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Abstract

Motion selectivity in primary visual cortex (V1) is approximately separable in orientation, spatial

frequency, and temporal frequency (“frequency-separable”). Models for area MT neurons posit

that their selectivity arises by combining direction-selective V1 afferents whose tuning is orga-

nized around a tilted plane in the frequency domain, specifying a particular direction and speed

(“velocity-separable”). This construction explains “pattern direction selective” MT neurons, which

are velocity-selective but relatively invariant to spatial structure, including spatial frequency, tex-

ture and shape. We designed a set of experiments to distinguish frequency- and velocity-separable

models and executed them with single-unit recordings in macaque V1 and MT. Surprisingly, when

tested with single drifting gratings, most MT neurons’ responses are fit equally well by models with

either form of separability. However, responses to plaids (sums of two moving gratings) tend to be

better described as velocity-separable, especially for pattern neurons. We conclude that direction

selectivity in MT is primarily computed by summing V1 afferents, but pattern-invariant velocity

tuning for complex stimuli may arise from local, recurrent interactions.

Significance Statement

How do sensory systems build representations of complex features from simpler ones? Visual

motion representation in cortex is a well-studied example: the direction and speed of moving

objects, regardless of shape or texture, is computed from the local motion of oriented edges. Here

we quantify tuning properties based on single-unit recordings in primate area MT, then fit a novel,

generalized model of motion computation. The model reveals two core properties of MT neurons —

speed tuning and invariance to local edge orientation — result from a single organizing principle:

each MT neuron combines afferents that represent edge motions consistent with a common velocity,

1



much as V1 simple cells combine thalamic inputs consistent with a common orientation.

Introduction

Most neurons in extrastriate area MT (V5) are tuned for the speed and direction of visual mo-

tion (Dubner and Zeki, 1971; Van Essen et al., 1981; Maunsell and Van Essen, 1983), and many of

them are selective for the coherent motion of complex patterns (Movshon et al., 1985). Such tuning

is absent from the earliest stages of visual processing in primates, the retina and lateral genicu-

late nucleus. There, incoming visual signals are filtered without regard to direction, and are ap-

proximately separable in space and time (Enroth-Cugell et al., 1983; Derrington and Lennie, 1984).

Motion-selective simple cells in primary visual cortex (V1) are tuned for motion in a manner that

treats spatial and temporal frequency roughly separably (Tolhurst and Movshon, 1975), while a

quarter of V1 complex cells treat them jointly (Priebe et al., 2006), consistent with speed tuning.

V1 neurons provide input to MT, where neurons also tend to be speed tuned (Perrone and Thiele, 2001;

Priebe et al., 2003).

Motion-selective V1 neurons are also orientation-selective, and their responses confound the di-

rection of motion and the orientation of moving stimuli. In particular, they respond independently

to each oriented component rather than to the pattern as a whole (Movshon et al., 1985). Under

many conditions, humans perceive such complex patterns as moving coherently in a single direction

(Wallach, 1935; Adelson and Movshon, 1982). Similarly, MT neurons signal coherent pattern mo-

tion, with some neurons being completely invariant to component orientation (Movshon et al., 1985).

The degree to which MT neurons respond to the motion of individual components or the whole

pattern lies on a continuum, quantified by a “pattern index” (see figure 1(a-c), Methods, and

Movshon et al. (1985)).
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Speed tuning and pattern motion selectivity in MT were typically studied separately. Fur-

thermore, previous studies in MT were performed in at most two of three dimensions: spa-

tial and temporal frequency (Perrone and Thiele, 2001; Priebe et al., 2003; Priebe et al., 2006), or

direction and speed (Rodman and Albright, 1987). Recently, Nishimoto and Gallant (2011) and

Inagaki et al. (2016) quantified MT selectivity in all three dimensions simultaneously, but did not

relate their findings to pattern motion selectivity.

The Simoncelli and Heeger (1998) model of MT motion computation proposes that speed tuning

and pattern motion selectivity both emerge from selective weighting of V1 afferents, parameterized

in all three frequency dimensions. The model posits that MT neurons sum responses of V1 neurons

whose preferred stimuli are consistent with a common velocity. MT neurons could, however, sum

V1 afferents whose preferences share a common temporal frequency.

Here, we unify previous theory and experimental data in a coherent framework, by modifying

the Simoncelli and Heeger (1998) model to allow direct fitting to electrophysiological recordings.

Specifically, we compared the two hypotheses of MT computation above in their ability to explain

the responses of neurons in areas V1 and MT of anesthetized and awake macaques to a large

collection of sinusoidal gratings and plaids (superimposed gratings with different orientations and

temporal frequencies). We fit these responses with a linear-nonlinear model of MT computation, in

which the MT receptive field was constructed by summing velocity-specific or temporal frequency-

specific combinations of V1 afferents. We refer to the former model variant, in which selectivity to

spatial and temporal frequency varies jointly, as the velocity-separable model, and the latter model

as the frequency-separable model. Nearly all V1 neurons were better described by the frequency-

separable model. When probed with drifting sinusoidal gratings, MT responses were equally well-

described by both models. However, when probed with plaid stimuli, the velocity-separable model
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systematically outperformed the frequency-separable model for pattern-selective neurons. This is

the first direct evidence establishing speed tuning and pattern motion selectivity in area MT as

consequences of a single organizing principle: selectivity organized along a preferred velocity plane.

Materials and Methods

Anesthetized recording procedures

We recorded from 7 anesthetized, paralyzed, adult male macaque monkeys (M. fascicularis) and

one adult female macaque (M. mulatta) using standard procedures for surgical preparation and

single-unit recording, as described previously (Cavanaugh et al., 2002). We maintained anesthesia

and paralysis by intravenously infusing sufentanil citrate (6-30 μg kg−1 h−1), and vecuronium

bromide (Norcuron, 0.1 mg kg−1 h−1), respectively, in isotonic dextrose-Normosol solution (4-10 mL

kg−1 h−1). Vital signs (heart rate, lung pressure, electroencephalogram (EEG), electrocardiogram

(ECG), body temperature, urine flow and osmolarity, and end-tidal CO2 partial pressure (pCO2))

were continuously monitored and maintained within appropriate physiological ranges. Atropine

was applied topically to dilate the pupils. Gas-permeable contact lenses protected the eyes, which

were refracted with supplementary lenses chosen by direct ophthalmoscopy. Experiments typically

lasted 5-7 days at the end of which the monkey was killed with an overdose of sodium pentobarbital.

We conducted all experiments in compliance with the US National Institutes of Health Guide for

the Care and Use of Laboratory Animals and with the approval of the New York University Animal

Welfare Committee.

The monkey was positioned so his eyes were 57-114 cm from the display. Grating and plaid stim-

uli each lasted for 1,000 ms and were presented in randomly interleaved blocks. We used 0.5-3MΩ

impedance quartz-platinum-tungsten microelectrodes (Thomas Recording) to make extracellular
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recordings in the brain through a craniotomy and small durotomy. Electrolytic lesions were made

at the end of each recording track for histological confirmation of MT recording sites. For each

isolated unit, we determined eye dominance and occluded the non-preferred eye. While isolating

neurons in V1 for recording, we selected those with strong direction tuning.

Awake recording procedures

To verify that the observations we made in the anesthetized preparation were not affected by

anesthesia, we also recorded from 2 awake, actively fixating, adult male macaques (one M. mulatta

and one M. nemestrina). No differences were observed between awake and anesthetized data. A

headpost was surgically implanted for head stabilization using the design and methods described in

(Adams et al., 2007). In a second surgical procedure, a chamber was implanted for chronic electrode

recording over the superior temporal sulcus (STS) of the left hemisphere, using the techniques and

a variant of the design described in (Adams et al., 2011). Prior to surgery, we used structural MRI

and Brainsight software (Rogue Research, Canada) to design a chamber with legs matched to the

curvature of the monkey’s skull (Johnston et al., 2016) above the STS.

We acclimated each monkey to his recording chair and experimental surroundings. After this

initial period, he was head-restrained and rewarded for looking at the fixation target with dilute

juice or water. Meanwhile, we used an infrared eye tracker (EyeLink 1000; SR Research, Canada)

to monitor eye position at 1000Hz via reflections of infrared light on the cornea and pupil. The

monkey sat 57 cm from the display.

The monkey initiated a trial by fixating on a small white spot (diameter 0.1◦), after which he

was required to maintain fixation for a random time interval between 2,350 and 4,350 ms. A grating

or plaid stimulus would appear 100 ms after fixation began and last for 250 ms. Stimulus conditions

were presented in randomly interleaved blocks. The monkey was rewarded if he maintained fixation

5



within 1-1.75◦ from the fixation point for the entire duration of the stimulus. No stimuli were

presented during the 300 to 600 ms in which the reward was being delivered. If the monkey broke

fixation prematurely, the trial was aborted, a timeout of 2,000 ms occurred, and no reward was

given.

For extracellular recordings, we advanced 0.5-3MΩ impedance tungsten microelectrodes with

epoxylite insulation (FHC, Bowdoin, ME) through a 23G stainless steel dura-penetrating guide

tube. We identified area MT from gray matter-white matter transitions and isolated neurons’

brisk, direction-selective responses.

Analysis of neuronal response

We used Expo software (http://corevision.cns.nyu.edu) on an Apple Mac Pro to process

signals and sort single units. Signals were amplified 1000×, bandpass filtered (300Hz to 10kHz),

fed into a multiple-window time-amplitude discriminator, and time-stamped with 100μs resolution.

During each single-unit isolation attempt, discriminator windows and thresholds were manually set,

online, to most unambiguously and stably distinguish a single spike waveform from noise and other

units. If spike waveforms from multiple neurons overlapped to the extent to which they could not

be separated, the discriminator allowed us to detect this based on sub-refractory period interspike

intervals. If this type of multiunit activity was detected, we would then either manually refine

the discrimination windows to effectively isolate the unit, move the electrode a small distance, or

abandon that neuron for experimentation and move on to the next unit that could be fully isolated.

During the experiments, each unit waveform was continuously monitored for isolation stability.

If necessary, minor, manual adjustments detailed above were made to preserve isolation quality.

Spike waveform consistency and interspike interval distributions over the entire duration of the

experiments were verified post hoc. While running experiments, Expo automatically generated and
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displayed tuning curves, from which half-maximum spiking response rates, and their corresponding

stimulus values, could be directly computed and displayed through the graphical interface.

Visual stimulation

We presented visual stimuli on a gamma-corrected CRT monitor (an Eizo T966 during anesthetized

experiments, and an HP P1230 during awake experiments; mean luminance, 33 cd/m2) at a reso-

lution of 1,280 × 960 with a refresh rate of 120 Hz. Stimuli were generated and presented on the

same Mac Pro using Expo.

For each isolated unit, we presented windowed sinusoidal grating stimuli to determine, by hand,

initial estimates of each cell’s receptive field and preferred size. We used a standard sequence of

tuning experiments to make precise estimates of the cell’s tuning preferences. Each tuning curve

measured in this sequence featured 100% contrast single gratings varying along a single stimulus

dimension, beginning with size tuning and followed by direction, spatial frequency, and temporal

frequency tuning. After each of these individual tuning experiments finished, we determined the

preferred stimulus value of the dimension tested and used it in subsequent experiments. Next, we

measured pattern direction selectivity, at optimal spatial and temporal frequencies, with interleaved

drifting gratings and plaids. In the rare cases in which this experiment yielded a different grating

direction preference from the previously determined value, we repeated the full sequence of tuning

curve measurements, to make sure optimal values would be used for the single component and

planar plaid experiments which followed. The receptive fields of all recorded neurons were centered

between 2◦ and 30◦ from the fovea.

Next, we ran the planar plaid study, which required no further stimulus optimization. In the

planar plaid study, stimuli were chosen to span four different direction tuning curves at the optimal

spatial frequency (see figure 7(a,b)). The first two were based on single gratings at 50% contrast, one
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with temporal frequency held constant at the optimal value (“constant frequency”), presented in all

directions in 30◦ intervals, and the other with constant, optimal velocity (“constant velocity”) from

-90◦ to 90◦ relative to the preferred direction, in 15◦ intervals. Since a given velocity corresponds

to spectral content lying on a tilted plane in frequency space, constant velocity gratings had a

temporal frequency that varied with the cosine of their direction.

The last two tuning curves consisted of 120◦ “plaids” (sums of two gratings with orientations

120◦ apart). The component gratings had the same temporal frequency, and were presented at 50%

contrast each. The “pattern direction” of motion (direction consistent with rigid translation, equal

to the average direction of the two gratings) was sampled the same set of directions used for single

grating tuning curves.

Following the planar plaid study, we ran the single component study. It included presentation

of 225 drifting grating stimuli, each at 100% contrast. Stimuli were arranged to widely sample

the three dimensions of spatiotemporal frequencies near a given neuron’s tuning preferences, using

multiple tuning curves, each varying along a single dimension: direction, spatial frequency, and

temporal frequency. These tuning curves were measured at optimal and suboptimal values, the

latter of which were determined by reading out (or if necessary, linearly interpolating) the stimulus

values which elicited a response at half the neuron’s maximum spike rate (computed directly in

Expo, see Analysis of Neural Response above) in the preceding standard tuning curve experiments

(see figure 4-3 for details). By sampling spatiotemporal frequencies in this way, we could efficiently

concentrate stimuli to reveal subtle changes of each neuron’s selectivity in a manner that does not

assume a particular shape of selectivity or manner of tuning specific to either V1 or MT.

Note that the first two direction tuning curves of the single component study differ from the

two grating tuning curves in the planar plaid study in that in the planar plaid study: (1) gratings
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were at 50% contrast instead of 100%, and (2) constant frequency gratings spanned the whole

range of directions rather than just the semicircle of directions centered at the preferred one. Even

though gratings were only presented at 50% contrast in the planar plaid study, its implications

for 3D frequency selectivity shape should generalize to the 100% contrast case, since differences in

response strength for these contrast levels are negligible (Carandini et al., 1997; Sclar et al., 1990).

Frequency- and velocity-separable models

The MT linear weighting functions for both the frequency- and velocity- based models are defined as

a separable product of tuning functions over direction wd(d), spatial frequency ws(s), and temporal

frequency wt(t).

Specifically, the frequency-separable linear weighting for a grating is defined as follows:

F (d, s, t) = wd (d) · ws (s) · wt (t) . (1)

Direction tuning above is represented by a von Mises function:

wd (d) =
eσdcos(d−μd)

2πI0(σd)
, (2)

where μd and σd represent the direction preference and bandwidth, respectively, and I0() is the

modified Bessel function of order 0 (which normalizes the integral of the numerator). Spatial

frequency is represented by a logNormal function, parameterized by spatial frequency preference

μs and bandwidth σs:

ws (s) =
1

σs
√
2π

e−(log2(s)−log2(μs))2/2σ2
s . (3)

Finally, temporal frequency is represented by a Gaussian in coordinates which are linear at low

frequencies and logarithmic at higher ones:

wt (t) =
1

σt
√
2π

e−(g(t)−g(μt))2/2σ2

t , (4)
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where g(t) is

g (t) = sgn(t) log2

( |t|
τ

+ 1

)
. (5)

Using this functional form for temporal frequency tuning allows wt (t) to be logarithmic at high

temporal frequencies, but also be zero-valued and continuous at zero temporal frequency. The

parameter τ determines the temporal frequency at which the function transitions from linear to

logarithmic, and μt and σt are the temporal frequency preference and bandwidth, respectively.

The velocity-separable linear weighting function is defined as follows:

V (d, s, t) = wd (d) · ws (s) · vt (t; d, s) , (6)

where the velocity-separable temporal frequency function, vt, is defined as a Gaussian, again linear

at low frequencies and logarithmic at higher ones:

vt (t; d, s) =
1

σt
√
2π

e−(g(t)−g(P (d,s)))2/2σ2

t (7)

The only difference between wt(t) (equation (4)) and vt(t; d, s) (equation (7)) is that in the latter,

temporal frequency tuning is centered on the preferred speed plane P (d, s):

P (d, s) = s
μt

μs
cos (d− μd) . (8)

Note that a consequence of equations (6)-(8)is that the velocity-separable model “shears” vertically

in the direction of the temporal frequency axis, rather than in the direction orthogonal to the

preferred velocity plane (see figure 1). This was done deliberately, to account for the broad temporal

frequency tuning MT neurons exhibit near the preferred direction and spatial frequency (see figures

4 and 8).

Previous models included a V1 normalization stage, either explicitly or implicitly simulated, at

this part of the computation (Simoncelli and Heeger, 1998; Rust et al., 2006; Nishimoto and Gallant, 2011).
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Normalization at the V1 stage has been previously shown to be an important contributor to MT tun-

ing properties. While we could have made it an explicit piece of the model here, Rust et al. (2006)

showed that, in some cases, it can be combined with the MT normalization stage to yield a single

normalization computation. Moreover, V1 contrast normalization is engaged only when contrast

varies widely, and cross-orientation suppression is strongest for components close in orientation.

Since the grating components in the plaid stimuli in our experiments are always 50% contrast and

120◦ apart, we assume such cross-orientation and contrast normalization effects in V1 are negligi-

ble. Thus, we assume the next model stage consists of MT neurons summing the responses to each

plaid component.

Finally, the full MT model response is computed by raising the linear responses to a power β,

and then normalizing them:

Rf (d, s, t, tmax) = α0 +
α1n

(1−2β)/3 (
∑n

i Fi (d, s, t))
β

α2 +
∑n

i Ni (t, tmax)

Rv (d, s, t, tmax) = α0 +
α1n

(1−2β)/3 (
∑n

i Vi (d, s, t))
β

α2 +
∑n

i Ni (t, tmax)

(9)

where the sums are over the components of the stimulus (n = 2 for plaids, n = 1 for gratings),

and the α0 and α1 parameters represent the spontaneous and maximum discharge rates of the cell.

The relative gains of responses to grating and plaid are controlled by the n(1−2β)/3 term in the

numerator in equation (9).

The normalization signal, Ni(t, tmax), is meant to approximate the effects of tuned normaliza-

tion. In the original Simoncelli and Heeger cascade model, MT normalization signals were com-

puted by summing over a simulated population of MT neurons, but this construction would be

computationally prohibitive in the context of fitting the model to spiking data. We parameterize
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the tuning as follows:

Ni (ti, tmax) = (1− γ0)

(
1− ti

tmax

)γ1

+ γ0. (10)

This function is maximally active at zero temporal frequency (with a value of 1) and minimally

active with a value of γ0 at tmax. tmax is the highest temporal frequency simulated and experimen-

tally presented. We used this form of normalization for fitting tractability and because it has useful

properties, namely, it: (1) ensures there is no suppression at the preferred temporal frequency, (2)

can be completely disabled by setting γ0 = 1, and (3) can be sub-linear, linear, or super-linear.

The rationale for this particular approximation of MT tuned normalization is based on the fol-

lowing thought experiment. We start with the assumption that neurons in the MT normalization

pool fall into component-, intermediate-, and pattern-selective subpopulations (see figure 1(c)).

Next, we assume all neurons’ selectivities in each of these subpopulations evenly tile the space

of spatiotemporal frequencies. Now we will consider the consequences of summing together the

spatiotemporal frequency selectivities of all the neurons in each subpopulation. Specifically, the

manner in which these selectivities sum together and overlap each other in frequency space de-

termine whether and how normalization is tuned. Any systematic biases in tuning overlap, as a

function of spatiotemporal frequency, yield tuned normalization.

Component neurons from both model variants have narrow tuning, overlapping only between

neurons with adjacent spatiotemporal tuning preferences. As a consequence, the summed responses

of the population of component neurons evenly tile frequency space, producing an untuned nor-

malization signal.

Frequency-separable pattern-selective neurons have broad direction tuning, so their overlap will

occur most strongly in direction. The overlap, however, will be separable in spatial and temporal
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frequency, so for any subpopulation with the same spatial and temporal frequency tuning at all

directions, the overlap will be confined to a donut-shaped region centered on those spatial and

temporal frequencies. Since we assume the population of frequency-separable pattern selective

neurons are evenly distributed across all preferred spatial and temporal frequencies, the tuning

overlap will also be evenly distributed, yielding an untuned normalization signal.

Finally, velocity-separable pattern-selective neurons, which are organized along tilted planes

which pass through the origin, will have strong overlap at zero and low temporal frequencies re-

gardless of their preferred direction. As such, a pool of velocity-separable pattern neurons tiling

frequency space generate a tuned normalization signal which strongly emphasizes low/zero temporal

frequency. The same conclusions can be drawn for intermediate neurons in each separable model,

although their selectivities will overlap less, yielding a similar, but weaker, tuned normalization

signal.

Estimating model parameters for individual cells

In total, the model has 9 free parameters for the single-grating study and 10 for the planar plaid

study. For the former, they are: the direction preference and bandwidth (μd and σd), spatial

frequency preference and bandwidth (μs and σs), temporal frequency preference, bandwidth, and

log-linear transition (μt, σt, and τ), and the spontaneous and maximum firing rates (α0 and α1).

For the latter experiment, μs, σs, and μt are unconstrained by the data and are therefore held

fixed at experimentally determined values, but the exponent (β), semi-saturation constant (α2),

and normalization parameters (γ0 and γ1) are free. To avoid model fits producing spuriously wide

temporal frequency tuning, we included temporal frequency tuning data collected immediately prior

in the fitting of the planar plaid dataset. That temporal frequency tuning data, along with the

planar plaid stimuli which sample different directions, constrain μd, σd, and σt. In each study,
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the frequency- and velocity-separable models have the same parameters, and only differ in the

parameterization of their temporal frequency linear weighting functions, wt and vt (see equations

(4) and (7)).

For each cell, we optimized the model parameters by minimizing the negative log-likelihood

(NLL) over the observed data, assuming spike counts arise from a modulated Poisson model. An ad-

ditional parameter, σG, describes across-trial fluctuations in neural response gain (Goris et al., 2014)

and was optimized to the data independently from the frequency- and velocity-separable models

and held constant during model fitting. We performed the optimization in successive steps, using

optimal values from one step as initialization values for the next. First, we fit τ , then added the

rest of the MT linear weighting parameters, and then in the case of the planar plaid experiment,

the MT parameters controlling the MT nonlinearity.

Experimental design and statistical analysis

In the single component study, we recorded single-unit responses of 13 V1 neurons and 39 MT

neurons from seven anesthetized, paralyzed, adult male macaque monkeys (M. fascicularis) and one

adult female macaque (M. mulatta). From those same eight monkeys, we recorded 21 V1 neurons

and 53 MT neurons for the planar plaid study. These monkeys were also used for other visual

system experiments not reported here—12 of the 53 MT neurons reported had another experiment

run after the single component and planar plaid studies were run. Of the 53 MT neurons in the

planar plaid study, 23 were also in the single component study. All of the 13 V1 neurons from the

single component study are in the set of 21 V1 neurons in the planar plaid study. We additionally

recorded 58 MT neurons from two awake, actively fixating, adult male macaques for the planar plaid

study (31 from M. mulatta “Albert” and 28 from M. nemestrina “LW”). In all studies, neurons

were only excluded from analysis if spike isolation degraded during the experiment, or if spike rates
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were too low (e.g., always below 10 spikes/sec) or variable to reliably predict direction tuning. No

additional neurons were rejected from any subsequent analyses.

Following stimulus onset, we counted spikes within a 1,000 ms window (anesthetized experi-

ments) or a 250 ms window (awake experiments). For each cell, latency of these windows (relative

to stimulus onset) were chosen by maximizing the sum of response variances computed for each

stimulus condition (Smith et al., 2005). Error bars on tuning curve responses indicate ±1 standard

deviation.

We used standard methods to compute each cell’s “pattern index” (Movshon et al., 1985; Smith et al., 2005).

First, we computed partial correlations between the actual (constant temporal frequency) plaid

responses and idealized predictions of pattern and component direction selectivity (rp and rc, re-

spectively). We then converted these values to Z-scores to stabilize the variances of the correlations

(Zp and Zc). Finally, the pattern index is the difference of these two quantities: Zp − Zc. Cells

were classified as pattern selective if Zp − Zc > 1.28, or component-selective if Zc − Zp > 1.28.

Both thresholds correspond to a significance of P = 0.90. Confidence intervals on pattern index

were computed from the 95th percentile of 100 bootstrapped estimates (Efron and Tibshirani, 1993;

Rust et al., 2006).

For optimal and non-optimal spatial and temporal frequency tuning curves in the single com-

ponent study in figure 2(b-d), we fit a difference of log2-Gaussians (Hawken et al., 1996). For each

neuron, the stimulus value corresponding to the peak of this fitted difference of log2-Gaussians

function was used as the fitted preferred stimulus in the figure. To test the robustness of these

tuning curve fits, we ran a bootstrap analysis in which trials from each tuning curve were pseudo-

randomly resampled 1000 times, with replacement, with the restriction that no stimulus condition

had zero trials sampled. The error bars in figure 2(b-d) represent the 95% confidence intervals of
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these bootstrapped fitted peak stimulus values. Some tuning curves had flat tops, yielding unreli-

able tuning preference estimates. We therefore excluded neurons (7 MT, 0 V1) from all analyses

in figure 2(b-d) which had a confidence interval exceeding 1.5 decades in any of the three. The

conclusions are the same with or without these neurons.

For the constrained parameter search during model fitting, we used a simplex algorithm (the

Matlab function ‘fmincon’). To avoid overfitting and obtain estimates of parameter stability (i.e.,

the error bars in figures 9(a,b) and 10), we fit the model on 100 bootstrap resamplings of the data.

Bootstrapping was done on a per stimulus-condition basis—that is, trials within each stimulus

condition were sampled with replacement, ensuring that there were no stimulus conditions without

data. Error bars on model fits indicate ±1 standard error.

To compare model fits to a given neuron, we computed “velocity superiority”, the difference of

the normalized NLLs of the velocity- and frequency-separable models. The NLLs were normalized

by their corresponding “null” and “oracle” models, which serve as lower and upper bounds, at 0

and 1, respectively. The null model assumes the cell has two possible response rates: one when a

stimulus is present and another when there is no stimulus. These are fixed to the measured mean

spontaneous and maximal stimulus-driven response rates, respectively. The oracle model serves as

an upper bound for the models’ performance, computed by using the measured mean responses

to each stimulus condition to predict the neuron’s response to any individual presentation of that

stimulus. We used the Wilcoxon signed rank test to test velocity superiority significance and

Pearson’s r to assess correlation between velocity superiority and other quantities, such as pattern

index.
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Results

Joint and independent representations of motion in the frequency domain

Any image sequence can be decomposed (using a three-dimensional Fourier transform) into a sum

of sinusoidal gratings of differing orientation, and spatial and temporal frequency. A single point

in this 3D frequency domain corresponds to a drifting sinusoidal grating with a unique orientation,

spatial frequency, and temporal frequency (figure 1(d)). More complex spatial patterns contain

mixtures of gratings of different orientations and spatial frequencies. If these patterns are rigidly

translating over time, their frequency domain constituents lie on a tilted plane through the ori-

gin, the slope of which is equal to the object’s speed (figure 1(e); Watson and Ahumada (1983);

Watson and Ahumada (1985)).

How do V1 and MT neurons represent visual motion? Most V1 neurons are selective for a

relatively narrow range of orientations, and spatial and temporal frequencies, corresponding to

a ball in the frequency domain (Goris et al., 2015). If MT neurons are specialized for analyzing

rigid motion, their receptive fields should be organized along just such a plane with slope equal to

a preferred speed (figure 1(f), “velocity-separable”) (Simoncelli and Heeger, 1998). While there is

some direct physiological evidence for velocity-separable organization (Rodman and Albright, 1987;

Perrone and Thiele, 2001; Priebe et al., 2003; Nishimoto and Gallant, 2011), as well as perceptual

evidence (Adelson and Movshon, 1982; Schrater et al., 2000), this is not the only kind of receptive

field organization consistent with known MT properties.

However, almost all experimental measurements of grating direction selectivity use stimuli that

lie along a horizontal plane of constant temporal frequency. By treating spatial and temporal

frequency independently, they implicitly assume that MT direction selectivity is organized along

these planes (“frequency-separable,” figure 1(g)). Evidence exists for this alternative possibil-
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ity (Perrone and Thiele, 2001; Priebe et al., 2003)—an MT neuron with this type of organization

would still be direction-selective, but in a manner that is more strongly influenced by variations in

spatial pattern.

These two model structures make different, testable predictions about how MT tuning should

change in response to preferred and non-preferred stimuli. Experimenters typically assess a neuron’s

spatiotemporal frequency tuning preferences by presenting gratings varying along one of the three

dimensions of the frequency domain, while keeping the values in the other two dimensions fixed

at the best estimate of the neuron’s preferences (black lines in figure 1(h-i) for spatial frequency,

temporal frequency, and direction, respectively). For a simulated neuron, the tuning curves (red

and blue dashed lines in figure 1(j-k)) generated from these optimized stimuli have their peaks at

the neuron’s preferred spatiotemporal frequency (represented as the black points in figure 1(h-i)).

The two predictions differ most for tuning curves measured at non-preferred frequencies (fig-

ure 1(h-i), dark gray lines and points), most notably in the tuning curves’ peak locations. The

frequency-separable hypothesis predicts tuning in response to stimuli of non-preferred spatial and

temporal frequency that is lower in amplitude but with a peak at the same frequency (blue lines,

figure 1(j-k)). However, the velocity-separable hypothesis predicts that the tuning curve will shift

(red lines, figure 1(j-k)), such that if the non-preferred tuning experiment is run at a frequency

below preferred, the peak will also be at a lower frequency, and vice-versa.

To test these hypotheses in V1 and MT, we measured tuning curves at optimal and suboptimal

spatial and temporal frequencies and asked whether or not there was a shift in their peak location.

For “suboptimal” frequencies, we used the stimulus values corresponding to the half-maximum

responses when measured at optimal frequencies (see Methods for details). Many cells (e.g., figure

2(a)), exhibited a peak spatial frequency tuning that increased with increases in grating temporal
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frequency, consistent with the velocity-separable hypothesis. To quantify this shift, and compare

across neurons, we computed the peak spatial frequency and plotted it as a function of the relative

temporal frequency at which it was measured (figure 2(b)). The degree to which the neuron is

velocity tuned can be captured by the slope of the line through the data (0 for no speed tuning,

1 for ideal speed tuning, 0.37 for the neuron in (a)). V1 neurons show, on average, no slope

(0.08 ± 0.22 s.e.m., n = 13, blue in figure 2(b)), while MT neurons have a significantly positive

slope (0.50 ± 0.07 s.e.m., n = 39, red in figure 2(b)). Performing the same analysis for changes

in temporal frequency preferences as a function of stimulus spatial frequency (figure 2(c)) yields

similar slopes in MT (0.36 ± 0.03 s.e.m.) and V1 (0.05 ± 0.04 s.e.m.).

These measurements, all performed at the neuron’s preferred direction, support previous find-

ings that V1 tends to be frequency-separable and MT velocity-separable (Simoncelli and Heeger, 1998;

Perrone and Thiele, 2001; Priebe et al., 2003; Priebe et al., 2006; Nishimoto and Gallant, 2011). Since

our goal was to characterize tuning in all three dimensions, we also assessed peak temporal frequency

changes when measured at different directions (figure 2(d)), which should either remain constant

or decrease (for the frequency- and velocity-separable hypotheses, respectively). When averaged

across the populations, slopes were flat (figure 2(d), V1 (blue triangles) mean −0.001±0.004 s.e.m.;

MT (red triangles) mean −0.0004±0.0007 s.e.m.), however, on a neuron-by-neuron basis, tuning at

non-preferred directions was inconsistent. To probe the three-dimensional selectivity more finely,

we presented stimuli at many more spatiotemporal frequencies, and fit velocity- and frequency-

separable models directly to the responses.

The velocity- and frequency-separable models

To examine MT receptive field organization in the frequency domain, we fit two modified versions

of the Simoncelli and Heeger (1998) model of MT direction selectivity to the responses of individual
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neurons. Both models have the same structure: two stages, each with a linear weighting followed by

a point nonlinearity and normalization (figure 3). The first (V1) stage consists of narrowly-tuned

direction-selective complex cells, simulated with a linear weighting of a narrow band of frequencies,

followed by squaring. The second (MT) stage computes a weighted linear combination of its V1

inputs, followed by another point nonlinearity and normalization.

Linear weighting in the MT stage is the primary determinant of the MT neuron’s tuning proper-

ties, including pattern motion selectivity. We constrain it to be a separable product of three tuning

curves. The first two (direction and spatial frequency tuning) are common to both models. In the

frequency-separable model, the third separable function is temporal frequency tuning, independent

of the other two dimensions. In the velocity-separable model, temporal frequency tuning co-varies

with direction tuning such that the peak lies on a tilted plane whose slope is the preferred velocity

of the neuron. This temporal frequency tuning parameterization is the only difference between the

two models.

The MT stage nonlinearity controls interactions between multiple spatiotemporal frequencies

simultaneously present in the stimulus, and thus plays an important role in establishing pattern

motion responses. In the full models, the MT nonlinearity is composed of a point-wise power

function, followed by divisive normalization. The divisive normalization operates on a uniform

population of pattern and component cells which, taken in aggregate, are assumed to uniformly

cover direction and spatial frequency, while exhibiting tuning for temporal frequency (see Methods

for details). Single grating stimuli do not constrain this model component, and thus for the single

grating study presented below, the exponent is fixed to a value of two.
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Single grating responses do not differentiate the models

How can we distinguish the two models? We designed a study in which we measured seventeen

tuning curves, chosen on a neuron-by-neuron basis, to sample the frequency domain where the

predictions of the models should deviate the most. The stimuli were full contrast sinusoidal gratings;

five tuning experiments included a grating at the optimal spatiotemporal frequency, while twelve

suboptimal tuning experiments did not (see methods and figures 4-1 and 4-3 for details). By

comparing how responses fall off as stimuli deviate from the preferred spatiotemporal frequency, a

picture of three-dimensional tuning should emerge in support of one model or the other.

For each cell, we fit the frequency and velocity models to data from all 17 tuning experiments

simultaneously. Figure 4(a-d) shows four of the seventeen tuning curves of the optimized model,

fit to data from two example MT component neurons (figure 4(a,b)) and two MT pattern neu-

rons (figure 4(c,d)). As expected, the models make substantially different predictions for spatial

and temporal frequency tuning (first three columns in figure 4), but not direction tuning (fourth

column). In the first two columns, for example, the velocity model predicts tuning peak shifts,

whereas the frequency model does not.

Most tuning curves from each neuron are well fit by one of the two models (frequency model

for figure 4(a,c) and velocity model for figure 4(b,d)), including changes in relative gain across

tuning experiments. Relative model performance for each stimulus condition from all seventeen

tuning experiments (points in the scatter plots in figure 4, rightmost column) show that while some

spatiotemporal frequencies strongly distinguish the two models, most do not. This reflects the

fact that some tuning curves are well-described by both models (e.g., the constant-velocity grating

direction tuning, fourth column of figure 4).

This range of behavior was observed across the population. We assessed overall fit quality
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on a cell-by-cell basis by normalizing the log likelihoods of the models to null and oracle models.

The null model assumes the cell has two possible response rates: one when a stimulus is present

and another when there is no stimulus. These are fixed to the measured mean spontaneous and

maximal stimulus-driven response rates, respectively. The oracle model serves as an upper bound

for the models’ performance, computed by using the measured mean responses to each stimulus

condition to predict the neuron’s response to any individual presentation of that stimulus. “Velocity

superiority” is the difference of the normalized log likelihoods of the velocity-separable model and

the frequency-separable model (figure 5).

In general, V1 cells were better fit by the frequency model (average velocity superiority of −0.03,

P = 0.0046 Wilcoxon signed rank test, open circles in figure 5). Most MT neurons were clearly

better fit by one model or the other, but overall, neither model was significantly better (−0.005

mean difference, P = 0.12 Wilcoxon signed rank test, filled circles in figure 5), regardless of pattern

index.

Model fits to single grating responses provided further evidence that V1 neurons are frequency-

separable, but were inconclusive for MT neurons. MT neurons tend to be velocity-separable for

stimuli at the preferred direction (figure 2(b,c)) but have inconsistent tuning at off-directions (figure

2(d)). In theory, comparing direction tuning curves measured at either a given neuron’s optimal

velocity or optimal temporal frequency should distinguish the models: they predict direction tuning

bandwidth to be wider when the stimulus and model type match (e.g., velocity-separable model

direction tuning for constant-velocity gratings should have a wider bandwidth than tuning for

constant frequency gratings). In fact, measured tuning to these two stimuli are nearly identical for

component neurons, and slightly broader, on average, for constant velocity gratings for intermediate

and pattern neurons (figure 6). These data provide more evidence that MT neurons are likely
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velocity-separable, using different tuning measurements at non-preferred directions.

Taking these observations into account, we concluded that single grating stimuli are not rich

enough to fully distinguish the models. In particular, since only one spatiotemporal frequency is

presented at a time, single gratings do not constrain the MT nonlinearity which underlies pattern

computation. We therefore sought to use more complex stimuli and focused on sampling the

frequency domain at non-preferred directions—those spatiotemporal frequencies which were the

most informative in distinguishing the two models (both in theory and in practice).

Compound stimuli reveal velocity-separable organization in MT

Selectivity for pattern motion is a defining property of MT neurons. Since single gratings alone

are not rich enough to characterize MT, we ran a second study in which direction tuning curves

were measured for gratings and 120◦ plaids, presented either at a given neuron’s optimal velocity or

optimal temporal frequency (figure 7(a,b)). All stimuli were fixed at the neuron’s optimal spatial

frequency. These stimuli can be equivalently described as gratings and plaids drifting either in the

preferred direction of the cell or along the direction normal to the mean orientation (“constant

velocity” or “constant frequency” in figures 7(a) and (b), respectively).

The two models make dramatically different predictions (figure 7(c)) for pattern-selective neu-

rons: the frequency model predicts tuning for constant-velocity plaids to have a trough at the

preferred pattern motion direction, and peak 90◦ from preferred. The velocity model predicts a

near-constant, elevated response to all constant-velocity plaids.

Responses to this new stimulus family were complex enough to fully constrain the models’ MT

nonlinearity (a power function and divisive normalization—see methods for details). There were

three free parameters in the nonlinearity that were fixed in the previous study. Since the spatial

frequency preference and bandwidth and temporal frequency preference parameters were uncon-
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strained by this dataset, they were fixed to values determined in preceding tuning measurements.

In total, there was one additional free parameter fit compared to the single-grating study.

Qualitatively, the models predict that direction tuning should be flatter when the coordinate

system of the model matches that of the stimuli. Two features of the measured responses stand out.

First, constant frequency and constant velocity direction tuning curves to gratings are again clearly

indistinguishable for all cells (two leftmost columns of figure 8). Second, the pattern selective MT

neuron (figure 8(d)) exhibits much wider direction tuning bandwidth for constant velocity plaids as

opposed to constant frequency plaids (fourth and third columns from the left in figure 8), while the

other cells show more similar tuning bandwidth for the two plaid types. For all cells, both models

capture grating responses well. However, the frequency model cannot account for the pattern

selective neuron’s responses to both types of plaids simultaneously (figure 8(d), blue). The best it

can do is pick a compromise direction tuning bandwidth that is too wide for constant frequency

plaids and too narrow for constant velocity plaids. The velocity model, on the other hand, is

able to account for all the data simultaneously, including the different plaid tuning bandwidths.

This pattern cell is the only one of the four example cells that has substantial differences in the

frequency- and velocity-separable model predictions. The increasingly divergent model predictions

as pattern index increases is further illustrated by the increasingly different MT linear weighting

functions (rendered in the last column of figure 8). The models make nearly identical predictions

for narrowly tuned neurons, yielding velocity superiority indices at or near 0 (scatter plots on right

of figure 8).

The relationship between velocity superiority and pattern index holds across cell populations.

For the single grating data set, there is overall no significant correlation (figure 9(a), for all cells

(Pearson’s r = 0.05, P = 0.70) or MT alone (r = −0.01, P = 0.95). There was, however,
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a significant negative correlation for V1 (r = −0.70, P = 0.007). Furthermore, there was no

significant relationship between pattern index and the number of tuning curves per cell better fit

by one model or the other (Pearson’s r = −0.22, P = 0.13). In contrast, responses to plaid stimuli

indicate a significant correlation between velocity superiority and pattern index, and (figure 9(b),

Pearson’s r = 0.34, P = 5.6e − 5). 86% of all pattern cells were better fit by the velocity model

(P = 1.4e− 4, Wilcoxon signed rank test).

As a more direct test, we compared pattern selectivity of model predictions against the mea-

sured pattern selectivity of the cells. The velocity model accounts for the full range of pattern

selectivity across the population (figure 9(c), Pearson’s r = 0.60). The frequency model, however,

fails to produce any cells with pattern tuning (figure 9(d), Pearson’s r = 0.50), due to the com-

promises it must make when fitting both constant frequency and constant velocity plaid responses

simultaneously.

Model validation

Which characteristics are needed to describe the motion selectivity of a given neuron in MT?

They are, in order of increasing complexity: (1) its preferred direction and speed, (2) the degree

to which responses fall off as stimuli deviate from the preferred stimulus, and (3) the extent to

which multiple overlapping motion components are treated independently or as a single, coherently

moving pattern.

Experimentally, these attributes are established by identifying the stimulus that evokes the neu-

ron’s maximum response, the shape of tuning curves for direction, spatial frequency, and temporal

frequency, and calculating the pattern index based on correlating (constant frequency) grating

and plaid direction tuning. The recorded direction curves we report (figure 8), with identical

bandwidths for constant frequency and velocity gratings (all cells) and wider bandwidth tuning to
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constant velocity plaids (pattern cells), provide a novel, fourth criterion for describing MT motion

selectivity.

The velocity model accurately captures the first, second, and fourth attributes (direction tun-

ing, response fall-off, and matched/unmatched frequency bandwidths) by accurately reproducing

tuning curves (figures 4 and 8). We verified that the velocity model also accounts for the third

attribute (pattern motion selectivity), and accounts for the full range of pattern selectivity across

the population (figure 9(c)). The frequency model, in addition to failing on the second and fourth

criteria (figure 8), also fails on the third by failing to predict any pattern motion selective cells

(figure 9(d)).

How does the velocity model provide a full account of motion selectivity? Capturing selectiv-

ity in all three frequency dimensions accounts for the first two attributes (direction tuning and

response fall-off). Pattern selectivity, the third attribute, is controlled by increasing direction tun-

ing bandwidth (Pearson’s r = 0.73, figure 10(a)) and the exponent in the nonlinearity (Pearson’s

r = 0.60, figure 10(b)). Divisive normalization, which allows the model to adjust the fourth at-

tribute (matched/unmatched frequency bandwidths), does so by producing grating direction tuning

curves with more similar bandwidths than would be predicted in its absence. The semi-saturation,

or “uniform” divisive normalization parameter, is very weakly correlated with pattern index (on a

log2 scale, Pearson’s r = −0.16, P = 0.07, figure 10(c), see methods for details). This means that

for neurons with higher pattern index, the temporal-frequency dependent suppression is stronger.

Taken together, the two datasets and associated model fits reveal important aspects of MT

computation. First, sinusoidal grating stimuli drifting in a neuron’s preferred direction can reveal a

frequency-separable receptive field organization in V1, and a velocity-separable one in MT. These

stimuli, however, are not sufficient to reveal the nonlinear behaviors that distinguish direction
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selectivity observed in MT from that observed in V1. Second, compound stimuli, which constrain

nonlinear receptive field behavior in MT, reveal receptive fields that are organized along a neuron’s

preferred velocity plane.

Discussion

To date, attempts to characterize MT motion selectivity have generally followed two distinct strate-

gies. They focused either on how multiple superimposed spatiotemporal frequencies are integrated

into a single, coherent drifting pattern, or on how tuning varies across multiple dimensions of the

spatiotemporal frequency domain. Here, we present a model that unifies these two approaches in

a common framework, and for the first time, generalizes previous findings to all three dimensions

of the spatiotemporal frequency domain.

We recorded responses of a large population of neurons in both MT and V1 to simple stimuli

specifically designed to extensively quantify tuning in the spatiotemporal frequency domain as well

as tuning for pattern motion. We fit two compact two-stage models to each individual neuron

in the population. We found temporal frequency tuning in MT to be much broader than that

instantiated in the Simoncelli and Heeger (1998) model. Furthermore, by comparing two models’

performance, we provide model-based evidence that MT neurons’ selectivity is best described by

a tilted, constant velocity plane in the spatiotemporal domain. Finally, compound stimuli were

necessary to reveal this organization—single sinusoidal gratings were not sufficient.

Motion computation in the velocity-separable model

The separable models we developed and tested are generalizations of previous models (Simoncelli and Heeger, 1998;

Rust et al., 2006). The Simoncelli and Heeger (1998) model was constructed using populations of
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V1 and MT neurons, each having their own rectifying nonlinearities and divisive normalization. The

second (MT) stage of the model linearly weighted the afferent signals from V1 along a tilted, con-

stant velocity plane in the frequency domain. But this model was not explicitly fit to single cell data,

and comparisons of predicted to measured tuning curves were qualitative. The Rust et al. (2006)

paper used a simplified model variant that predicted (and was fit to) responses to gratings and

plaids at a single temporal frequency. The paper showed that pattern selectivity could be ex-

plained by incorporating opponent suppression and direction-tuned normalization. By fitting to a

more diverse set of stimuli, and a model that includes a full range of temporal frequencies, we find

that selectivity for both speed and direction of moving patterns can be captured in a single model.

Note that we have incorporated temporal frequency dependent normalization in the MT stage (as

opposed to the direction-tuned normalization of the Rust et al. (2006) model). For parameter val-

ues optimized to neurons in the compound stimulus dataset, this tends to sharpen direction tuning

for constant velocity gratings.

In order to characterize MT receptive field structure in all three dimensions of the frequency

domain, it was not feasible to simulate entire populations of V1 and MT neurons. By restricting

our stimuli to gratings and plaids which would not be affected by normalization in V1, we could

avoid explicitly simulating the V1 stage. Rather, the model evaluated tuning directly based on the

separable product of tuning curves along three dimensions in the frequency domain. Since all three

tuning curves are exponential functions, the separable tuning volume and exponent approximately

accounts for both the linear weighting stages and power function nonlinearities of V1 and MT.

As a result, three computational elements, all implemented in the MT stage, determine how a

given MT neuron responds to moving stimuli: linear weights, a point-wise power nonlinearity, and

normalization.
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The linear weights capture the first-order aspects of a given MT neuron’s tuning: its tuning

preferences and a coarse estimate of tuning breadth. In fact, both frequency- and velocity-separable

(“linear”) models can capture single grating tuning curve shape well. This is why the two separable

models are indistinguishable, on average, when fit to the single grating dataset (figure 5). The

model captures the continuum of selectivity for pattern motion in MT (characterized by a unimodal

constant frequency plaid direction tuning curve, see figures 8(d) and 11(b)) by simply increasing the

direction tuning bandwidth in the linear weights (Simoncelli and Heeger, 1998). Direction tuning

bandwidth (calculated from measured tuning curves) is correlated with pattern index, as observed

in our data (Pearson’s r = 0.27, P = 0.0027, n=112) and previous studies (Pearson’s r = 0.35,

P < 0.0002, n=788, Wang and Movshon (2016)). Linear weighting alone in the velocity-separable

model is sufficient to capture the unimodality of constant frequency plaid (pattern) direction tuning,

but not in the frequency-separable model (lightest red and blue traces, respectively, in figure 11(a)).

Further, the frequency-separable model severely underestimates constant velocity plaid responses

(figure 11(b)). It is important to note that in order for the two separable models to make realistic

and distinguishable predictions, temporal frequency tuning data were also included during fitting;

all models capture this tuning well (figure 8). Ultimately, the “linear” model fails by overestimating

the tuning bandwidth to frequency plaids (figure 11(a)).

The original Simoncelli and Heeger (1998) model solved this problem by applying an expansive,

point-wise nonlinearity in the MT stage. The nonlinearity, when fit to data, only changes tuning

to compound stimuli. By adding a point-wise power function, both separable “linear-nonlinear”

(LN) model achieve better, sharper constant frequency plaid tuning (medium blue and red traces

in figure 11(a)). Frequency-separable predictions to constant velocity plaids (medium blue in figure

11(b)) however, worsen, since tuning for all mixture stimuli are sharpened by the power function.
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This model parameter is strongly correlated with measured pattern index (figure 10), indicating its

role in pattern motion computation.

If the goal was simply to correctly reproduce direction tuning for constant frequency gratings and

plaids, a separable model including linear weighting and a power function nonlinearity alone would

be sufficient. However, the unexpected, nonlinear property of MT selectivity that we discovered is

that direction tuning bandwidth is wider for constant velocity gratings than for constant frequency

gratings (figure 6), but by much less than expected, and by much less than is the case for measured

constant velocity plaid tuning (figure 8(d)). In order to account for this small change in grating

tuning and large change in plaid tuning, the separable models require normalization at the MT

stage.

We used a closed-form approximation of MT normalization, rather than simulating an entire

population of MT neurons (as was done in the original Simoncelli and Heeger (1998) model, see

methods for a details), to make model fitting tractable. Despite being an approximation, it is a

functionally interpretable one. Its primary effect is to suppress responses at low temporal frequen-

cies; its tuning relative to the linear weights is plotted in figure 11(c). Suppression for low temporal

frequencies has been observed experimentally (Maunsell and Van Essen, 1983). Incorporating nor-

malization improves contrast gain control (darkest blue and red tuning curves are better scaled to

the data in figure 11(a,b)). This normalization also sharpens tuning to both single gratings and

conjunctions of gratings by concentrating suppression at low temporal frequencies. In the case of

pattern neuron responses, these conjunctions are components consistent with a preferred veloc-

ity, so velocity-separable model predictions for constant velocity plaids are appropriately widely

tuned (figure 11(b)) and frequency-separable model predictions for constant frequency plaids are

too widely tuned (figure 11(a)).
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For each nested version of the models, namely, the “linear,” “linear-nonlinear,” and the full

model, the velocity-separable version performs better on pattern neurons as a group (figure 11(d)).

For component and intermediate neurons, the two types of model are indistinguishable regardless

of model version.

Relationship to previous work

Perrone and Thiele (2002) observed broader temporal frequency tuning than predicted by the

Simoncelli and Heeger (1998) model. Their Weighted Intersection Mechanism (WIM) model was

able to capture joint spatial and temporal frequency tuning in MT. It employed a weighting function

on V1 inputs organized along a common speed, and only responded when two types of V1 inputs,

“sustained” and “transient,” had equal response levels. With particular choices of parameters, the

WIM model can also simulate pattern direction selectivity (Perrone, 2004). The authors stated

that a model with velocity-based tuning at the MT stage, such as in Simoncelli and Heeger (1998),

would not be capable of producing realistic spatiotemporal tuning. Here we fit just such a velocity-

based separable model directly to pattern motion data and to data simultaneously spanning all

three dimensions of frequency space. It achieved similar realism in reproducing tuning in both

temporal frequency and pattern motion direction, each recorded from a heterogeneous populations

of neurons, without the need for the two specific V1 neuron types.

Priebe et al. (2003) investigated joint tuning for spatial and temporal frequency and pattern

motion selectivity in MT. Consistent with our findings, they reported stronger evidence for speed

tuning with compound stimuli such as plaids or square-wave gratings, as compared to single si-

nusoidal gratings. Additionally, speed tuning for single sinusoidal gratings and degree of pattern

selectivity were independent. They concluded that speed tuning arises in MT only when multiple

spatial frequencies are present. Our findings are consistent with these conclusions, and arise in our
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velocity-separable model simulations as a result of the MT normalization. Our model additionally

predicts that pattern tuning will be correlated with speed tuning for square wave gratings and

random dots (Kumano and Uka, 2013; McDonald et al., 2014; Xiao and Huang, 2015).

More recent studies (Nishimoto and Gallant, 2011; Inagaki et al., 2016) have explored MT se-

lectivity in all three dimensions of the frequency domain. Nishimoto and Gallant (2011) used

motion-enhanced natural movies to visualize 3D spectral receptive fields of individual MT neu-

rons for the first time. These weights followed a simulated V1 population, which performed linear

filtering, a compressive nonlinearity, and divisive normalization. They reported weights with exci-

tation organized along a partial ring on the plane, with a gap in the ring occurring at low temporal

frequencies. Suppression also appeared as partial rings off the preferred velocity plane, much like

the opponent suppression reported in Rust et al. (2006). Inagaki et al. (2016) performed linear re-

gression directly on the frequencies of their stimulus, which was comprised of multiple gratings

superimposed spatially and partially overlapping in time. They observed broadly tuned receptive

fields at mid- and high temporal frequencies in two pattern cells and observed diffuse suppression

off the preferred velocity plane. The absence of excitation at low temporal frequencies observed in

both studies provides indirect support for our use of suppression there.

Neither Nishimoto and Gallant (2011) nor Inagaki et al. (2016) directly confirmed that their

models could produce pattern tuning, making the connection between the receptive field structure

they observed and pattern selectivity harder to interpret. The velocity separable model is able

to reproduce pattern tuning in both frequency- and velocity-separable coordinates, while making

slightly different predictions of receptive field structure. Pattern cells have excitation on a full ring

on the preferred velocity plane, with partially overlapping suppression at low temporal frequencies

(figure 11(f)).
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Including normalization at the V1 stage (Rust et al., 2006; Nishimoto and Gallant, 2011) or

using a purely subtractive form of suppression in MT (as in all three aforementioned studies) in

the separable models was not sufficient to simultaneously account for the broad tuning observed

for constant velocity plaids.

Conclusions drawn from the separable model

Selectivity to moving patterns is a hallmark of MT response. How does this selectivity arise?

Orientation selectivity in V1 provides a useful analogy. There, first-order properties of selectivity to

simple stimuli, such as simple/complex classification, can be attributed to linearly weighting of LGN

afferents (Reid and Alonso, 1995; Goris et al., 2015). Responses to compound stimuli, however,

are likely a result of additional (possibly recurrent) computation within V1. Likewise, basic MT

direction selectivity along the component/pattern continuum can be constructed by appropriate

summing of V1 inputs (on a constant velocity plane) and shaped on a per-neuron basis by their

own point-wise nonlinearities. Further nonlinear tuning behaviors, such as the different tuning

bandwidths for constant velocity gratings and plaids, is likely shaped by recurrent computation

within MT.

There is some evidence of recurrent computation shaping pattern motion signals in MT. Using

drifting fields of bars, Pack and Born (2001) showed that pattern motion tuning emerges later in

a pattern neuron’s response—approximately 70ms after its earliest response to stimulus onset—a

result later replicated with sinusoidal gratings and plaids (Smith et al., 2005; Solomon et al., 2011).

Further experiments could be done to verify this recurrent computation prediction. If feasible, imag-

ing a population of MT neurons and fitting a population-level model could reveal these recurrent

computations, as has been done in V1 (Cossell et al., 2015; Antoĺık et al., 2016; Klindt et al., 2017).

Examining dynamics of tuning to compound stimuli, possibly with whole-cell recording techniques,
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could also provide empirical evidence regarding the nature of suppression in MT.

While the velocity separable model unifies data and theory regarding tuning for pattern di-

rection and velocity, there is much work to be done to further incorporate other aspects of MT

selectivity into the model. The velocity separable model includes rudimentary gain control, and

we used stimuli which only had two different contrast values. However, accounting for gain con-

trol in MT, and its interactions with pattern motion selectivity, motion opponency, and stimulus

size (Britten and Heuer, 1999; Heuer and Britten, 2002), will likely require more experiments, and

perhaps inclusion of a full normalization pool at the MT stage.

A strict interpretation of the Simoncelli and Heeger (1998) model predicts broad direction tun-

ing to both constant velocity gratings and plaids, yet we only observed broad tuning to the latter

(figures 6 and 8(d)). This is consistent with later findings (Priebe et al., 2003; Priebe et al., 2006)

suggesting that some speed tuning in MT is inherited from V1, but that full form-independent

speed computation occurs within MT, and is evident only when multiple spatial frequencies are

present. Our results further suggest that individual MT pattern neurons always signal motion

direction, but only signal speed when it is uniquely specified (i.e., when multiple orientations or

spatial frequencies are present).

Finally, our findings change our understanding of the degree to which MT corresponds with

motion perception. Consider a single drifting contour or grating, viewed through an aperture.

The true direction of motion is inherently ambiguous: any drift direction ± 90 degrees from nor-

mal is a valid interpretation. Perceptually, however, this so-called “aperture problem” is unam-

biguously solved: the grating is perceived to be drifting in the direction normal to its orienta-

tion (Stumpf, 1911; Todorović, 1996; Wohlgemuth, 1911; Wallach, 1935; Marr and Ullman, 1981;

Adelson and Movshon, 1982). Previously, it was thought that pattern selective neurons in MT,

34



as a population, would signal a single grating’s drift direction ambiguously (Movshon et al., 1985;

Simoncelli and Heeger, 1998). Our findings show MT pattern neurons can unambiguously signal

such motion, and that such a population can represent the translational motion of a stimulus re-

gardless of whether it contains a mixture of orientations or a single one. The representation of

motion in MT may thus be even closer to perception than previously thought.
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Todorović D (1996) A gem from the past: Pleikart Stumpf’s (1911) anticipation of the

aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. Percep-

tion 25:1235–1242.

Tolhurst DJ, Movshon JA (1975) Spatial and temporal contrast sensitivity of striate cortical

neurones. Nature 257:674–675.

Van Essen D, Maunsell J, Bixby J (1981) The middle temporal visual area in the macaque:

myeloarchitecture, connections, functional properties and topographic organization. Journal of

Comparative Neurology 199:293–326.

39



Wallach H (1935) Ueber visuell wahrgenommene bewegungrichtung. Psychologische

Forschung 20:325–380.

Wang HX, Movshon JA (2016) Properties of pattern and component direction-selective cells in

area MT of the macaque. Journal of Neurophysiology 115:2705–2720.

Watson AB, Ahumada AJ (1983) A look at motion in the frequency domain In Motion: Repre-

sentation and Perception, pp. 1–10. ACM, Baltimore.

Watson AB, Ahumada AJ (1985) Model of human visual-motion sensing. Journal of the Optical

Society of America A 2:322–342.

Wohlgemuth A (1911) On the after-effect of seen movement. British Journal of Psychology,

Monograph Supplement 1 pp. 1–117.

Xiao J, Huang X (2015) Distributed and Dynamic Neural Encoding of Multiple Motion Directions

of Transparently Moving Stimuli in Cortical Area MT. Journal of Neuroscience 35:16180–16198.

40



Figure Captions

Figure 1. Pattern index, frequency-separable and velocity-separable hypotheses, and

their predicted tuning. (a) Tuning curve of an idealized direction-selective neuron, responding

to drifting gratings. (b) An ideal pattern-selective neuron exhibits a unimodal tuning curve for

drifting plaids (red), while an ideal component neuron shows a bimodal tuning curve (blue). The

peaks of the component neuron tuning curve correspond to the directions of the two gratings that

comprise the plaid. (c) The “pattern index” captures the degree to which a given neuron is pattern

or component selective. Each point represents the correlation of a given neuron’s measured tuning

curve with the ideal component and pattern tuning (abscissa and ordinate, respectively; see meth-

ods for details), as predicted from its actual grating responses. Open and filled points correspond

to neurons featured in this paper in V1 (n = 21) and MT (n = 112), respectively.

(d) Three-dimensional frequency domain representation of moving images, with two spatial fre-

quency axes and one temporal frequency axis. These coordinates can alternatively be expressed

as orientation, spatial frequency, and temporal frequency. A single point in the frequency domain

represents a single drifting sinusoidal grating. (e) The motion of a rigidly translating pattern (e.g.,

a field of dots moving with the same velocity) contains frequency components that lie on a plane

through the origin. (f-g) Two possible hypotheses for MT selectivity in the frequency domain. In a

velocity-separable receptive field (f), spatial and temporal frequency tuning are concentrated along

a tilted, preferred velocity plane. In the frequency-separable prediction (g), spatial and temporal

frequency tuning are independent. Note the velocity-separable hypothesis depicted “shears” along

the vertical (temporal frequency) direction, rather than the direction orthogonal to the preferred

velocity plane. See Methods for details.
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(h-i) Contour plots of slices through the two selectivity volumes from (f) and (g) at the optimal

direction, superimposed with stimuli for two “classical” tuning experiments (black lines) containing

the optimal stimulus (black ball) and suboptimal stimuli (dark gray): (h) spatial frequency tuning

at optimal and low temporal frequencies, and (i) temporal frequency tuning at optimal and low

spatial frequencies. (j-k) Temporal and spatial frequency tuning for the two models is the same for

“classical” stimuli (red-blue dashed lines), but different for non-optimal stimuli (red and blue solid

lines). The velocity-separable (light red) spatial and temporal frequency tuning curves are shifted

away from the tuning curves observed for optimal stimuli.

Figure 2. At the preferred direction, V1 is frequency-separable and MT is velocity-

separable. (a) Spatial frequency tuning curve data from an example MT cell, measured at three

temporal frequencies (error bars denote ±1 s.d.). The light gray shaded area denotes the sponta-

neous firing rate, ±1 s.d. The fitted SF tuning preferences for the three curves are shown above as

triangles. (b) The fitted SF preferences from each cell are plotted against the TFs at which they

were presented. Both axes are on a normalized scale, representing the ratio of the non-optimal

frequencies, relative to the optimal frequency. Each line is the best fit line to the data for one

cell. The data along the ordinate axis are aligned to the offset of each best fit line. Lines and

points are shaded by the pattern index corresponding to each individual cell. Red corresponds to

MT neurons, with darker shades corresponding to higher pattern index, and blue corresponds to

V1 neurons, with darker shades corresponding to lower pattern index. The blue and red triangles

indicate the mean slopes for all V1 and MT neurons, respectively. Error bars indicate the 95%

confidence intervals of 1000 bootstrapped fitted peak stimulus values (see Methods for details). (c)

Same as (b), but based on TF tuning curves measured at optimal and suboptimal SFs. (d) Same

as (c), but based on TF tuning curves at optimal and suboptimal directions. Here the points are
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aligned to the origin, which represents the preferred TF at the preferred direction. Mean slopes in

(d) are computed separately for the different suboptimal directions.

Figure 3. The separable models. A stimulus is passed through a narrowly tuned V1 linear

weighting, then squared and normalized. V1 output is then passed to the MT neuron, which

applies either a frequency- or velocity-separable linear weighting, then raises the output to a super-

linear power, and undergoes another stage of normalization. Finally, a modulated Poisson process

determines spike variability.

Figure 4. Comparison of actual and model-predicted responses to single gratings for

four example MT neurons. (a,b) Two example component neurons, one better fit by the

frequency-separable model (a) and one better fit by the velocity-separable model (b). (c,d) Two

example pattern neurons, one better fit by the frequency model (c) and one better fit by the velocity

model (d). Measured spike rate mean and standard deviation are shown in black. Velocity model

predicted spike rates are shown in red, frequency model predictions in blue. All subsequent figures

follow this color convention. Means are indicated by the dark lines, ±1 standard deviation by

the lighter shaded areas. The first four columns from the left show four of the most informative

tuning curves for distinguishing the models (see figure 4-2 for data and model predictions for all

tuning curves measured for the neuron in (d)). See figures 4-1 and4-3 for details on all the tuning

curves measured. In the scatter plots on the right, each point represents how well the frequency

and velocity models predict the mean firing rate for one spatiotemporal frequency among the 225

presented across all experiments. Goodness of fit is expressed in terms of log likelihood under the

modulated Poisson process, where values closer to zero indicate a better fit. The log likelihoods are

normalized to a scale between 0 and 1, which represent the null and oracle model prediction log

43



likelihoods, respectively (see Methods for details). Each point is colored on a Fisher transformed

scale (i.e., in units of standard deviation). The difference between the velocity and model predictions

for each neuron are summarized as a single value (ΔNLL = NLLV −NLLF ). Renderings of the

frequency and velocity model linear weightings for each example neuron (rightmost column). All

four neurons were recorded under anesthesia.

Figure 5. Single grating stimuli do not distinguish the two models. Fit quality, expressed

as the normalized log likelihood of the velocity and frequency models, is plotted for each neuron

on Fisher transformed axes. V1 neurons (n = 13) are shown with open circles, MT (n = 39)

with closed circles. Blue, black, and red colors indicate whether a neuron is classed as component,

intermediate, or pattern selective, respectively. Error bars denote standard error of the mean. On

average, the two models are equally good at explaining the single grating MT data for any class of

cells. The frequency model explains the V1 single grating data better.

Figure 6. Velocity grating direction tuning tends to be slightly wider. (a) Direction

bandwidth (in degrees) for each neuron was calculated separately for constant- frequency and

velocity grating tuning curves. is plotted for each neuron. Blue indicates a component neuron, black

intermediate, and red a pattern neuron. V1 neurons (n = 21) are shown with open circles, MT (n =

112) with closed circles. This figure includes isomorphic data recorded from the next experiment,

described in the next section. (b) Differences of velocity and frequency grating bandwidth, by

pattern classification. Proportions are expressed within each classification type, but including both

V1 and MT neurons (open and filled stacked bars, respectively). Pattern and intermediate neurons

have wider velocity grating direction bandwidth, significant below p < 0.0005 (Wilcoxon signed

rank test).

44



Figure 7. Two-component “planar plaid” experiment design and predictions. Constant-

velocity and constant-frequency direction tuning experiments were done with gratings and plaids.

Constant-velocity plaids (a) were constructed by superimposing two gratings 120◦ apart and drifting

at a temporal frequency determined by the optimal velocity plane. Constant-frequency plaids (b)

were two gratings 120◦ apart superimposed and drifting at the optimal temporal frequency. The

example plaids shown contain the same orientations, but have different component drift rates, and

thus different perceived drift directions. (c) For the two models matched in constant-frequency

plaid direction tuning (red and blue dashed line), the velocity model (red) predicts a high response

rate to all constant-velocity plaids. The frequency model (blue) is more narrowly tuned.

Figure 8. Comparison of actual and model-predicted responses to gratings and plaids

for four example neurons. First five columns show data (points) and tuning curves predicted by

the frequency- (blue) and velocity-separable (red) models. The first four columns are responses to

gratings and plaids with constant frequency and velocity. The fifth column is temporal frequency

data collected in a separate session, but included in the model fits. (a) a V1 component-selective

neuron, (b) an MT component neuron, (c) an MT intermediate neuron, and (d) an MT pattern-

selective neuron. The fifth column shows goodness-of-fit across all stimulus conditions, next to

renderings of the fitted models. See figure 4 caption for details. Differences between the two

model predictions become more apparent with increasing pattern selectivity. Neurons (a-c) are

from recordings done under anesthesia, (d) is from an awake recording.

Figure 9. Compound stimuli reveal velocity-separable organization for pattern cells.

(a,b) Velocity superiority, or the difference of normalized log likelihoods between the velocity and

frequency models, per cell as a function of pattern index. V1 cells appear as open circles, MT
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closed. Example cells featured in figures 4 and 8 are highlighted in gray. Light and dark lines

indicate the running mean, with a window of ±1/3 of cells in each population. Error bars indicate

±1 standard deviation, calculated from model fits to bootstrapped data (note most are smaller than

the plotted points). (a) On average, for the single grating dataset, neither model better explains

the single grating MT data (a) for any class of cells (n = 39). The frequency model explains the V1

single grating data better (n = 13). (b) Pattern cell responses to the compound stimulus dataset

(V1: n = 21, MT: n = 112) are clearly better explained by the velocity model. Error bars indicate

±1 standard error. (c,d) Observed and predicted pattern indices for each cell, derived from the

compound stimulus dataset, for the velocity model (c) and frequency model (d). The velocity model

can account for pattern index across all cell types, whereas the frequency model fails to predict the

pattern selectivity of neurons classified as pattern-selective based on measured responses. Error

bars indicate 95th percentiles, generated from pattern indices calculated by bootstrapping measured

and predicted spike trains.

Figure 10. Relationship between velocity-separable model parameters and pattern in-

dex. Pattern index is strongly correlated with direction tuning bandwidth (a) and the log of the

MT nonlinearity’s exponent (b). (c) Pattern index is negatively correlated with the log-2 of the

semi-saturation, or “uniform” divisive normalization parameter. This means that for neurons with

higher pattern index, the temporal-frequency dependent suppression is stronger.

Figure 11. Effects of removing model elements for one example neuron and the popu-

lation. (a-c) Plots and renderings are from fits to the same neuron shown in figure 8(d). In (a,

b, and d), three nested model fits are shown. Lighter shades denote fits with nonlinear elements

removed from the full model. LN-N is the full model, which includes linear weighting (L), a point-
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wise power function nonlinearity (N), and “temporal frequency dependent” normalization (-N). LN

has no normalization at all, and L has no nonlinearity at the MT stage. Direction tuning data

are shown as black points and lines for constant-frequency plaids (a) and constant-velocity plaids

(b). The red and blue shaded curves show the different model fits to those data, with red and

blue corresponding to the velocity and frequency models. The darkest traces are for the full model,

the lighter ones for the model with normalization removed, and the lightest for the model with no

MT nonlinearity. Each (nested) model was optimized separately. (c) The leftmost plots show the

strength of normalization as a function of temporal frequency, for the velocity (red, top row) and

frequency (blue, second row from top) models. The middle two renderings show the linear weights

(at one level set) as a function of spatial and temporal frequency, at two different viewing angles.

The temporal frequency scale in these renderings match that of the normalization plots on the left.

The renderings on the right are a “birds-eye” view, showing the same weights as function of the

two spatial frequency dimensions. (d) Fit quality, expressed as the normalized log likelihood of the

velocity and frequency models, is plotted for all component, intermediate, and pattern neurons (in

blue, black, and red, respectively), for the three nested models (lighter shades indicate nonlinear

model elements removed, see above).
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Figure 4

Extended data figure 4-1.

Single grating stimulus set, organized by tuning curves measured relative to preferred values.

Extended data figure 4-2.

All data and model predictions from the single grating study for the neuron in figure 4(d).

Extended data table 4-3.

Single grating stimulus set.
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Extended Data

Extended data figure 4-1. Single grating stimulus set, organized by tuning curves

measured relative to preferred values.

Top left tuning curves are constant-velocity direction tuning (arc), and constant-velocity spatiotem-

poral frequency tuning (line). All other tuning curves follow the convention that the type of tuning

curve comes from the label on the left, and they are presented at one optimal and two suboptimal

values in the dimension derived from the top label. For example, the bottom left tuning curves

are temporal frequency tuning curves measured a one optimal direction and two suboptimal ones.

Note that optimal tuning curves appear more than once in this figure, but were presented with

equal probability during the experiment.
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a

b

Extended data figure 4-2. All data and model predictions from the single grating

study for the neuron in figure 4(d).

(a) All 17 tuning curves in the single grating tuning dataset (see figures 4-1 and 4-3). Tuning

curves marked 1-4 are replicas of the bottom row of tuning curves in figure 4—see its caption for

more details. Direction preferences (first column) do not change at different spatial and temporal

frequencies, but gain does. Spatial frequency preferences shift at different temporal frequencies

(second column, top three rows), but not different directions (second column, bottom three rows).
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The same is true for temporal frequency preferences (third column). (b) Observed and predicted

spikes in response to each of the 225 unique data points in the single grating dataset, for the

velocity- and frequency-separable models (red and blue, respectively).

number
of
stimuli

Directions
(deg from
preferred)

SFs (c/deg) TFs (Hz) Tuning type

1 13 -90 to 90 Preferred Preferred frequency-separable direction
2 13 -90 to 90 Preferred 0 to Preferred velocity-separable direction
3 13 Preferred 0.1 to 10 Preferred SF
4 13 Preferred 0.1 to 10 1 to 60 Speed
5 13 Preferred Preferred 1 to 60 TF
6 11 -90 to 90 Low Preferred Low SF direction
7 11 -90 to 90 High Preferred High SF direction
8 11 -90 to 90 Preferred Low Low TF direction
9 11 -90 to 90 Preferred High High TF direction
10 11 Low 0.1 to 10 Preferred Low direction SF
11 11 High 0.1 to 10 Preferred High direction SF
12 11 Preferred 0.1 to 10 Low Low TF SF
13 11 Preferred 0.1 to 10 High High TF SF
14 11 Low Preferred 1 to 60 Low direction TF
15 11 High Preferred 1 to 60 High direction TF
16 11 Preferred Low 1 to 60 Low SF TF
17 11 Preferred High 1 to 60 High SF TF

Extended data table 4-3. Single grating stimulus set.

For the single component study, 17 unique tuning curves were measured, for a total of 225 unique

stimulus conditions (figure 4-1). All featured single gratings presented at 100% contrast. Two

direction tuning curves from -90◦ to 90◦ relative to the preferred direction, in 15◦ intervals, were

collected along the optimal frequency-separable path (keeping the optimal spatial and temporal

frequencies constant) and along the optimal velocity-separable path (keeping the optimal velocity

constant). Four direction tuning curves were collected at 18◦ intervals from -90◦ to 90◦ relative to

the preferred direction: one at a higher and one at a lower than optimal temporal frequency while

fixing the optimal spatial frequency, and two more at a high and a low spatial frequency while

fixing the optimal temporal frequency.

Two spatial frequency tuning curves, at 13 log-spaced values from 0.1 cycles/degree to 10 cy-
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cles/degree, were collected along the optimal frequency- and velocity-separable paths. Four spatial

frequency tuning curves, at 11 log-spaced values from 0.1 cycles/degree to 10 cycles/degree, were

collected at a high and low temporal frequency while maintaining the optimal direction. Two more

were collected at suboptimal directions, while maintaining the optimal temporal frequency.

One temporal frequency tuning curve, at 13 log-spaced values from 0.1 cycles/second to 60 cy-

cles/second, was collected at the optimal direction and spatial frequency. Four temporal frequency

tuning curves, at 11 log-spaced values from 0.5 cycles/second to 60 cycles/second, were collected

at a high and low spatial frequency while maintaining the optimal direction. Two more were col-

lected at suboptimal directions, while maintaining the optimal spatial frequency. The “high” and

“low” non-preferred spatiotemporal frequencies used in suboptimal tuning curves were chosen to

maximally distinguish the frequency- and velocity-separable models.
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