion of sufentanil citrate (6–30 μg·kg−1·h−1) and paralysis with in-
fusion of vecuronium bromide (Norcuron; 0.1 mg·kg−1·h−1) in isotonic dex-
trose-Normosol solution. All experimental procedures were conducted in
compliance with the NIH’s Guide for the Care and Use of Laboratory Animals
(51) and with the approval of the New York University Animal Welfare
Committee. We made a craniotomy and durotomy centered ∼2–4 mm pos-
terior to the lunate sulcus and 10–16 mm lateral, and recorded single-unit
activity using quartz-platinum-tungsten microelectrodes (Thomas Re-
cording). We distinguished V2 from V1 on the basis of depth from the cor-
tical surface and receptive field location.
Stimulus generation. We generated stimuli using the texture analysis-synthesis
procedure described by Portilla and Simoncelli (23) (software and examples
are available at www.cns.nyu.edu/∼lcv/texture/). Fifteen different grayscale
photographs (320 × 320 pixels) of visual texture served as the prototypes for
each “texture family.” In brief, each image was decomposed with a multi-
scale multiorientation bank of filters with four orientations and four spatial
scales, designed so as to tile the Fourier domain (52). For each filter, we
computed the linear response and the local magnitude response (square
root of sum of squared responses of the filter and its Hilbert transform),
roughly analogous to the responses of V1 simple and complex cells. We then
computed pairwise products across filter responses at different positions
(within each orientation and scale and across a 7 × 7 neighborhood) for both
sets of responses, and (for the magnitudes only) across different orientations
and scales. We also included products of linear filter responses with phase-
doubled responses at the next coarsest scale. All of these pairwise products
were averaged across the spatial extent of the image, yielding correlations.
The correlations of the linear responses are second-order statistics, in that
they represent the averages of quadratic functions of pixel values. The
correlations of magnitudes (and phase-doubled responses) are of higher
order, due to the additional nonlinearities in the magnitude (phase-dou-
bling) computation. We additionally computed the average magnitude
within each frequency band and the marginal pixel statistics (skew and
kurtosis). For each family, we synthesized 15 samples by initializing 15 dif-
ferent images with Gaussian white noise and adjusting each until it matched
the model parameters computed on the corresponding original image (23).
Stimulus presentation. We presented visual stimuli on a gamma-corrected
cathode ray tube monitor (Eizo T966; mean luminance of 33 cd/m2) at a
resolution of 1,280 × 960, with a refresh rate of 120 Hz. Stimuli were pre-
sented using Expo software on an Apple Macintosh computer. For each
isolated unit, we first determined its ocular dominance and occluded the
nonpreferred eye. We used drifting sinusoidal gratings to characterize the
basic receptive field properties of each unit, including tuning for orientation
and direction, spatial and temporal frequency, size, and contrast. We then
presented the texture stimuli. We used a set of 15 texture families and
generated 15 samples for each texture family for a total of 225 images.
Another 225 images of phase-randomized noise were also included, but not
analyzed further here. We presented the images in pseudorandom order for
100 ms each, separated by 100 ms of mean luminance. Each image was
presented 20 times. Images were presented to every unit at the same scale
and at a size of 4° within a raised cosine aperture. We chose a 4° aperture to
be larger than all of the receptive fields at the eccentricities from which we
typically record. Nearly all recorded units had receptive fields smaller than
4°, and the majority were less than 2°.

Analysis.
ANOVA. For all quantitative analyses, we averaged spike counts within a
100-ms time window aligned to the response onset of each single unit.
Response onsetwas determined by inspection as the first time point eliciting a
response above baseline; results were nearly identical when using a quan-
titative criterion based on the SD of the response.We first applied a Freeman–
Tukey variance-stabilizing transformation (53) to the spike counts for each
neuron ðz= ffiffiffi

x
p

+
ffiffiffiffiffiffiffiffiffiffiffi

x + 1
p Þ. This preprocessing step transforms the roughly

Poisson-distributed spike counts to be more Gaussian, removing depen-
dencies between the mean and variance. We then performed a nested
ANOVA analysis to partition the total variance into the portions arising
across families, across samples within a family, and across repetitions of the
same stimulus. The ANOVA generates an F-statistic that captures the ratio of
variances between each hierarchical level. For the vast majority of neurons,
the F-statistic was significant for ratios of variance across repetitions and
across samples (101 of 102 in V1, 103 of 103 in V2), as well as for ratios of
variance across samples and across families (91 of 102 in V1, 97 of 103 in V2).
We chose to perform further analysis using the ratio between partitioned
variance, but all results were qualitatively similar when using the F-statistic
itself. To obtain the variance ratio, we divided the percent variance across
families by the percent variance across samples. To avoid outlying values
when either variance was very low, we stabilized the ratio by adding 2%
variance to both the numerator and denominator. We tested how reliable
our estimates of the variance ratio were by splitting the 20 repetitions for
each condition in half and performing the ANOVA analysis separately on
both halves of the data for each neuron. We repeated this process 10,000
times with different partitions of the original repetitions and asked how
well our estimate on half of the data could predict the other half.
Regression. Basic receptive field properties for each neuron (e.g., receptive
field size, contrast response function) were determined offline by using
maximum likelihood estimation to fit an appropriate parametric form to each
tuning function. These fits were only obtainable for a subset of neurons (84%
in V1, 73% in V2) due to incomplete characterization arising from time
constraints during the experiment. We first asked how well we could predict
the log variance ratio in each area using a large number of receptive field
properties [preferred spatial frequency, spatial frequency bandwidth, ori-
entation selectivity, CRF size, contrast exponent, semisaturation contrast (c50),
maximum firing rate, surround suppression index, modulation ratio (F1/F0),
and texture modulation index (19)]. We used the log variance ratio because
the ratios were approximately normally distributed in the log domain. We
used a stepwise linear model to estimate which receptive field properties
added to the goodness of fit. For V1, only receptive field size and modula-
tion ratio were included in the model. For V2, receptive field size and
modulation ratio were included, along with orientation selectivity and c50.
CRF size was defined as the SD of the center in a ratio of Gaussians model.
The modulation ratio was computed from responses to the 1-s presentation
of an optimal grating and represents the ratio between the first harmonic
and mean of the average response. The orientation selectivity index (OSI)
was computed as the circular variance of the baseline-subtracted firing rates
to each orientation, so that OSI = 0 indicated no selectivity and OSI = 1 in-
dicated sharp tuning for orientation. The c50 represents the contrast level
that evoked half of the maximum firing rate in a Naka–Rushton fit to the
responses to a grating of varying contrast. To examine how each of these
predictors contributed to the variance ratio, we used an averaging-over-
orderings (19, 28) technique to estimate variance explained by each re-
ceptive field property. This technique allowed us to assess the relative im-
portance of each predictor in each area. We computed error bars for the
contribution of each receptive field property and the overall explained
variance using a jackknife procedure. We reapplied the averaging-over-
orderings procedure to the dataset with one neuron left out and computed
95% confidence intervals over the distribution of all partial datasets.
t-SNE visualization. To visualize the structure of the data we used a method for
dimensionality reduction known as t-distributed stochastic neighbor em-
bedding (t-SNE) (30), a variant of the technique originally developed by
Hinton and Roweis (29). This method attempts to minimize the divergence
between the distributions of neighbor probability in the high-dimensional
space and low-dimensional space. The input to the algorithm was a set of
225 data vectors, each of which collected the firing rates of all neurons in an
area to a stimulus. We also normalized the data so that, for each neuron,
responses to the 225 images had a mean of 0 and SD of 1. In executing the
t-SNE analysis, we chose an initial dimensionality of 90 and a perplexity value
of 30.
Classification decoding.We used a simple Poisson decoder to classify samples or
families into one of 15 different categories. On each iteration, we randomly
selected a number of units from our recorded population. Because our units
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were recorded sequentially, we randomized the order of repetitions for each
cell. To compute performance in the sample classification task, we estimated
the mean spike counts of each neuron for each of the 15 samples within each
family by computing the sample average over 10 of the 20 repetitions. For the
held-out 10 repetitions of each sample, we computedwhich of the 15 samples
was most likely to have produced the population response, assuming inde-
pendent Poisson variability under the estimated mean spike counts. We
computed the average performance (% correct) over all samples and families,
and repeated this process 10,000 times to get a performance for each
population size. To compute performance in the family classification task, we
estimated the average spike counts for each family over 8 of the 15 different
samples and for all repetitions. For each of the repetitions of the held-out
seven samples, we computed which of the 15 families was most likely to have
produced the population response. We computed the average performance
over all repetitions and repeated this process 10,000 times to get a perfor-
mance for each population size. We computed performance measures for
both tasks using population sizes of 1, 3, 10, 30, and 100 neurons. Results were
similar using several alternative decoding methods, including a linear clas-
sifier and a mixture-of-Poissons model. The potential advantage of a more
sophisticated mixture-of-Poissons model was negated by the larger param-
eter space and insufficiency of data. We also performed family classification
by training on a subset of repetitions over all samples and found increased
performance in both V1 and V2, although V2 still outperformed V1.
Matched subpopulation decoding. To examine the effect of receptive field
properties that differ sharply between V1 and V2 on decoding, we excluded
neurons with a modulation ratio greater than 0.8 and extracted 40-neuron
subpopulations in each area that were matched for the mean and variance of
CRF size (mean CRF in both V1 and V2 = 0.73 ± 0.02°). We decoded our CRF-
matched, complex cell subpopulations and compared performance with the
performance achieved by 40 neuron subpopulations sampled randomly from
the full population of both areas (mean CRF in V1 = 0.62 ± 0.05°, mean CRF in
V2 = 1.1 ± 0.09°). In the sample classification task, V1 performance was sig-
nificantly reduced by drawing matched subpopulations (65–55%), and there
was no effect on V2 performance (which remained at 46%). V1 performed
significantly better than V2 in sample classification for both unmatched (P <
0.005, bootstrap test resampling neurons and cross-validation partitioning)
and matched (P < 0.01) subpopulations. In the family task, V1 performance
was increased by drawing matched subpopulations (30–35%) and V2 perfor-
mance was only slightly decreased (41–40%). V2 performed significantly better
than V1 in family classification for both unmatched (P < 0.05) and matched
(P < 0.05) subpopulations.

Discrimination decoding and prediction. We used the same decoding procedure
for family classification but performed discrimination between all pairs of
texture families, yielding 105 pairwise comparisons. All discrimination
decoding was performed using 100 units and was repeated 10,000 times to
get a performance value. We transformed the measured performance values
for V1 and V2 into units of discriminability (d′) and performed total least
squares regression to get a linear fit to the V1 and V2 data. We then isolated
two subsets of parameters from the full set contained in the texture model
used to generate our stimuli. The first consisted of the correlations of linear
filter responses at nearby locations, which represent second-order pixel
statistics and are most intuitively described as representing a portion of the
power spectrum (as such, we refer to them as spectral). We also gathered a
set of higher order statistics, consisting of correlations of magnitudes at
neighboring locations, orientations, and scales, and correlations of phase-
adjusted filter responses at adjacent scales (23).

To summarize the family discrimination capability of each group of sta-
tistics, we computed a matrix whose columns contained the absolute value of
the difference between those statistics for each pair of texture families (105
columns, one for each pair of families). For the spectral statistics (matrix size =
125 × 105), we reduced the dimensionality (number of rows) of this matrix
using principal components analysis (PCA). We found that four components
captured 70% of the variance, and standard regression analysis revealed
that both V1 and V2 performance was well predicted by a weighted sum of
these components (Fig. 6B). To examine the relationship between higher
order statistics and neural performance, we first removed the effects of the
spectral statistics. We adjusted each of the rows of the higher order differ-
ence matrix (matrix size = 552 × 105) by projecting out the four dimensions
spanned by the rows of the PCA-reduced spectral difference matrix. We then
reduced the dimensionality (number of rows) of this matrix using PCA,
retaining those components needed to capture at least 70% of the variance
(in this case, 10 components). Regression analysis revealed that a weighted
sum of these components provided a good prediction for the difference in
performance between V2 and V1 (Fig. 6C).
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