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Wang HX, Movshon JA. Properties of pattern and component
direction-selective cells in area MT of the macaque. J Neurophysiol
115: 2705–2720, 2016. First published December 9, 2015;
doi:10.1152/jn.00639.2014.—Neurons in area MT/V5 of the macaque
visual cortex encode visual motion. Some cells are selective for the
motion of oriented features (component direction-selective, CDS);
others respond to the true direction of complex patterns (pattern-
direction selective, PDS). There is a continuum of selectivity in MT,
with CDS cells at one extreme and PDS cells at the other; we compute
a pattern index that captures this variation. It is unknown how a
neuron’s pattern index is related to its other tuning characteristics. We
therefore analyzed the responses of 792 MT cells recorded in the
course of other experiments from opiate-anesthetized macaque mon-
keys, as a function of the direction, spatial frequency, drift rate, size,
and contrast of sinusoidal gratings and of the direction and speed of
random-dot textures. We also compared MT responses to those of 718
V1 cells. As expected, MT cells with higher pattern index tended to
have stronger direction selectivity and broader direction tuning to
gratings, and they responded better to plaids than to gratings. Strongly
PDS cells also tended to have smaller receptive fields and stronger
surround suppression. Interestingly, they also responded preferentially
to higher drift rates and higher speeds of moving dots. The spatial
frequency preferences of PDS cells depended strongly on their pre-
ferred temporal frequencies, whereas these preferences were indepen-
dent in component-selective cells. Pattern direction selectivity is
statistically associated with many response properties of MT cells but
not strongly associated with any particular property. Pattern-selective
signals are thus available in association with most other signals
exported by MT.

extrastriate visual cortex; macaques; visual motion processing; neural
dynamics; receptive fields

THE ANALYSIS OF COMPLEX OBJECT MOTION requires the integration
of local motion signals over contour orientation and spatial
position. A direction-selective V1 cell functions like a local
motion detector, in that it can only selectively respond to the
velocity of a local oriented feature. To compute the velocity of
a more complex pattern, the brain must pool information from
many local detectors. In primates, cortical area MT is a
candidate area for such computation. Cells in MT are selective
for the direction of motion and pool inputs from direction-
selective cells in V1 (Dubner and Zeki 1971; Movshon and
Newsome 1986). Measurement of responses to coherently
moving plaid stimuli, made up of two sinusoidal gratings of
different orientations, provides a way to quantify the degree of
selectivity to pattern motion. Some MT cells, like their V1
afferents, respond only to the direction of motion of the
component gratings. Others, however, are able to signal the

true direction of the pattern by integrating motion information
of its constituent components (Khawaja et al. 2009; Movshon
et al. 1985; Nishimoto and Gallant 2011; Rodman and Albright
1989; Rust et al. 2006; Smith et al. 2005; Stoner and Albright
1992).

There is a continuum of pattern selectivity in MT, with the
two canonical types at the extremes. The range is captured by
a pattern index, in which component direction-selective (CDS)
cells have negative values and pattern direction-selective
(PDS) cells have positive ones. We wondered whether pattern
selectivity was associated with other kinds of stimulus selec-
tivity found in MT cells. We therefore analyzed the properties
of a population of 792 MT cells recorded from 58 opiate-
anesthetized, paralyzed macaque monkeys. We examined how
responses depended on the direction, spatial frequency, tem-
poral frequency, target size, and contrast of drifting sinusoidal
gratings, as well as on the direction and speed of coherently
moving random-dot textures. We analyzed the association of
each of these properties with pattern selectivity. Because MT
responses are derived in large part from V1 inputs (Movshon
and Newsome 1996; Rodman et al. 1989), we measured cor-
responding properties for a population of 718 V1 cells to gain
an overview of the transformation that takes place between V1
and MT.

The pattern index is statistically associated with many prop-
erties of MT cells. Pattern-selective cells tended to have
stronger direction selectivity and broader direction tuning to
gratings, and they responded better to plaids than to gratings.
Cells that were more pattern selective also tended to have
smaller receptive fields and to show stronger surround suppres-
sion. These findings are consistent with a model for the
mechanism of pattern selectivity that depends on the pooling of
V1 inputs with a wide range of spatiotemporal selectivities
(Rust et al., 2006). We also found relationships between
pattern selectivity and temporal dynamics. Cells that were
pattern selective tended to respond preferentially to higher
temporal frequencies of drift and were also tuned to higher
speeds of moving dots. These results are not predicted by
known or hypothesized mechanisms of pattern selectivity and
may reflect differences in the circuitry or processing dynamics
of cells with the two kinds of selectivity. The significance of
these relationships for motion integration is an interesting
avenue for further exploration.

MATERIALS AND METHODS

Electrophysiology

Data were taken from MT cells recorded in our laboratory between
1998 and 2008. Altogether, we analyzed units recorded from 58 adult
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monkeys (49 male, 9 female), including 38 cynomolgus (Macaca
fascicularis), 18 pig-tailed (M. nemestrina), and 2 bonnet (M. radiata)
macaques. A comparison set of V1 data was that collected and
published by Cavanaugh et al. (2002a, 2002b). These units came from
25 adult monkeys (21 male, 4 female), including 13 cynomolgus and
12 pig-tailed macaques. Details of the surgical preparation were as
detailed previously (Cavanaugh et al. 2002a; Smith et al. 2005).
Anesthesia (sufentinil citrate, 4–30 !g·kg!1·h!1) and neuromuscular
blockade (vecuronium bromide, or Norcuron, 0.15 !g·kg!1·h!1)
were maintained for the duration of each experiment. MT single
neurons were identified, isolated, and recorded using standard proce-
dures of our laboratory (Cavanaugh et al. 2002a). At the end of most
experiments, confirmation that recording sites lay within MT was
established with histological identification (Nissl- or myelin-stained
frozen sections) of electrolytic lesions made with the electrode tip; in
other cases we relied on the physiological properties and recording
depth of the neurons to identify them as lying in MT. We did not
consistently reconstruct the laminar location of recorded neurons. All
procedures complied with guidelines approved by the New York
University Animal Welfare Committee.

Stimuli

For all experiments analyzed in the current study, stimuli were
displayed on a gamma-corrected CRT monitor (Eizo T550 or Eizo
T966) located 60–180 cm from the eyes, subtending 10°–30° of visual
angle. The monitor was refreshed at 100 or 120 Hz and had a
horizontal resolution in excess of 1,000 pixels with a mean luminance
of 33 cd/m2. Each stimulus was displayed within a circular aperture
surrounded by a mean luminance gray field. The eye through which
stronger responses were evoked was chosen as the dominant eye, and
all stimuli were presented to that eye with the other eye covered.
Receptive field eccentricity estimates (available for most cells) were
derived from maps made by hand; 90% of the cells had receptive
fields within 18° of the center of gaze.

In this article we describe analyses of a number of different
measurements, not all of which were made on all neurons. For most
neurons, measurements were made of the optimal direction of motion,
spatial frequency, temporal drift rate, and stimulus size for a high-
contrast drifting sinusoidal grating. For a smaller subset of the cells,
the contrast response function was also obtained by varying the
luminance contrast of an otherwise optimal grating stimulus. The
experiments were typically conducted in the order mentioned. In
spatial frequency tuning experiments, sinusoidal gratings drifted at a
fixed rate in the preferred direction of the cell while their spatial
frequencies varied in octave steps. Tuning drift rate was measured, in
octave or half-octave steps (typically 0.2–25 Hz), using gratings at the
cell’s preferred spatial frequency. Spatial frequency tuning was some-
times remeasured if the optimal drift rate was determined to be
substantially different from the drift rate used for the initial spatial
frequency tuning measurement. Stimuli shown thereafter were at the
optimal spatial frequency and drift rate confined to the cell’s classical
receptive field (Cavanaugh et al. 2002a).

A dynamic random sequence of plaids and gratings was used to
probe the pattern selectivity of each cell (Smith et al. 2005). During
each interval, the stimulus was either a 50%-contrast grating moving
in 1 of 12 directions or a plaid constructed by adding two such
gratings oriented 120° apart. Four equivalent periods of blank screen
were inserted to measure spontaneous activity.

For a subset of the cells (24%; see Table 1), responses to random-
dot textures were also measured. A dot texture consisted of randomly
positioned bright dots, size typically 0.04° and density typically at
100–200 dots·deg!2·s!1. All dot textures were presented within a
circular aperture. Direction tuning experiments consisted of dot tex-
tures translating coherently in 1 of 12, 16, or 24 directions. Speed
tuning was also obtained for some of these cells for dot textures
moving coherently in the preferred dot direction. Baseline activity for

dot stimuli was taken from interleaved presentations of zero-coher-
ence dynamic random dots.

All stimuli were shown using one of two types of presentation
protocols. Under the first protocol, within each experimental block,
stimuli of equal duration (typically 1.2–5 s) were separated by the
presentation of a mean luminance gray background for about 1.5 s.
Each experiment typically consisted of 2–10 such blocks of trials;
those with fewer than 2 trials for each stimulus were excluded from
analysis. Under the second protocol, stimuli were presented in a
continuous stream, typically for 320 ms at a time, and followed by one
another in rapid succession. Each stimulus typically had 25–300
presentations. Latency was recovered by choosing the time that
maximized the modulation of the tuning curve, or the variance across
all presented stimulus values, as described in detail by Smith et al.
(2005). Fifty-five percent of analyzed experiments followed this
second protocol. Both types of experiments always included trials
with a uniform gray field stimulus of the same duration to measure
spontaneous activity. For each experiment, all stimuli were randomly
interleaved, and the mean response was obtained by averaging over
repeated measurements for each stimulus value.

Model Fitting and Assessing the Goodness of Fit

We analyzed neuronal responses from separate experiments (spa-
tial frequency, temporal drift rate, size, contrast, direction and speed
of dot textures) in relation to pattern direction selectivity of each MT
cell. We fit the available tuning responses of each neuron to idealized
tuning curves by minimizing the negative log-likelihood error be-
tween measured and predicted responses, computed as follows.

The model provided an estimate of the mean firing rate. We
assumed that the empirically observed spike count was Poisson
distributed and that the mean of that distribution depended on the
model prediction. It follows that, for a given stimulus, the likelihood
of the data given the model can be written as eo exp (!e)/o!, where
o is the observed total spike count (across passes and stimulus
duration) and e is the model spike count (converted from the model
rate). The likelihood of the data for a given experiment is the product
of likelihoods for all individual stimulus values. Finally, a log trans-
form is applied for computational convenience. Thus the log-likeli-
hood of the data for a given model can be expressed as

L!e;o" " #
i

oilog!ei" # !ei" # log!oi !" , (1)

where oi is the total spike count for the ith stimulus and ei is the spike
count predicted by the model. For each experiment, we found the set
of parameters for the model that best predicted the data by minimizing
!L (i.e., maximizing the likelihood) using the constrained nonlinear
minimization tool (fmincon function) in MATLAB (The MathWorks,
Natick, MA). We used a multi-start procedure with 10–30 sets of
different initial values to find the most probable global minimum for
each fit. In all cases, any negative values determined by the fit were set
to zero so that response amplitude was nonnegative.

The functions used to fit each type of response and the descriptions
for their parameters are described in detail in the following section
and summarized in Table 1. To assess the goodness of a fit, we
computed the normalized log-likelihood (NLL), which allowed us to
make comparisons across different tuning functions with varying
numbers of model parameters. Specifically, we computed the log-
likelihoods of spike rate predictions provided by a “null model”
(LNull) and that by a “saturated model” (LSat), which served as the
lower and upper bounds, respectively, for the log-likelihood of the
best fit (L). For the null model, the predicted response at all stimulus
values was the mean firing rate measured across all non-blank con-
ditions (i.e., the DC response). For the saturated model, the predicted
firing rate at each stimulus value was equal to the empirically
measured mean rate (i.e., no residual error between empirical data and
model predictions). In each case, firing rate predictions were con-
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verted into spike counts to compute LNull and LSat using Eq. 1. We
normalized the log-likelihood value of the best fitting functional
model by LNull and LSat, or NLL " (L ! LNull)/(LSat ! LNull). This
indicated the relative distance of L to its upper and lower bounds; a
value close to 1 indicated a good fit, and a value near or less than 0
indicated a poor fit. Overall, the tuning functions described the data
well, yielding high values of NLL for most of tuning responses under
study (see Table 1, Median NLL).

Tuning Functions for Model Fitting and Parameters of Interest

Motion direction tuning. Direction tuning responses for gratings
and for dots were fit with a doubled von Mises function, the sum of
two circular Gaussians:

r!$" " exp$ cos!$ # $p"
w %%an exp$ cos!$ # $p # &"

w %
R!$" " R0 % A{r($) # min[r($)]}

, (2)

where $ denotes the stimulus direction of motion and R0, A, an, $p, and
w are free parameters. The two exponentials in the expression r($)
correspond to two circular Gaussian peaks centered at $p and $p # &
(preferred and opposite directions, respectively) with width w (same
for both Gaussians). The parameter an scales the height of the peak in
the opposite direction relative to that in the preferred direction
(constrained to be between 0 and 1 during the fit); A scales the overall
amplitude of the fitted response. R0 captures the baseline response.
We subtracted r($) by its minimum value during the fit, because as w
increases, r($) tends to shift vertically above 0; subtracting min[r($)]
before adding in R0 therefore ensured that R0 alone captured the
elevation of the curve above 0. We determined a bandwidth measure
from each fitted tuning curve, defined as the full width (in degrees of
polar angle) at half-maximal height of the fitted, baseline-subtracted
response. Note that the baseline used in estimating bandwidth was R0,
which by design bounds bandwidth above by 180°. Parameter w was
constrained during the fitting such that the derived bandwidth was
bound below by the minimum spacing (in polar angles) between

directions of motion of adjacent stimuli (30° for gratings and 15°,
22.5°, or 30° for dots, depending on the experiment).

Spatial frequency, drift rate, and speed tuning. We fit the spatial
frequency responses with a log-Gaussian function (Nover et al. 2005):

R!s" " R0 % A exp&#log' s % s0

sp % s0
(2

2'2 ) , (3)

where s denotes the spatial frequency in cycles/deg and R0, A, sp, s0,
and ' are free parameters. The parameter sp controls the optimal
spatial frequency. Parameter ' determines the width of the tuning
curve (in log units). A and R0 capture the maximal and baseline
response amplitudes, respectively. The parameter s0 is an offset that
keeps the logarithm from being undefined.

We defined the parameter sp obtained from the best fitting function
to be the optimal spatial frequency for the cell (in cycles/deg). Some
cells showed responses that did not attenuate below maximum at
either the lowest or highest spatial frequency presented; we therefore
could not reliably determine the true optimal spatial frequency from
those fits. Those cells were excluded from the analyses involving
spatial frequency and were treated separately. This constituted 58/685
cells (42 low-pass cells and 16 high-pass cells).

We also estimated the bandwidth of each spatial frequency re-
sponse function by calculating the fitted response (using the best-
fitting parameters) for spatial frequencies ranging from half of the
lowest presented stimulus value to 1.5 times the highest presented
stimulus value. Bandwidth is the width (in log units) at half-maximal
height of the fitted, baseline-subtracted response and is undefined for
cells with fitted responses that did not drop by half on either side of
the tuning curve (187/685 cells).

The same log-Gaussian function was also used to fit tuning re-
sponses for temporal drift rate of gratings and for motion speed of dot
textures. For each of those fitted response functions, we obtained the
optimal drift rate (in Hz) or optimal speed (in deg/s) in a manner
analogous to that for optimal spatial frequency above. There were
39/699 cells for which the optimal drift rate could not be obtained (2

Table 1. Equations and statistics used to derive parameters of interest from neuronal tuning curves

Tuning Data Type Equation Free Parameters Extracted Measures
Total No. Cells
(No. Excluded) Median NLL

Direction (gratings)
r!$" " exp$cos!$#$p"

w %%an exp$cos!$#$p#&"
w %

R!$""R0%A*r!$"#min+r!$",-

R0 " baseline response
Ap " amplitude in preferred direction

an " relative amplitude in null direction
$p " preferred direction
w " circular Gaussian width

Bandwidth

835 (43) 0.92

Direction (dots) 192 (6) 0.93

Spatial frequency
(gratings)

R!s" " R0 % A exp&#log' s%s0

sp%s0
(2

2'2 ) R0 " baseline response
A " amplitude
sp " optimal frequency/speed
' " log-Gaussian width
s0 " offset

Optimal SF, Bandwidth 701 (16) 0.93

Speed (dots) Optimal speed 89 (3) 0.89

Drift rate (gratings) Optimal drift rate,
High-pass index

703 (4) 0.94

Stimulus diameter
(gratings)

R!x" "R0%

Ac$erf' x

wc
(%2

1%As$erf' x

ws
(%2

(erf denotes the error function)

R0 " baseline response
Ac " amplitude of center component
As " amplitude of surround component
wc " width of center component
ws " width of surround component

SIZE75, Suppression index 587 (17) 0.96

Contrast response
(gratings)

R!c" " R0 % A
cn

cn%(n

R0 " baseline response
A " amplitude
n " exponent
( " semisaturation contrast

c50, Slope at c50 376 (8) 0.94

NLL, normalized log-likelihood; SF, spatial frequency; erf, error function; SIZE75, receptive field size; c50, 50% contrast response.
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low-pass cells and 37 high-pass cells) because of the lack of attenu-
ation in response. There were 7/86 cells for which the optimal speed
could not be obtained (5 low-pass cells and 2 high-pass cells).

We also quantified the shape of drift rate tuning function with a
“temporal high-pass index,” or the slope of the fitted tuning curve
along the low-frequency limb (Levitt et al. 2001). This was defined as
(Ropt ! R1/4f)/Ropt, where Ropt was the maximal response (at the
preferred drift rate) and R1/4f was the response at one-fourth of the
preferred drift rate. Both Ropt and R1/4f were baseline subtracted.

Optimal stimulus diameter. Responses for varying diameters of
grating patches were fit with a ratio-of-Gaussians function (Ca-
vanaugh et al. 2002a):

R!x" " R0 %

Ac$erf' x

wc
(%2

1%As$erf' x

ws
(%2 , (4)

where x is the grating stimulus diameter (in degrees of visual angle),
and erf denotes the error function. R0, Ac, As, wc, and ws are free
parameters. Ac and wc (As and ws) determine the gain and the spatial
width of the center (surround) component, respectively. We con-
strained wc $ ws during the fit.

From each fit we determined a SIZE75 measure and a suppression
index (SI). SIZE75 corresponded to the point at which the cell reached
at least 75% of its maximal response on the rising side of the tuning
function. Whereas 95% is commonly used as a criterion for determin-
ing the optimal stimulus diameter (e.g., in V1; Cavanaugh et al.
2002a), many neurons in our MT population preferred large stimulus
sizes, thereby approaching saturation only near the largest stimulus
diameter possible for the display. The 75% criterion yielded a more
reliable measure of diameter preferences because it derived from a
more sensitive region of the curve, whereas the 95% criterion was
more affected by experimental display limits. Fits that resulted in
accelerating tuning responses did not yield meaningful SIZE75 mea-
sures; we therefore specified SIZE75 as undefined for cells that had a
fitted response at the largest stimulus diameter that was convex
(positive 2nd derivative). There were 19/570 such cells.

SI indicated the strength of surround suppression shown by a cell.
It was defined as the relative reduction from the fitted maximal
response to the asymptotic, suppressed response with an increasingly
larger stimulus diameter (Cavanaugh et al. 2002a), or SI " 1 !
Rsupp/Ropt, where Rsupp is the final, suppressed response at the largest
grating diameter and Ropt is the maximal response.

Contrast response functions. Finally, contrast responses were fit
with a hyperbolic ratio function (Albrecht and Hamilton 1982; Naka
and Rushton 1966):

R!c" " R0 % A
cn

cn % (n , (5)

where c denotes the luminance contrast of the grating stimulus, and
R0, A, n, and ( are free parameters. A and R0 capture the maximal and
baseline responses, respectively. Parameters ( and n control the
contrast and rate at which the curve rises. We constrained ( to be
between 0 and 1 and n to be between 0.01 and 8 during the fit. We
determined a c50 value from each fitted response, defined as the contrast
needed to reach at least half of the fitted response at the highest contrast.
Note that this value is similar to that given by the best-fitting parameter
( but is less sensitive to fit error and better captures the shape of the
curve, particularly in cases in which R does not saturate at maximal
contrast. Additionally, we determined a slope measure from each
fit, corresponding to the slope of R in the vicinity of c50 (%0.1 log
contrast units).

Other parameters of interest. In addition, we estimated the direc-
tion selectivity of each cell directly from the responses to drifting
gratings. This was quantified using a directionality index (DI), or

DI " 1 ! Rn/Ropt, where Ropt was the measured maximal response of
the cell (at the preferred direction of motion) and Rn was the response
180° away (at the null direction). Both Rn and Ropt were baseline
subtracted. Two cells were excluded because the measured spontane-
ous rate was higher than the maximal response.

We also quantified orientation selectivity (orientation selectivity
index, or OSI) from the responses to drifting gratings with a vector-
based measure of tuning strength. The response of the cell to a grating
of a particular orientation corresponded to a vector with its polar angle
equal to the orientation of the grating and its magnitude equal to the
firing rate. OSI was computed as the summed response vector (over
the orientation range 0°–180°), normalized by the summed magnitude
across all response vectors (see Smith et al. 2002 for details).

Correlation Analysis

We used the Pearson’s product-moment correlation coefficient r to
assess the relationship between two measures X and Y (e.g., between
pattern index and grating tuning bandwidth). For all figures in which
a scatter plot between two measures X and Y is shown, we superim-
pose the 95% covariance ellipse, stretched roughly 2 standard devia-
tions along the principal components of the data points, determined by
the covariance E[(X ! !X)(Y ! !Y)], to illustrate the strength and
direction of the correlation between X and Y. In each case, to assess
whether r was significantly different from zero, we randomly per-
muted the entries in X and recomputed the correlation coefficient
between X and Y. This procedure was carried out 5,000 times to yield
a null distribution for r between X and Y. We defined the P value as
the fraction of the null distribution that was as large or larger than the
correlation observed without randomization.

As noted above, cells were tested using two protocols, one using
discrete trials and one using continuous stimulation. Analyses per-
formed separately for data obtained using the two protocols for the
most part yielded qualitatively and quantitatively similar results as for
the combined data (Table 2) and supported the same conclusions; two
exceptions are discussed below. For subsequent analysis, we pooled
data acquired using the two protocols.

V1 Sample

We compared the distributions of neuronal measures in MT cells to
comparable measures in a population of 718 V1 cells collected and
quantified by Cavanaugh et al. (2002a, 2002b). The fits used to
characterize the responses of V1 cells and the measures extracted
from theses fits are as detailed in Cavanaugh et al. (2002a, 2002b). In
those experiments, the receptive field diameter for V1 was taken as the
stimulus diameter that elicited 95% of the maximal response. To
determine a criterion diameter comparable to the SIZE75 measure we
calculate for MT cells, we made the simplifying assumption that area
summation curves are roughly linear with stimulus size for V1 (cf.
data in Cavanaugh et al. 2002a). The appropriate comparison with MT
was therefore computed by multiplying the 95% diameter by 75/95 to
calculate a SIZE75 measure for V1 cells. Overall, our V1 sample
included 677 cells for measures of grating direction selectivity, 655
cells for spatial frequency tuning, 628 cells for drift rate tuning, and
585 cells for stimulus diameter tuning.

MT Sample

We started with an initial sample of 841 MT neurons. Because most
of our analyses concerned relationships with pattern direction selec-
tivity, we excluded from the overall sample those cells for which
pattern index was likely to be unreliable. This was done based on two
criteria: poor fit and poor tuning. We first excluded cells that yielded
low NLL ($0.5) for the fits to grating direction tuning. Note that
although pattern index was computed from the grating and plaid
response measurements (rather than the fit), in practice NLL for the
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grating fits served as a good proxy for the quality of data, because
most poor fits resulted from noisy and unreliable responses (due to
low firing rate or poor unit isolation). We also excluded cells with
untuned responses for grating directions because they did not yield
meaningful pattern predictions (and hence pattern indexes). To assess
the magnitude of tuning, for each cell and each experiment we
computed the standard deviation of the mean firing rates across all
stimulus values and normalized it by the maximum response. Cells
with normalized standard deviations in the bottom 2.5% yielded little
response modulation and were excluded. We excluded 43/841 cells on
the basis of these criteria and 6 additional cells that were not selective
for gratings and plaid motion. Overall, this yielded a sample of 792
units for further analyses. This sample included 179 PDS cells and
296 CDS cells. These proportions are comparable to those reported
previously using similar stimuli (Priebe et al. 2003; Smith et al. 2005).

For analyses involving each type of tuning experiment, we further
excluded cells (out of subsets of the possible 792 neurons) that had
had poorly fit responses for the response measure under study (NLL $
0.5). We found that this criterion was conservative and excluded only
a small proportion of cells that showed the noisiest responses. Overall,
we excluded 6/701 cells for spatial frequency, 4/703 cells for drift
rate, 17/587 cells for stimulus diameter, 8/376 cells for contrast
response, 6/192 cells for dot direction, and 3/89 cells for dot speed
(see Table 1 for summary).

Multivariate Analysis and Dimensionality Reduction

We used multiple regression and principal component analysis (PCA)
to explore the relationships among nine spatial and temporal variables
and their contributions to pattern index. Eccentricity was also included as
a variable, not because we expected it to predict pattern index but because
it covaried with some of the other variables and therefore might partially
explain their contributions to pattern index. For these analyses, we first
transformed the values for drift rate, spatial frequency, SIZE75, c50, and
slope at c50 by taking their log, and those for eccentricity by adding 1 and
then taking the log, such that the distributions of all response variables
were approximately Gaussian. We then computed regression and PCA on
the Z scores of all variables.

RESULTS

Our sample of 792 MT neurons was drawn from an initial set
of 841 recorded from 58 anesthetized animals (see above). Units
included in the analysis were selected on the basis of the avail-
ability of plaid direction tuning measurements, as well as at least
one other measurement of a response property under study. For

comparison, we also analyzed a sample of 718 V1 neurons
recorded from 19 animals (Cavanaugh et al. 2002a, 2002b).

Neuronal Tuning Examples

The spatial and temporal selectivities of the neurons were
determined for drifting sinusoidal gratings. For a small subset of
the cells, direction and speed tuning profiles were measured for
dot textures. We fit the available tuning responses of each neuron
to a set of idealized tuning curves, using equations described
above and in Table 1. Overall, these provided good fits to the
tuning responses. Note that most of the neurons in our sample
were tested on only a subset of all tuning measurements (Table 1).
The responses of a representative neuron and the fits to those
responses are illustrated in Fig. 1. We derived a set of character-
istic measures from each fit, as indicated in Fig. 1.

The example neuron showed direction-selective responses to
gratings (Fig. 1A) and to dots (Fig. 1F). We fit the direction
tuning responses for gratings and for dots with a double von
Mises (sum of circular Gaussians) function, from which we
estimated the bandwidth, or the full width at half-maximal
height of the fitted, baseline-subtracted response. For the ex-
ample neuron, the direction bandwidth was broader for dots
(162°) than for gratings (106°).

We fit the tuning responses for spatial frequency and drift
rate of gratings as well as for speed of dots with a log-Gaussian
function (Nover et al. 2005) and extracted the optimal spatial
frequency (Fig. 1B), optimal drift rate (Fig. 1D), and optimal
speed (Fig. 1G), respectively. The example neuron showed
band-pass spatial frequency tuning with an optimal spatial
frequency at 1.2 cycles/deg (Fig. 1B), high-pass temporal
frequency tuning with an optimal drift rate at 20.2 Hz (Fig.
1D), and band-pass speed tuning for dots with an optimal speed
at 22.1 deg/s (Fig. 1G). For the spatial frequency response
function, we also estimated the bandwidth of spatial frequency
tuning as the width (in octaves) at half-maximal height of the
fitted, baseline-subtracted response (Fig. 1B). The example cell
had a spatial frequency bandwidth of 1.9 octaves. For the
temporal frequency response function, we also estimated a
“temporal high-pass index” (Fig. 1D), the slope of the fitted
tuning curve along its low-frequency limb (Levitt et al. 2001).
The high-pass index indicates the transience of the cell’s
inferred step response in the time domain: a cell with a

Table 2. Comparison of correlations between pattern index and other derived metrics

Metric

Discrete Trial Protocol Continuous Protocol Combined r-Value Difference

r N P r N P r N P P

Directionality index 0.28 184 0.000 0.24 599 0.000 0.25 783 0.000 0.6132
Grating direction bandwidth 0.33 187 0.000 0.36 605 0.000 0.35 792 0.000 0.6860
Dot direction bandwidth !0.18 70 0.070 0.03 116 0.376 !0.05 186 0.242 0.1692
Optimal spatial frequency 0.09 279 0.060 !0.19 348 0.000 !0.07 627 0.032 0.0005
Spatial frequency bandwidth 0.02 207 0.374 !0.01 291 0.436 0.00 498 0.488 0.7430
Receptive field size (SIZE75) !0.18 392 0.000 !0.03 159 0.364 !0.11 551 0.007 0.1088
Suppression index 0.15 263 0.007 0.02 138 0.410 0.10 401 0.020 0.2164
Optimal drift rate 0.13 303 0.014 0.23 357 0.000 0.19 660 0.000 0.1874
Temporal highpass index 0.12 326 0.012 0.07 373 0.084 0.11 699 0.002 0.5075
Optimal dot speed 0.35 50 0.008 !0.13 29 0.263 0.20 79 0.033 0.0423
Contrast-response slope !0.08 148 0.168 0.04 220 0.271 !0.01 368 0.442 0.2625
Contrast-response c50 0.22 148 0.003 !0.14 220 0.019 !0.01 368 0.445 0.0007

Values are correlations between pattern index and 12 other derived metrics for data obtained using either discrete trials or continuous stimulus presentation.
In 2 cases, the difference in correlation was significant (P $ 0.004, Bonferroni corrected; indicated in bold type).
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high-pass index near 0 corresponded to a low-pass drift rate
tuning function and presumably more sustained response dy-
namics to a step stimulus presentation (assuming linear tem-
poral summation). Conversely, a cell with a large high-pass
index had greater attenuation of responses to low drift rates
(more band-pass behavior) and presumably more transient
response dynamics. The example cell had a high-pass index of
0.29, suggesting that it had rather transient dynamics.

The neuron’s responses increased, reached a maximum, and
then decreased for increasingly larger diameters of grating
patches (Fig. 1C). We fit these responses with a ratio-of-
Gaussians function (Cavanaugh et al. 2002a), from which we
determined a SIZE75 measure and an SI. SIZE75 corresponded
to the stimulus diameter at which the cell reached 75% of its
maximal response. SI indicated the strength of surround sup-
pression: an SI value of 0 corresponded to a cell that did not
show any surround suppression; an SI value near 1 corre-
sponded to a cell that was fully suppressed to baseline by large
gratings. The example neuron had a SIZE75 of 3.0° and an SI
of 0.07, indicating a small amount of surround suppression.

Finally, the neuron’s responses increased and then saturated at
increasing stimulus contrasts (Fig. 1E). We fit the contrast re-
sponses with a hyperbolic ratio (Albrecht and Hamilton 1982;

Naka and Rushton 1966) from which we estimated the c50
contrast and the slope, corresponding to the contrast needed to
reach at least half of the fitted response at the highest contrast and
the slope of the fitted response at c50 contrast, respectively. The
example neuron had a c50 of 0.06 and a slope of 5.2.

Distributions of Tuning Properties in V1 and MT

Distributions of response measures derived from the fits
across the entire population of MT neurons are shown in
Fig. 2, C–H (black). Additionally, we also estimated a
directionality index (DI; Fig. 2A) and an orientation selec-
tivity index (OSI; Fig. 2B) from the data. Cells with DI
values near or greater than 1 were highly direction-selective
(a DI value &1 indicates a cell that had responses that were
suppressed below baseline in the opposite direction); cells
with DI values near 0 were nondirectional. OSI values
ranged from 0 to 1, where 0 indicated equal responses to all
orientations and 1 indicated responses only to gratings at a
single orientation. We compared these distributions to sim-
ilar or identical measures obtained from a control population
of V1 cells (Fig. 2, A–H, orange).

In agreement with previous findings, most cells in MT were
highly direction-selective, with a mean DI at 1.0, compared with
a mean DI of 0.38 for V1 cells (Fig. 2A). OSI values for MT
neurons (mean " 0.41) were more narrowly distributed than those
for V1 cells, which tended to have more extreme values (Fig. 2B).
This reflected the fact that, compared with V1 cells, MT neurons
were more consistently orientation selective (a necessary condi-
tion for direction selectivity, Fig. 2A) but also tended to exhibit
broader direction bandwidths (Fig. 2C). OSI is closely related to
direction bandwidth; a larger bandwidth is associated with lower

Drift rate (Hz)

Dot direction (deg) Dot speed (deg/s)

DRopt c50

Slope

BW

HP Index

Grating direction (deg)

Grating diameter (deg)

Spatial frequency (c/deg)

Contrast 

R
es

po
ns

e 
(ip

s)

0.125 0.5 2 8 32

x

0

20

40

60

0

20

10

30

40

 60 180 300

 60 180 300

0
5

10
15
20
25

0.01 0.03  0.1  0.3

 0  2  4  6  8 10 12
0

20

40

60

80

BW

SIZE75

SI

Spdopt

0.06 0.25 1 4
0

10
20
30
40
50
60

0
5

10
15
20
25

4 8 16 32 64
0

10

20

30

SFopt

BW

A B

C

D E

F G

Fig. 1. Fitted tuning functions and derived response measures for a represen-
tative MT cell. Filled circles depict average firing rates (across trials) at tested
stimulus values. Error bars indicate SE across trials. Dashed lines indicate
baseline measures of firing rates. Gray curves represent best-fitting tuning
functions describing the measured responses (see Table 1). A–E show re-
sponses for drifting sinusoidal gratings; F and G show responses for coherent
random-dot textures. A: responses as a function of the direction of 50%-
contrast gratings (ips, impulses/s). We derived a bandwidth measure (BW; full
width at half-maximum height) from the best-fitting double von Mises func-
tion. B: responses as a function of the spatial frequency of drifting gratings. We
derived the optimal spatial frequency (SFopt; in cycles/deg, c/deg) and tuning
bandwidth (BW; in octaves, full width at half-maximum height) from the
best-fitting log-Gaussian. C: responses as a function of the diameter of a patch
of otherwise optimal grating. We extracted a SIZE75 measure and a suppres-
sion index (SI) from the best-fitting ratio-of-Gaussian function. SIZE75 is
defined as the smallest stimulus diameter that elicited 75% of the maximum
response, and SI indicates the relative suppression from the maximum response
at the largest stimulus diameter. D: responses as a function of the drift rate of
a grating stimulus. The response was fit with a log-Gaussian, from which we
extracted the optimal drift rate (DRopt; in Hz) and a temporal high-pass index
(HP index, or the slope of the response between DRopt and ¼ of DRopt). E:
responses as a function of grating contrast. We extracted a c50 and a slope
measure from the best-fitting hyperbolic ratio function. c50 is the contrast that
elicited half of the fitted maximal response, and slope indicates the steepness
of the fitted response at c50. Baseline measures in A–E come from epochs in
which a gray screen at the mean luminance was presented. F: responses as a
function of the direction of random-dot textures. We fit the responses with the
same double von Mises function as for grating directions in A, from which we
derived the bandwidth measure (BW). G: responses as a function of the speed
of random-dot textures moving in the preferred direction. The response was fit
with a log-Gaussian, from which we derived the optimal speed (Spdopt; in
deg/s). Baseline measures in F and G come from epochs in which zero-
coherence random motion was presented and are elevated because this cell
responded to such motion (Britten et al. 1993).
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orientation selectivity. Compared with V1 neurons, MT neurons
also tended to show lower spatial frequency preferences (Fig. 2D),
broader spatial frequency bandwidth (Fig. 2E), greater stimulus
diameter preferences (Fig. 2G), and less surround suppression

(Fig. 2F). These findings show that MT neurons have larger
receptive fields and broader spatial tuning than V1 cells at equiv-
alent eccentricities. Additionally, MT cells also tended to prefer
higher drift rates than V1 cells (Fig. 2H). All the differences
between V1 and MT populations were statistically significant
(P $ 0.001).

We used the baseline R0 from the fit (Eq. 2) to derive the
tuning bandwidths for grating direction and consequently
might have underestimated the bandwidths for cells whose
responses did not fall to the true baseline. As a check, we made
an alternative measure of bandwidth by computing the width at
half-height of the fitted response after adjusting for baseline
using the measured spontaneous rate (rather than that estimated
from the fit). This yielded a mean bandwidth of 86.4°, com-
pared with the original estimate of 90.4° (Fig. 2C, black; P "
0.01), suggesting that the original bandwidths were actually
slight overestimated due to the fact that responses in anti-
preferred directions were suppressed slightly below spontane-
ous (see DI & 0 in Fig. 2A).

Eccentricity

We examined how all of our measured response properties
varied as a function of eccentricity in both MT and V1. As
expected, the preferred spatial frequency of neurons decreased
with eccentricity in both V1 and MT (MT: r " !0.18; V1: r "
!0.46; P $ 0.0002 in both cases), but the decrease was more
gradual in MT compared with that in V1 (P $ 0.001, permutation
test; Fig. 3A). V1 neurons preferred higher spatial frequencies
than MT neurons at lower eccentricities, but the difference in
preferred spatial frequencies between the two populations dimin-
ished at higher eccentricities. The criterion receptive field diam-
eter (SIZE75) increased with eccentricity (MT: r " 0.19; V1: r "
0.40; P $ 0.0002 in both cases), but the increase was also more
gradual in MT than in V1 (P $ 0.001, permutation test; Fig. 3B).

Compared with V1, the receptive fields of MT neurons are
more enlarged in space than changed in their preferred spatial
frequency, meaning that on average there were more cycles of
the optimal grating within their receptive fields (“cycles per
RF”, computed by multiplying the preferred spatial frequency
of the cell by its receptive field size) than in V1 neurons (Fig.
3, C and D). The preferred number of cycles per RF increased
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Fig. 2. Distributions of response measures in MT and V1. Green bars indicate
response measures in MT neurons; orange bars denote the corresponding
response measures in V1 neurons. A: directionality index (DI). DI values near
0 correspond to cells that are nondirectional; DI values near or greater than 1
correspond to cells that are highly direction-selective. B: orientation selectivity
index (OSI). OSI is based on a vector measure of response to gratings of
varying orientations, with values near 1 indicating greater orientation selec-
tivity. C: direction tuning bandwidth to gratings. Bandwidth corresponds to the
full width (in degrees) at half-maximal height of the fitted, baseline-subtracted
response. D: optimal spatial frequency, derived from fits to suitable functions
(Fig. 1B). Low-pass (LP) and high-pass (HP) cells had responses that were
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spatial frequency tuning bandwidth. Bandwidth corresponds to the full width
(in octaves) at half-height of the fitted, baseline-subtracted response (Fig. 1B).
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calculated from fits as in D (Fig. 1D). nV1, no. of V1 neurons; nMT, no. of MT
neurons.
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slightly with eccentricity in MT neurons (r " 0.29; P $
0.0002) but not in V1 neurons (r " !0.09; P " 0.02). For this
measurement in V1, the receptive field size corresponded to the
stimulus diameter evoking 95% of the maximal response. For
many MT cells, the receptive field mapped with small stimuli
is larger than the size of the most effective stimulus patch
(Raiguel et al. 1995). We therefore took the size estimate for
MT receptive fields from hand maps of the fields rather than
from area summation measurements.

Overall, we found that the dependence of spatial properties on
eccentricity was less pronounced in MT than in V1. Additionally,
the optimal number of cycles per RF depended substantially on
eccentricity in MT neurons but less so in V1 neurons.

MT Population Characterized by the Pattern Index

We measured pattern direction selectivity in MT cells using
50%-contrast drifting sinusoidal gratings and with plaid pat-
terns made by adding two such gratings oriented 120° apart
(Fig. 4A). To quantify pattern motion selectivity, we computed
the partial correlations between the cell’s actual response to
plaids and predictions based on standard models of pattern and
component selectivity (Movshon et al. 1985). The predicted
pattern-selective response to plaids was the same as the cell’s
measured grating response (Fig. 4A, red curve). The predicted
component-selective response was the sum of two of such
grating tuning curves, each shifted by an appropriate amount in
angle to account for the direction of the plaid stimulus and
baseline subtracted (Fig. 4A, blue curve). The correlations Rp
and Rc were converted into Z scores (Zp and Zc, respectively)
using Fisher’s r-to-Z transformation to stabilize their variance
(Smith et al. 2005). A value of 1.28 was used as the class
boundary for Zp and Zc, equivalent to P " 0.1 (Fig. 4B). A cell
was classified as PDS if Zp exceeded Zc by at least 1.28 or if
Zp & 1.28 when Zc was negative. Conversely, a cell was
classified as CDS if Zc significantly exceeded Zp. A cell that
met neither criterion was unclassified. We term the difference,
Zp ! Zc, the “pattern index.” Pattern index varied continuously
across the population of MT neurons (Fig. 4C). The pattern
index did not depend on eccentricity (r " !0.01, P " 0.39).

Direction Selectivity Measures and Pattern Index

We examined the selectivity profiles of the MT cells to
grating and dot stimuli in relation to the pattern index. Cells
that were more PDS tended to be more direction-selective, as
indicated by the robust positive correlation between pattern
index and DI (r " 0.25, P $ 0.0002; Fig. 5A). Larger pattern
selectivity was also strongly associated with a broader direc-
tion tuning bandwidth for grating stimuli (r " 0.35, P $
0.0002; Fig. 5B). In contrast, there was no correlation between
pattern index and direction tuning bandwidth for dot textures
(r " !0.05, P " 0.242; Fig. 5C). Bandwidth estimates deter-
mined by using the measured spontaneous rate as the baseline
(see Distributions of Tuning Properties in V1 and MT above)
yielded similar results.

Cells that were PDS tended to respond more robustly to
complex motion stimuli (both plaids and dots) than to gratings.
We compared the measured maximal firing rates for plaid and
grating stimuli and found that PDS cells responded more
strongly to a plaid (composed of two 50%-contrast gratings)
than to a single 50%-contrast grating (average response ratio "
1.7, P " 0.001), whereas CDS cells showed more nearly equal
responses to both (average response ratio " 1.2, P " 0.004; vs.
response ratio for PDS: P $ 0.0001; Fig. 5D). This highlights
one of the hallmarks of pattern selectivity, in which CDS cells
only respond to one of the component gratings in the plaid
stimuli, whereas PDS cells integrate information from both
gratings. In addition, CDS cells responded poorly to dots
compared with gratings (average response ratio " 0.8, P "
0.007), whereas PDS cells tended to respond better to dots
(average response ratio " 1.6, P " 0.0003; vs. response ratio
for PDS: P " 0.001; Fig. 5E), consistent with the idea that PDS
cells were able to integrate information from a broader spatio-
temporal spectral range.
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Spatial Response Properties and Pattern Index

We determined spatial selectivities of the cells from their
spatial frequency and stimulus diameter tuning functions. Pat-
tern index showed a weak but significant negative correlation

with the log of the optimal spatial frequency of the cell (r "
!0.07, P " 0.032; Fig. 6A), indicating that cells that were
more pattern-selective tended to prefer lower spatial frequen-
cies. This effect was statistically significant only for the 348
cells tested with the continuous stream stimulation protocol,
but not for the 279 tested using discrete-trial presentations
(Table 2). We found no correlation between pattern index and
spatial frequency bandwidth (r " 0.00, P " 0.488; Fig. 6B).

For cells whose responses did not fall when spatial fre-
quency was at the limits of testing, we could define no
preferred spatial frequency. Of these, 42/685 cells showed a
low-pass tuning (i.e., their response did not fall at the lowest
spatial frequency tested; Fig. 2D, LP). We examined these cells
separately to see whether their pattern index differed from that
of the overall population. The mean pattern index across the
low-pass cells was !1.23, compared with !0.54 across the
overall population (P " 0.0484, permutation test), indicating
that cells with low-pass responses were predominantly com-
ponent selective. This was consistent with the overall trend that
spatial frequency preference was negatively correlated with
the pattern selectivity (Fig. 6A). For a few cells (16/690), the
highest spatial frequency tested evoked the maximal response
(Fig. 2D, HP); these cells were not considered as a separate
population.

The SIZE75 measure, obtained from the ratio-of-Gaussians
fitted responses to grating patches of varying diameters, cor-
responds to the smallest diameter of a grating patch that evoked
at least 75% of the fitted maximal response (Fig. 1C). Pattern
index was negatively correlated with log SIZE75 (r " !0.11,
P " 0.007), indicating that cells with higher pattern indexes
tended to prefer small stimulus diameters (Fig. 7A). SIZE75
was undefined for a small number of cells for which the
response amplitude was accelerating even at the largest pre-
sented stimulus diameter (19/570 cells; Fig. 2G, Undef). When
examined separately, these cells did not have pattern indexes
that were significantly different from that of the overall popu-
lation (P " 0.387; permutation test).

We quantified the strength of a cell’s surround suppression
using a suppression index (SI; Cavanaugh et al. 2002a). Many
cells (169/570) had SI equal to 0; i.e., they did not show any
attenuation in response amplitude at the largest stimulus diam-
eter presented. These zero-valued suppression indexes did not
occur only in cells with large diameter preferences, but rather
occurred in cells preferring the entire range of stimulus diam-
eters (data not shown).

We examined the distribution of SI separately for each
pattern-selective population (Fig. 7C). Cells that were more
pattern selective tended to include a smaller proportion of cells
with SI equal to 0 (bottommost bin of each histogram), indi-
cating that they were more likely to show surround suppres-
sion. Of PDS cells (nPDS " 144), only 19% had SI " 0,
compared with 35% of CDS cells (nCDS " 206) and 31% of
unclassified cells (nUnc " 220). This difference in the propor-
tions of zero-valued SI was highly significant between popu-
lations (PDS vs. CDS, P $ 0.0002). For values of SI greater
than 0, there was also a statistically significant correlation
between pattern index and SI (r " 0.10, P " 0.020; Fig. 7B).
Cells that were more pattern selective also tended to show
greater surround suppression.

Overall, cells that were more pattern selective tended to
prefer lower spatial frequencies, but the relationship between
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preferred spatial frequency and pattern selectivity was weak.
We found no correlation between spatial frequency bandwidth
and pattern selectivity. Cells that were more pattern selective
also preferred smaller stimulus sizes, perhaps related to their
stronger surround suppression. In combination, these factors
mean that pattern-selective cells on average preferred slightly
fewer cycles of the optimal grating in their receptive fields (the
geometric mean of cycles per RF was 3.4 for CDS and 4.1 for
PDS cells, P " 0.04).

Temporal Response Properties and Pattern Index

We next examined how pattern direction selectivity related
to the temporal response properties of the cell. Pattern index
was positively correlated with the log of the optimal drift rate
(r " 0.19, P $ 0.0002; Fig. 8A), indicating that cells that were
more pattern selective tended to prefer higher drift rates. To
assess the shape of the tuning response for drift frequencies, we
determined a temporal high-pass index, the slope of the low-
frequency (high pass) limb of the tuning function (Fig. 1D).
High-pass indexes near 0 indicated cells with low-pass tempo-
ral frequency tuning, whereas high-pass indexes near 1 indi-
cated tuning that was high- or band-pass. Pattern index was
correlated with the high-pass index (r " 0.11, P " 0.002; Fig.
8B), indicating that pattern-selective cells tended to show more
high- or band-pass temporal tuning than low-pass behavior.

We could not measure the optimal drift rate for a fraction of
the cells that did not saturate in response amplitude even at the
extremes of the drift rates presented. A few cells (2/699)
showed a low-pass response (Fig. 2H, LP), but were too rare to
yield any meaningful analyses. Lack of attenuation at high drift

rates (37/699 cells, Fig. 2H, HP) reflected experimental display
limits; these cells were therefore not considered as a separate
population and did not show pattern indexes that differed from
that of the overall population (P " 0.325).

Speed tuning functions obtained using dot textures were avail-
able for a small number of cells. Cells with higher pattern indexes
tended to have higher speed preferences (r " 0.20, P " 0.033;
Fig. 8C). The mean pattern index across cells with low-pass speed
tuning responses (5/86 cells) was !1.57 (compared with !0.54
across the overall population), indicating that these cells were
predominantly component selective. Speed preference is closely
related to the optimal spatial frequency and temporal drift rates of
the cell; the optimal speed for a drifting grating is given by the
preferred temporal frequency divided by the preferred spatial
frequency (Priebe et al. 2006). We therefore estimated the optimal
grating speed from each cell’s preferred spatial and temporal
frequencies and compared it with the optimal dot speed. As
expected, these two measures corresponded well (r " 0.79, P $
0.0002, n " 68; Fig. 8D). Notably, most data lie below the
diagonal, indicating that many cells preferred a higher dot speed
than grating speed. Also as expected, the preferred speed for dots
was highly negatively correlated with the preferred grating spatial
frequency (r " !0.70, P $ 0.0002, n " 74) and highly positively
correlated with the preferred grating drift rate (r " 0.50, P $
0.0002, n " 71), suggesting that both spatial and temporal factors
contribute to speed preference.

A number of temporal response properties correlated with
pattern selectivity. Cells that were more pattern selective
tended to prefer higher drift rates and higher speeds and were
less likely to show low-pass tuning for drift rate.
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Contrast Response Properties and Pattern Index

Pattern index showed little relationship with contrast sensi-
tivity (Fig. 9). The correlation was near zero with either log c50
(contrast needed to reach 50% of the maximal response; r "
!0.01, P " 0.445; Fig. 9A) or with the log of the slope of the
contrast response function at c50 (r " !0.01, P " 0.442; Fig.
9B). Using a fitted semi-saturation parameter ( (Eq. 7) rather
than the derived c50 produced similar results. Curiously, the
correlation of pattern index with log c50 was positive and

significant for the 148 cells tested with discrete-trial presenta-
tions (r " 0.22, P " 0.003) and negative and significant for the
220 cells tested with continuous stream presentations (r "
!0.14, P " 0.02). This may reflect a subtle difference in
susceptibility to contrast adaptation between pattern and com-
ponent cells, since the discrete-trial protocol has a less pro-
found adapting effect than the continuous stream (Smith et al.
2005).

Interaction of Spatial and Temporal Representations in PDS
and CDS Populations

We also investigated the relationship between spatial and
temporal preferences across the MT population and whether
the relationship was related to pattern selectivity. Preferred
spatial frequency and drift rate were negatively correlated for
PDS cells (r " !0.33, P $ 0.0002) but were not correlated for
CDS cells (r " !0.02, P " 0.43; Fig. 10). Note that this
relationship is not to be confused with the separability of
spatial and temporal tuning in an individual cell. Rather, it
shows how MT cells with different spatial and temporal fre-
quency preferences sample spatiotemporal frequency space.
Cells that were more pattern selective tended to overrepresent
spatiotemporal frequencies along a diagonal, preferring stimuli
either with low spatial frequency and high temporal frequency,
or vice versa. This relationship was not present in CDS cells,
whose representations of spatial and temporal frequencies were
mutually independent. This interdependence of spatiotemporal
preferences in PDS cells is reminiscent of the properties of
spatial and temporal frequency channels estimated psycho-
physically from contrast detection measurements (Kelly 1979;
Robson 1966).

We wondered whether this relationship was confounded by
receptive field eccentricity, which can affect frequency prefer-
ences (Fig. 3). Eccentricity data were available for 94 PDS
cells and 189 CDS cells with spatial frequency and drift rate
measurements. We divided the data into two roughly equal
groups, with eccentricities greater or less than 7°. For each
group, we computed the correlation between spatial frequency
and drift rate and assessed the confidence intervals of the
correlation values with bootstrapping. The correlations for the
low- and high-eccentricity PDS cells were both near !0.3 and
significantly different from 0. The correlations for the low- and

A

B

O
pt

im
al

 S
F

 (
c/

de
g)

−10 −5 0 5 10

−10 −5 0 5 10

S
F

 b
an

dw
id

th
 (

8v
a)

Pattern index

r = -0.07*
n = 627

r = 0.00
n = 498

0

1

2

3

4

5

0.06
0.12
0.25
 0.5
   1
   2
   4
   8

Fig. 6. Spatial frequency tuning and pattern index. In A and B, the light gray curve
indicates the 95% covariance ellipse. A: scatter plot of pattern index against
optimal spatial frequency (see Fig. 1B). Pattern index shows a negative correlation
with spatial frequency preferences (r " !0.07, P " 0.032). Correlation (r) was
computed with the log of spatial frequency; cells with responses that did not
attenuate at the highest or lowest presented stimulus value were excluded from the
correlation analysis. B: scatter plot of pattern index against spatial frequency tuning
bandwidth shows no correlation (r " 0.00, P " 0.488).

CBA

−10 −5 0 5 10

ycneuqerFxedni nrettaP

S
IZ

E
75

 (
de

g)

S
up

pr
es

si
on

 in
de

x 
(>

 0
)

S
up

pr
es

si
on

 in
de

x

r = -0.11*
n = 551

r = 0.10*
n = 401 CDS Unclassified PDS

0.2

  1

  5

 25

0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

0

0.2
0.4
0.6
0.8

1

−10 −5 0 5 10

Fig. 7. Size tuning and pattern index. In A and B, the light blue curve indicates the 95% covariance ellipse. A: scatter plot of pattern index against SIZE75 (see
Fig. 1C) of the cell. Pattern direction selectivity is negatively correlated with the optimal diameter of the grating patch (r " !0.11, P " 0.007). Correlation was
computed with the log of SIZE75. B: scatter plot of pattern index against SI for those cells with SI & 0. Pattern index is positively correlated with the non-zero
SI values (r " 0.10, P " 0.020), indicating that pattern selectivity is correlated with stronger suppression. C: distribution of SI in CDS, unclassified, and PDS
cell populations. The bottommost bin of each distribution contains cells with SI " 0 (no suppression). Each distribution was normalized by the number of cells
in the respective population (206 CDS, 220 unclassified, and 144 PDS).

2715CORRELATES OF PATTERN DIRECTION SELECTIVITY IN MT

J Neurophysiol • doi:10.1152/jn.00639.2014 • www.jn.org



high-eccentricity CDS cells were not significantly different
from 0. Within the limits imposed by the available sample
sizes, we conclude that eccentricity did not introduce a con-
found into this analysis.

Response Dynamics for Pattern- and Component-Selective
Cells

We examined whether the response dynamics differed be-
tween pattern- and component-selective populations; only cells
with responses measured using the rapid, continuous stream
stimulus presentation protocol were included, because they
contained enough trials to allow for a precise estimate of
latency using the method of Smith et al. (2005; see MATERIALS

AND METHODS). We used this latency estimate to align spike
times to the onset of the response. The plaid and grating
histograms of each cell were normalized by the highest spike
count from either the plaid or the grating response, and the
resulting normalized, time-aligned histograms were averaged
to provide an estimate of population response dynamics.

PDS cells responded more strongly to plaids than to gratings
throughout the entire response epoch (Fig. 11, light and dark
red), whereas CDS cells responded roughly equally to both
types of stimuli (Fig. 11, light and dark blue). Compared with
CDS cells, PDS cells showed enhanced responses to plaids
(light red vs. light blue) and suppressed responses to gratings
(dark red vs. dark blue). These results are consistent with those
showing the average response ratio based on total spike counts
(Fig. 5D), while revealing how response differences evolved
over time. Responses started earlier and rose more sharply for
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grating stimuli than for plaids in both PDS and CDS popula-
tions (Fig. 11, right), consistent with earlier observations
(Smith et al. 2005). Note that our procedure of aligning the
spike trains to response onset removed the influence of the
latency differences between PDS and CDS cells reported
earlier (Smith et al. 2005).

We found little difference in response dynamics between
PDS and CDS populations. To quantify response transience,
we computed a transience index, computed as early response/
(early response # late response) (Maunsell and Gibson 1992).
We defined early response to be the number of spikes within
the first 50 ms after response onset, and late response to be
those in the 50-ms period starting 200 ms after response onset.
Both response measures were baseline subtracted. A cell with
a strong early response and no significant late response would
have a transience index near 1; a cell showing equal early and
late responses would have an index near 0.5. We found no
significant correlation between the pattern index and response
transience for responses to gratings (r " !0.02, P " 0.337) or
plaids (r " !0.003, P " 0.477). One might expect response
transience to be related to the temporal high-pass index, which
also quantifies the cell’s inferred step response in the time
domain from temporal frequency tuning measurements. How-
ever, surprisingly, we found no significant correlation between
response transience and the temporal high-pass index to grat-
ings (r " 0.01, P " 0.40). Response dynamics might not match
frequency measurements for a variety of reasons, including
adaptation effects on the time course of the step response
(Lisberger and Movshon 1999; Tolhurst et al. 1980).

Because response dynamics can depend on the drift rate of
the stimulus (Maddess et al. 1988), we performed the analyses
again, after excluding cells with preferred drift rates that

differed by more than an octave from the drift rate at which
plaid and grating stimuli were presented, and obtained quali-
tatively similar results.

Multivariate Analysis and Dimensionality Reduction

Our results reveal correlations between pattern index and a
large number of spatial and temporal variables, but some of
those variables also covary with each other. We therefore
performed a multiple regression analysis by regressing pattern
index against 10 Z-scored predictor variables (Fig. 12A). This
provides a complementary method to assess the strength of
covariability between each of these variables and pattern index
while controlling for covariability among the predictor vari-
ables. A drawback is that this only allowed us to analyze the
small subset of cells for which all measures were available,
reducing the statistical power to reveal weak relationships.
Confirming our earlier findings, grating direction bandwidth
and optimal drift frequencies predicted pattern index reliably,
as indicated by their positive regression coefficients, but the
other variables used in the regression did not yield coefficients
that were individually significantly different from 0, except for
eccentricity, which we included because it covaried with other
properties of interest (e.g., spatial frequency; Fig. 3A) and
therefore explained some of their variance (Fig. 12A).

We further explored underlying relationships among the
response parameters by performing a PCA on the same 10
measurements. We reasoned that if the relationships among the
various spatial and temporal response properties were captured
by a small number of hidden dimensions, then PCA would
yield a small number of principal components (PCs) that
captured most of the variance in the data. Instead, we found
that the relative variance explained by each PC decreased
gradually and that each PC only explained a relatively small
amount of the variance in the overall data (Fig. 12B). This
suggests that the high-dimensional data cannot be reduced to a
succinct representation with a small number of dimensions.
Additionally, variances explained by the first few PCs were
similar, indicating that the ranking of these PCs was rather
fragile and might be easily perturbed by noise.

We also wondered whether transformation into PC space
yielded any dimensions that were more predictive of pattern
selectivity than the original measures. We therefore performed
a multiple regression by regressing pattern index against the
PC scores (i.e., representation of the data in PC space). If
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transformation into PC space accentuated the relationship with
pattern selectivity, we would then expect the regression coef-
ficients for at least one dimension of the PC scores to be higher
than the highest found in the original data. This was not the
case: the coefficients for the first three PC scores were no larger
than those for the largest for the original data variables (data
not shown), suggesting that no “natural axes” capturing the
data (as given by PCA) predicted pattern selectivity better than
the original variables.

DISCUSSION

We have presented the results of an analysis of a large set of
physiological measurements of the responses of well-isolated
single cells recorded from the visual cortex of anesthetized
macaques in our laboratory in the course of other experiments.
In those experiments, as part of the basic characterization of
the cells we studied, we explored a standard set of stimulus-
response relationships, and this report is an analysis of the
structure of some of those relationships.

We first compared the responses of populations of cells
recorded in the primary visual cortex, V1 (Cavanaugh et al.
2002a, 2002b; Hubel and Wiesel 1968), and in MT, an area
known to have a high concentration of cells that show selective
responses to the direction of motion (Maunsell and Van Essen

1983; Zeki 1974). In character with their presumed role in
temporal and motion processing, cells in MT tended to respond
well to stimuli with lower spatial frequencies and higher drift
rates than cells in V1. MT cells tended to be less selective for
orientation but more selective for direction of motion than V1
cells, and generally to be less selective for other spatiotemporal
parameters than V1 cells.

Although comparison between V1 and MT was instructive,
our main interest was the organization of cells in MT that show
different motion selectivities to visual patterns. Some cells in
MT, similarly to direction-selective cells in V1, respond to
complex moving patterns as if they are sensitive only to
individual, oriented components of those patterns: these cells
are CDS. Other cells, which are not encountered in significant
numbers in V1 but are found in MT and other downstream
cortical areas, integrate information across stimulus compo-
nents to give responses that depend on the motion of the whole
pattern: these cells are PDS (Khawaja et al. 2009; Movshon et
al. 1985; Nishimoto and Gallant 2011; Rodman and Albright
1989; Rust et al., 2006; Simoncelli and Heeger 1998; Smith et
al. 2005; Stoner and Albright 1992). The basis of pattern
selectivity has been intensely studied; it seems to emerge from
a set of computations that depend both on the properties of
particular afferents from earlier areas and also on different
patterns of neural computation within area MT itself (Rust et
al. 2006). The distinction between pattern and component cells
is continuous rather than categorical, so the variations between
cell types are smooth. To illuminate this variation, we used the
data from our population of MT neurons to compare the
properties of CDS and PDS cells with respect to a large family
of stimulus-response relationships.

Some patterns emerged from this analysis that were ex-
pected and predicted from previous work. For example, previ-
ous work comparing plaid and grating responses (see Born and
Bradley 2005) led us to expect the observation that pattern cells
tend to be more strongly direction-selective than component
cells (Fig. 5A) and tend to be relatively more selective (nar-
rower tuning width) for the direction of complex stimuli
(plaids, textures) than for the direction of simpler stimuli like
gratings (Fig. 5, B and C). Pattern cells also showed enhanced
responses to compound stimuli and attenuated responses to
single gratings (Fig. 5, D and E), consistent with their broader
recruitment of inputs from cells with a variety of direction
preferences (Rust et al. 2006; Simoncelli and Heeger 1998;
Smith et al. 2005).

A more subtle variation is also predicted by prior work. Rust
et al. (2006) postulated that, to account for pattern motion
selectivity, pattern cells in MT should receive strong input
from cells in V1 with a strong “tuned” component of contrast
gain control (equivalent to surround suppression as described
by Sceniak et al. 1999; Cavanaugh et al. 2002a). This result is
consistent with our finding that pattern cells showed stronger
surround suppression than component cells (Fig. 7C), which in
turn may account for the smaller receptive fields of pattern
cells (Fig. 7A). These differences between pattern and compo-
nent cells may reflect variations in the distribution of properties
of their afferents (Livingstone et al. 2001; Nishimoto and
Gallant 2011; Rust et al. 2006).

We expected to find differences in the spatial properties and
selectivity of pattern and component cells on the basis of
previous observations and models but were surprised to find
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also that pattern cells tended to prefer higher temporal frequen-
cies than component cells. Pattern cells preferred higher drift
rates and were more band pass (rather than low pass) in their
temporal frequency tuning (Fig. 8, A and B). However, pattern
cells did not show more transient response dynamics than
component cells (Fig. 11). Response dynamics might not
match temporal frequency preferences for a variety of reasons;
for example, it might be due to the effect of adaptation, which
is not evident in the temporal frequency characterization (Lis-
berger and Movshon 1999). These differences in temporal
frequency preferences between pattern and component cells do
not readily map onto current models of the pattern motion
computation, but they do tend to argue against serial models in
which pattern cells are thought to emerge from neural circuits
with inputs from MT component cells (Grzywacz and Yuille
1990; Movshon et al. 1985; Perrone and Krauzlis 2008): such
models could not easily explain why pattern cells respond more
vigorously to rapidly varying stimuli than do their inputs.
Perhaps pattern cells receive inputs from cells in earlier areas
or pathways that have relatively rapid temporal dynamics so
that their responses at least partly reflect the properties of those
inputs.

One peculiar finding is that the distribution of preferred
spatial and temporal frequencies for pattern cells shows a
strong negative correlation, whereas the same distribution for
component cells shows no similar relationship (Fig. 10). The
basis for this difference in the distribution of spatiotemporal
preferences is unclear, but it is perhaps noteworthy that the
distribution for pattern cells resembles in shape the human
spatiotemporal contrast sensitivity surface (Kelly 1979; Rob-
son 1966).

One simple outcome of our analysis would be to predict the
degree of pattern selectivity from other cell properties. It is
plain from the analyses we have presented (Figs. 5–10) that
there is no strong simple correlation between pattern selectivity
and any single property. This impression is reinforced by Fig.
12A, which plots the outcome of a regression analysis com-
bining all the variables that we separately analyzed. We Z-
scored the values of pattern index and 10 other measures and
normalized them to have unit variance, and then computed a
multiple linear regression of those on pattern index. Only three
(direction bandwidth, direction selectivity, and optimal drift
rate) were significantly related to pattern index. We then
wondered whether a small number of multicomponent latent
variables might explain the diversity of properties we ob-
served. We performed a PCA and asked whether the most
important components revealed by the analysis might have
more concentrated explanatory power than the individual tun-
ing measurements. The outcome is shown in Fig. 12B, showing
the eigenvalues of the 10 principal components and the cumu-
lative fraction of explained variance. This analysis reveals no
small set of hidden variables that might account for the diver-
sity of pattern selectivity in our data. Instead, the variance
explained by the sequence of principal components fell
smoothly and without inflection, suggesting that the main
components of variation are independent and uncorrelated.

How are we to interpret the lack of singular organization in
Fig. 12? Pattern selectivity is not explained by any single other
receptive field feature or simple combination of features: we
think that this is not accidental. The response preferences of the
population of MT cells are arranged so that stimulus prefer-

ences are dispersed among all the dimensions represented by
our measurements, including pattern selectivity. This disper-
sion in high dimensions gives the population of MT cells the
ability to represent true motion for objects and scene elements
with a diversity of associated spatial and temporal properties,
just as one would want and expect for a system whose goal is
to keep the animal informed about the nature and disposition of
all of the many moving elements of the visual world.
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