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Abstract—The variability of the discharge of visual cortical neurons in cats and macaque monkeys limits
the reliability with which such neurons can relay signals about weak visual stimuli. In general, the
variance of a neuron’s firing rate is directly proportional to its mean firing rate. The probability that a
neuron will fire a criterion number of impulses on a stimulus trial grows monotonically with the contrast
of a sinusoidal grating stimulus. Neural probability functions prepared either by computing the prob-
ability of criterion response or by integrating receiver operating characteristics to yield the probability of
correct choice in a two-alternative forced-choice situation resemble psychometric functions obtained in
psychophysical and behavioral experiments on humans and animals, but are shallower in slope. The
slopes of neuronal probability functions are slightly higher when they are estimated over short time
periods, but even so do not equal the slopes measured psychophysically in human and monkey ob-
servers. This discrepancy in slope could be explained if the whole observer responded only when about
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four neurons were active together.
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INTRODUCTION

The detection of weak visual signals by human and
animal observers is probabilistic: on some test trials
an observer may correctly report the presence of a
stimulus, while on others he may fail to see it al-
together. The probability that he will correctly detect
a stimulus increases with signal strength until at some
strength the observer performs correctly on virtually
every trial. The function relating this probability to
signal strength is the psychometric function. It is gener-
ally thought that performance on psychophysical
tasks is probabilistic—and that the psychometric
function is not a step function—because identical
physical stimuli elicit neural responses that vary ran-
domly in amplitude from presentation to presen-
tation. Since this variable neural representation of the
sensory event alone is accessible to the observer. he
must make a statistical decision as to whether a par-
ticular level of neural activity is more likely to be the
response to a stimulus than a random fluctuation in
some ongoing background activity (Tanner and
Swets, 1954; Green and Swets, 1966).

In the visual system, the responses of single neurons
are subject to random variations in amplitude. Suc-
cessive presentations of identical stimuli do not yield
identical responses, and responses are often superim-
posed upon a fluctuating spontaneous activity. This
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Psychometric functions

variability or “noise” will limit the reliable discrimi-
nation of different responses, although it may have
the mitigating advantage of ensuring that the average
firing rate of a neuron adequately encodes the time-
course of a stimulus (Stein, 1970; Knight, 1972). Bar-
low and Levick (1969) and Barlow et al. (1971) studied
the way in which response variability limited the re-
liability of signals relayed by retinal ganglion cells,
and in this paper we extend this kind of analysis to
the behavior of neurons in the visual cortex of cats
and monkeys. The variability of cortical neuron re-
sponse is known to be considerable (Henry et al.,
1973; Tomko and Crapper, 1974; Rose, 1979: Tol-
hurst et al., 1981; Dean, 1981b). In this paper we ana-
lyze the variability of the discharge of cortical cells in
a way that allows us to compare their behavior with
the behavior of human and animal observers. From
this comparison it appears that the variability of cor-
tical responses is rather greater than the variability of
whole observers’ responses; the difference is, however,
sufficiently small to allow us to model an observer’s
performance on the assumption that he bases percep-
tual decisions on signals arising from a rather small
number of neurons.

These results have been briefly presented elsewhere
(Movshon et al., 1982).

METHODS

Our general methods have been described in detail
elsewhere (Movshon et al, 1978a,c; Dean, 198la;
Tolhurst et al., 1981).
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Extracellular recordings were made from neurons
in the primary visual cortex (area 17) of cats and
macaque monkeys (Macaca nemestrina and Macaca
fascicularis), using tungsten-in-glass microelectrodes
(Levick, 1972; Merrill and Ainsworth, 1972). After
surgery under halothane followed by a short-acting
barbiturate or steroid anesthetic [sodium methohexi-
tal (Brietal: Lilly), Althesin (Glaxo) or sodium thio-
pental (Pentothal: Abbott)], the animal was paralyzed
with an infusion of muscle relaxant (cats—gallamine
triethiodide. 10-20mg-kg™'-hr '; monkeys—pan-
curonium bromide, 0.1-0.2mg-kg ™ '~hr '), in a dex-
trose Ringer’s solution (3-10ml-hr~'), and artificially
ventilated with a mixture of N,0, O, and CO, (typi-
cally 78:20:2) supplemented when necessary with an
infusion of sodium pentobarbital (Nembutal: Abbott:
0.5-4mg-kg ' hr~'). The expired pCO,, EKG, EEG
and rectal temperature were monitored continuously
to ensure the adequacy of anesthesia and the sound-
ness of the animal's physiological condition. At the
end of the experiments, the animals were killed with
an overdose of barbiturate. If histological confirma-
tion of the electrode tracks were desired, the animal
was then perfused through the heart with 10% buf-
fered formalin.

The corneas were protected with zero-power con-
tact lenses containing 3 or 4 mm artificial pupils, and
supplementary lenses were used when needed to make
the retinas conjugate with a screen between 57 and
160 cm distant. All neurons recorded from cats had
receptive fields within 57 of the area centralis, while
those from monkeys had receptive fields within 1.5° of
the center of the fovea. The recording sites were veri-
fied as lying within area 17 either histologically or by
the location and character of the visual receptive
fields.

Receptive fields were classified as simple or
complex by the criteria of Hubel and Wiesel (1962,
1968) and Gilbert (1977), and corroborated by the
form of responses to sinusoidal gratings (Movshon er
al, 1978a,b). The neuron’s dominant eye was estab-
lished and the other eye occluded. Visual stimuli were
presented on the face of a display oscilloscope sub-
tending between 5 and 15° at the animal’s eye, and the
neurons were stimulated with moving sinusoidal grat-
ings generated by a PDP 11 computer. After
determining the optimal orientation, spatial fre-
quency, extent and direction of movement of the grat-
ing. the dependence of each neuron’s response upon
the contrast of this grating was examined. Contrast is
defined as the difference between the maximum and
minimum luminance of the grating, divided by twice
the mean luminance; the mean luminance was held
constant for each neuron at a value between 6 and
200 cd/m?.

Experimental design

Neurons were tested with gratings of between 10
and 25 contrast levels, including zero. The gratings
drifted steadily across the receptive field at 2 or 4 Hz,

and a trial was the presentation of the grating for the
time it took one cycle to pass any point on the screen:
a trial was thus either 250 or 500 msec in duration.
Since we wished to measure steady-state responses,
individual trials were not presented: rather, each grat-
ing was presented for 10 or 20 trials in succession,
after a | sec period immediately following the onset of
the grating in which data were not collected. This was
a set of trials. and lasted between 2.5 and 10 sec. Sets
of trials were presented in blocks, in which each con-
trast level was presented for one set, in random order:
a block lasted between 0.5 and 2 min. In a full experi-
ment, between 5 and 10 blocks were run, each with a
different random order of presentation, so that the
responses to between 50 and 100 trials were collected
for each contrast level. A full experiment lasted
between 15 and 30 min.

RESULTS

We studied the behavior of 38 neurons from cats
(22 simple, 16 complex) and of 15 neurons from
monkeys (3 simple and 12 complex).

The response we studied was the number of nerve
impulses fired during each trial of an experiment.
While it is possible to examine such other aspects of
neuronal discharge as the time intervals between suc-
cessive impulses (e.g. Werner and Mountcastle, 1963),
the simplest comparison with psychophysical
measurements could be obtained from the counting
distributions (Barlow and Levick, 1969). We assume
in this comparison that the information available
from the train of nerve impulses produced by a single
cortical neuron is well represented by the number of
impulses that the neuron fires in each of a sequence of
defined, relatively short intervals, and that the local
structure of the spike train can be ignored (cf. Cattaneo
et al., 1981).

Amplitude and variance of response

Figure 1 shows. for two neurons, the mean number
of impulses generated in response to each trial of a
sinusoidal grating at a number of contrasts; the vari-
ance of the mean is also shown. Figure la shows data
for a simple cell recorded from a monkey; Fig. 1b is
for a complex cell recorded from a cat. As the grating
contrast increased, both the mean and the variance of
the number of impulses increased. For low and
moderate contrasts, the mean grew approximately
linearly with contrast once a low (“threshold”) con-
trast had been exceeded (Tolhurst ef al., 1981; Dean,
1981a). The variance was roughly proportional to the
average response (Tolhurst et al., 1981; Dean, 1981b).

This proportionality is illustrated in Fig. 2 for a
simple cell recorded from a cat. The large solid
squares show how the variance of the response to
individual trials was related to the mean response.
Each point represents the data for one contrast level.
The relationship is approximately linear on the
double-logarithmic plot: the continuous line is the
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Fig. 1. The mean and variance of the number of impulses
fired on each trial by two neurons over a range of stimulus
contrasts. In each case the mean response is indicated by
circles (left-hand ordinate). and the response variance by
stars (right-hand ordinate); the values are based on 100
trials at each contrast level. (A) A simple cell recorded from
monkey striate cortex. The spatial frequency was
3.7¢/deg, and the temporal frequency was 4Hz (B) A
special complex cell recorded from cat striate cortex. The
spatial frequency was 1.3c¢/deg, and the temporal fre-
quency was 2 Hz.

least-squares regression and has a slope of 111 (stan-
dard error of estimation = 0.06. n = 11, r = 0.98),
suggesting that the variance was directly proportional
to the mean response. The variance was between 2.6
and 3.7 times the mean response; the y-intercept (i.e.
the variance when the mean response was | impulse
per trial) was 2.8,

These data are the means and variances of the re-
sponses to 100 trials of the grating at each contrast.
Thus each datum summarizes the neuron’s behavior
over the full duration of the experiment, some 20 min.
During this time, it would be likely for the neuron to
cycle several times between states of high and low
responsiveness (Rose, 1979: Tolhurst et al., 1981).
These fluctuations would inflate the ratio of the re-
sponse variance to the mean response. Now, in this
experiment, the grating was presented on 10 separate
occasions at each contrast for a set of 10 trials at a
time (see Methods). The effects of slow changes in
responsiveness may be lessened by considering the
mean and the variance of the 10 responses within
each discretely presented set. Each datum would then
summarize, albeit less accurately. the neuron’s behav-
ior over a period of only 5 sec.

The small circles in Fig. 2 show the relationship
between the variances and means calculated in this
way for each set of 10 trials. Each contrast level is
now represented by 10 data points (except when the
mean response was less than 0.2: see legend). The
small solid circles show the 10 points for one contrast
level, and it may be seen that both the mean and
variance of the response to the one stimulus changed
considerably during the experiment. The slope of a
regression line fit to the data from individual trials
shown by small circles (dashed line) is 099
(SE = 005, r=089, n=103), and so is little
changed. The ratio of variance to mean, however, is
reduced by about 50% (as is the y-intercept), to about
1.5. One would expect this analysis to yield a modest
decrease in variance, due to the smaller sample sizes
involved, but the observed change is about five times
larger than this expectation. This shows the import-
ance of the contribution that slow changes in respon-
siveness can make to the overall estimates of variance
calculated from data collected over periods of
15-30 min.
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Fig. 2. The relationship between the mean and variance of
response for a simple cell recorded from cat striate cortex.
The large squares show the relationship between the mean
and variance of the response to 100 trials of the grating at
each of several contrasts. The continuous line is the re-
gression line for these data. Each small circle shows the
relationship between the mean and the variance of re-
sponse to the 10 trials comprising one set at one contrast.
Each contrast level should be represented by 10 points,
However, if no impulses or only a single impulse were
generated in a set of trials, the variance is zero and no
information about the underlying process is available.
Thus data from seven of the 110 data sets in which less
than 2 impulses were generated have not been plotted and
were not used for the regression calculation (dashed line).
To give an impression of trial-to-trial variability, the small
solid circles show the 10 data sets for one of the 11 contrast
levels.
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Analyses of this kind were performed for 22
neurons recorded from cats, with similar results. The
average slope of the relationship between the logar-
ithm of the mean response and the logarithm of its
variance was 1.09 (SD = 0.09, n = 22), demonstrating
the linear nature of the relationship. The results for
simple and complex cells did not differ. The average
value of the y-intercept of the regression for the full
100 cycles for these 22 neurons was 2.80 (SD = 1.19):
this fell to 1.76 (SD = 0.48) when it was calculated
from the separate sets of cycles. Not only was the
average value reduced by examining the response
over short time periods, but the standard deviation of
the average ratio was also less (F = 6.16; d.f. = 21,
21; P < 0.001). This suggests that all neurons tend to
have similar instantaneous ratios of response variance
to mean response; widely differing values of the long-
term ratio may result from different degrees of slow
response fluctuation during the experiment.

Probabilistic nature of response

While it is plain that the variability of neuronal
discharge must influence visual performance in some
way, it is not obvious from data like those shown in
Figs 1 and 2 how best to determine the nature and
magnitude of this influence. Fig. 3 shows how the
neuronal unit data can be related to psychophysical
measures of performance.

In the two parts of this figure we plot data for the
same two cells whose responses were illustrated in
Fig. 1. Here, rather than showing the mean response
to each contrast, we plot the probability that the re-
sponse on a given trial equalled or exceeded some
criterion number of impulses. In Fig. 3A, the criterion
responses are 1, 2, 4 and 8 impulses per trial; in Fig.
3b, they are 5, 10, 15 and 20 impulses per trial. The
probability in all cases rose monotonically from a low
value at low contrast levels towards an asymptotic
probability near 1.0. The curves drawn through the
data have the form

P=06—(8—7yexp[—(m/x)"] (1)

*Maximum-likelihood fitting procedures of this sort are
known to be biased when the number of trials contri-
buting to the fit is small; in this case, the most promi-
nent bias would be an overestimate of the value of B
(J. Nachmias, personal communication). In order to
evaluate the possible bias in our estimates, we per-
formed a number of Monte Carlo simulations of
psychometric functions having the form of equation 1,
and fit these simulated functions using the maximum-
likelihood procedure. For situations like our own (with
between 10 and 25 contrast levels each represented by
between 50 and 100 trials), the most important factor
biasing the estimates of § was the value of 7, the “guess-
ing rate”. For a y value of 0, the mean estimate of § was
within 1%, of the true value, with a standard deviation
of about 3% (n = 12). As y was increased, the estimates
of f increased slightly and became more variable: with
a y of 0.5, the mean estimate of § was about 7%, larger
than the true value, with a standard deviation of about
15%, (n = 12). Thus even in the worst cases we encoun-
tered, the bias was negligible and the standard error of
the estimate acceptable for our purposes.
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Fig. 3. The probability that at least a criterion number of
impulses were fired in a trial by the same two neurons as
Fig. 1, again estimated from 100 trials at each contrast
level. (A) The simple cell. The response criteria are 1, 2, 4
and 8 impulses per 250 msec trial (circles, squares, triangles
and plus). (B) The complex cell. The response criteria are 5,
10, 15 and 20 impulses per 500 msec trial (circles, squares,
triangles, plus). The smooth curves are the best-fitting ver-
sions of equation | (see text).

where P is the probability that the number of im-
pulses in an interval will equal or exceed some cri-
terion value, m is stimulus contrast, o is the contrast
at which a criterion probability is reached, f is a par-
ameter governing the slope of the function, y is the
probability of attaining a criterion response in the
absence of a stimulus, and 4 is the asymptotic value of
P as m becomes large. This equation is the integral of
the Weibull distribution function, and was introduced
as a description of human psychometric functions by
Quick (1974). It has certain mathematical advantages
(discussed by Quick and by Nachmias, 1981), and
provides an acceptable fit to most of our data; we do
not use it to imply any particular model of response
variability. The curves were fitted with an iterative
maximum-likelihood estimation procedure (Watson,
1979), with &, B, y and 6 all allowed to vary to find the
best fit*. This procedure yields an estimate of good-
ness of fit which is distributed as y2: the fit could be
rejected with 95%, confidence for only six of the 295
data sets examined. Typically, varying the value of the
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parameter « by more than about 10%, or the value of
p by more than about 20%, caused the value of the
error statistic to increase significantly.

An interesting feature of the curves in Fig. 3 is that
the slope parameter [f from equation (1)] changed
little for the different values of criterion chosen for
either cell. For the simple cell, the best values of § for
the four criteria shown were 2.6, 2.2, 2.3 and 2.5; for
the complex cell, the values were 1.2, 1.3, 1.5 and 1.5.
It was generally the case that as the criterion response
was increased, ff remained roughly constant. This sug-
gests that no simple model of the stochastic process
underlying the curves can be generated, since com-
mon Poisson or renewal processes (Cox and Lewis,
1966) all share the characteristic that as criterion in-
creases, fi should increase markedly.

Signal detection analysis of response

There was an obvious difference between the two
neurons whose data are shown in Figs | and 3. The
simple cell (Figs 1a and 3a) generated no impulses in
the absence of a stimulus, while the complex cell (Figs
Ib and 3b) had a fairly high level of maintained firing
(about 7 impulses-sec™ ') in the absence of a stimulus.
This difference is strikingly reflected in Fig. 3: for the
simple cell, even at the lowest criterion value used
(one impulse per trial), the probability of encounter-
ing a criterion response on a trial without a stimulus
was zero. For the complex cell, however, even a cri-
terion of five impulses per trial was exceeded on
about two-thirds of the trials without a stimulus; it
was necessary to raise the criterion to roughly 15 im-
pulses per trial in order to obtain a reasonably low
probability of response at zero contrast.

If, therefore, an observer were to rely on the activity
of a neuron (like the simple cell) with no spontaneous
activity, he could confidently report the presence of a
stimulus whenever it generated an impulse on a trial.
His psychometric function would be identical to the
neuron’s psychometric function with a criterion of
one impulse. This strategy would be inappropriate if
the observer were to rely on a neuron with consider-
able spontaneous activity (like the complex cell): the
criterion of one impulse would be exceeded on vir-
tually every trial, whether it contained a stimulus or
not. The observer could adopt some arbitrary cri-
terion which would result in fewer positive responses
to blank trials; he could, for instance, respond only
when the neuron fired at least 15 impulses on a trial.
He would then respond on about 79, of trials contain-
ing no stimulus, and his psychometric function would
be the third function of Fig. 3b.

In situations where they are forced to decide on the
presence of a stimulus, human observers, like the
complex cell (Fig. 3b), typically respond “yes” on
some proportion of the trials that in fact contain no
stimulus. It is now common in psychophysics to use
the methods of signal detection theory (Green and
Swets, 1966) to analyze situations of this kind. In a
signal-detection paradigm, some factor 1s manipulated
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to cause the subject to alter his response criterion—a
rating-scale procedure in which the subject reports his
confidence that an event occurred is often used. For
low criteria or low confidence ratings, an observer
will often correctly report the presence of weak
stimuli, but will also generate frequent “false-positive”
responses. For high criteria or high confidence
ratings, the observer will rarely give false positive
responses, but detects correspondingly fewer weak
stimuli. Precisely analogous behavior would result
from relying on the activity of the complex neuron of
Fig. 3b.

The appropriate analysis for such data is made
from a receiver operating characteristic (ROC), which
is obtained by plotting, for each choice of criterion or
confidence rating, the probability of a correct detec-
tion against the probability of a false positive report.
Figure 4a shows a family of ROCs derived from the
family of psychometric functions shown in Fig. 3b for
the complex cell. Each point represents the pair of
probabilities associated with one criterion response
level at one contrast—we have substituted a range of
criterion response magnitudes for the rating scale that
is usually used psychophysically. The points on each
curve show the data for one contrast (and zero con-
trast, from which the false-positive rate is obtained).
Data for five contrast levels are shown, ranging from
a contrast that the cell could not reliably have dis-
criminated from a blank field (0.02, circles), to a con-
trast that could have been almost perfectly detected
(0.32, crosses). As contrast increased, the ROC
became more bowed away from the diagonal towards
the top left corner of the unit square.

In analyzing ROCs, it is usual to extract the par-
ameter d', which is an index of the discriminability
between the “signal” and “noise™ processes underlying
performance (Green and Swets, 1966). However, this
analysis assumes that the variability of the signal and
noise processes is identical, and is Gaussian. Our data
show that response variance is by no means indepen-
dent of response magnitude (Figs 1 and 2); moreover,
the distribution of response magnitudes is not Gaus-
sian (Dean, 1981b). We therefore analyzed our ROCs
using a more general method which involves comput-
ing the area under the ROC. This area represents the
probability that of a given pair of samples, one from
the signal process and one from the noise process, the
sample of the signal process will have the larger value
(Green and Swets, 1966; Bamber, 1975). This corre-
sponds naturally to the two-alternative forced-choice
procedure in psychophysics, in which the observer is
required to distinguish between two stimuli, one of
which is blank and the other of which contains a
stimulus. Recall that the ROC is plotted on a unit
square; an ROC following the left and upper boun-
daries of the square would cover an area of 1.0, imply-
ing perfect discrimination; an ROC following the
diagonal would cover an area of 0.5, implying chance
performance. If we suppose that an observer, basing
his decisions on the output of a neuron in a two-
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Fig. 4. Receiver operating characteristic (ROC) analysis of
the data from the complex cell of Figs Ib and 3b. (A)
ROCs derived from the functions of Fig. 3b. For each
choice of criterion and each contrast level, the ordinate
plots the probability of attaining a criterion response on a
stimulus trial and the abscissa plots the probability of
obtaining that response on a blank trial. Each ROC is
constructed from a range of criteria between 1 and 23 im-
pulses per trial. ROCs are shown for stimulus contrasts of
002 (circles), 0.04 (squares), 0.08 (triangles), 0.16 (plus)
and 0.32 (crosses). The d' values estimated for these ROCs
by the procedure of Bamber (1975) would be 0.04, 0.52,
111, 1.96 and 3.75. (B) The probability of correctly dis-
criminating a stimulus trial from a blank trial is plotted
against contrast. The probabilities are computed by inte-
grating the ROCs shown in A. The smooth curve is the
best fitting version of egn. 1, with the constraint that
7 = 0.5. The fitted value of f is 1.29.

alternative situation, simply chooses the interval in
which a greater number of impulses were fired as con-
taining the stimulus, the area under each ROC in Fig.
4a may be taken as the probability that the observer
would correctly distinguish a stimulus of the given
contrast from a blank stimulus.

In Fig. 4b, we plot the probability values derived
from integrating the ROCs shown in Fig. 4a. At very
low contrasts the probability was near 0.5, since the
neuron fired equally often on signal and blank trials
and the ROCs were near the diagonal. At high con-
trasts the ROCs approached the boundaries of the
unit square, and the probability approached 1. Again
the smooth curve is equation (1), but in this case the

parameter y 1s fixed at a value of 0.5 (the theoretical
value when the signal and blank trials give equal re-
sponses).

Brief consideration of the construction of the ROC
reveals that, for a neuron lacking spontaneous ac-
tivity, P_(the probability derived from the ROC) will
be given by

P,=05+05P,, (2)

where P, is the probability derived from a “yes—no"
analysis at the lowest available criterion; fits to the
data of equation (1) will differ only in that 3 will
change from 0 to 0.5 and & will change to (1 + 8)/2.
So, for neurons whose spontaneous activity was low
enough to make the “false-positive” response rate
negligible (n = 22), we took our estimates of the
“threshold™ and “slope™ parameters o« and f from
“yes-no” data at a criterion of one impulse per trial.
For neurons having significant spontaneous activity
(n = 31), we based our estimates of these parameters
upon probabilities derived from integration of ROCs
like those shown in Fig. 4.

Distributions of psychometric function shape

For each of the 53 neurons we studied, we esti-
mated the parameters of the best-fitting version of
equation 1: we were particularly interested in the
threshold parameter o and the slope parameter f.
Figure 5 shows the distribution of values of & and
obtained for our population of neurons. Data for
simple and complex cells are plotted separately, and
data obtained from monkeys are indicated by stip-
pling.

In Fig. 5a, the distribution of « is shown. The value
of this “threshold” parameter is the lowest contrast at
which the neuron’s response would be greater than its
baseline response on 82%, of trials, Comparing Fig. la
with Fig. 3a and, Fig. |b with Fig. 4b, reveals that
values of # for the neurons in question were two to
three times larger than the contrast values at which
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Fig. 5. Distributions of the parameters « and § from equa-
tion (1) for the best fits to data from 53 neurons. (A) Distri-
butions of the value of «. The upper histogram represents
data from simple cells; the lower histogram represents
complex cells. Neurons recorded from monkey striate cor-
tex are stippled. (B) Distributions of the value of f. The
upper histogram again represents simple cells, the lower,
complex cells, and data from monkey striate neurons are
cross-hatched.
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the neurons gave reliable average responses; this was
the case for most other neurons in our sample.
Although = would certainly be expected to vary with
spatial frequency, this variation was not marked in
our sample. This is probably due to the fact that we
studied rather few neurons preferring spatial frequen-
cies remote from the frequencies to which either cats
or monkeys are most sensitive. The logarithmic mean
values of  did not differ between monkeys (0.079) and
cats (0.071): nor did simple cells (0.077) differ from
complex cells (0.073). The only reliable source of vari-
ation in the data was mean luminance: values of o
obtained at high luminance (50-200 cd/m?, mean =
0.065) were slightly lower than those obtained at low
luminance (6 cd/m?, mean 0.083) (cf. Hess and Lilly-
white, 1980).

It may be seen that while & varied rather widely, the
most sensitive neurons in our sample had values of «
that approach those observed in psychophysical ex-
periments on animals (see for example DeValois et al.,
1974; Pasternak and Merigan, 1981).

Figure 5b shows distributions of the value of f, the
slope parameter from equation (I). It may be seen
that most values of f# fell between 1.25 and 2.5, with a
logarithmic mean of 1.82. The mean values of f for
neurons from cats (1.83) and monkeys (1.81) were in-
distinguishable: complex cells (1.96) had a slightly
higher mean value of f than simple cells (1.75),
although this difference was not statistically signifi-
cant. As we will consider in the Discussion, the values
of f# shown here are rather lower than those obtained
from human and animal psychophysical observers.

We noticed a tendency for high values of « to be
associated with high values of fi: these parameters
were weakly correlated (r,, = 0.256, n = 53), and this
correlation significant  (t = 1.89, d.I. = 51,
P < 0.05).

was

Short-term and long-term variability of responses

In the course of a series of measurements lasting 15
to 30min, the responsiveness of cortical neurons
seems to fluctuate slowly. As shown by Fig. 2, this

*We evaluated the possibility that the biases of our maxi-
mum-likelihood estimates might increase under these
conditions by performing further Monte Carlo simula-
tions of the psychometric functions. We broke our
simulated functions with 100 trials per point into 10
data sets, each with 10 trials/point, and fitted them with
= free to assume a separate value for each data set. This
only slightly increased the estimates of f when y was
small—for a y of 0, the mean estimate of f§ was about
3%, higher than the true value, with a standard devi-
ation of about 5%, (n = 12). For no simulated data set
with a 7 value below 0.1 did we observe an increase in
the estimate of fi larger than 12%,. When y became
large, however, the bias was much more severe—for a y
of 0.5, the mean estimate of § was about 40%, higher
than the true value, with a standard deviation of about
30% (n = 12). We therefore performed the separate-
trials analysis only on data for which the value of y (the
“guessing rate”, or false-positive rate) was less than 0.1,
and did not use data requiring ROC analysis.
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non-stationarity of response contributes markedly to
the estimated variability of cortical neuron discharge.
The values of the slope constant ff shown in Fig. 5b
were also based on the full experiment for each
neuron, but if the sensitivity were to fluctuate over the
trials of an experiment, this would have the eflect of
reducing the estimate of the slope (cf. Hallett, 1969).
To examine the idea that the instantaneous value of
the slope constant was higher than the one obtained
from full samples, we fitted equation | to the set of
data for a full experiment, but allowed the threshold
parameter « to assume a different value for data from
each block of trials (recall that each block contained
10 or 20 trials of each stimulus, and lasted 2-5 min).
The slope parameter f§ (and the asymptotes 7 and o)
thus assumed a single value that best described the
data from all sets of trials, after the value of « had
been optimized for each set. This tests the hypothesis
that there exist fluctuations in sensitivity from block
to block in an experiment like ours, and that the effect
of these fluctuations is to shift the function of equa-
tion (1) rigidly along a log contrast axis. If there were
no such slow fluctuation, the block-by-block estimate
of f should not differ from the estimate obtained over
the whole experiment*.

Figure 6 shows the results of this fitting procedure
for one neuron, a complex cell recorded from a cat.
This neuron had a low spontaneous firing rate, and
the probabilities are thus derived from the “yes-no”
procedure with a criterion response of one impulse
per trial. Figure 6a shows the data averaged over the
full 100 trials of the experiment, and two fitted ver-
sions of equation (1). The curve of shallower slope
shows the fit for the full data set: f was 2.8, and « was
0.099. The curve of steeper slope shows the fit in
which a separate value of & was sought for each block
of the experiment; fi was 6.1, and the logarithmic
mean value of x (illustrated) was 0.092. Figure 6b
shows superimposed the separate data for four of the
ten separate sets of trials presented at each contrast.
In each case, probabilities from low and high con-
trasts where the values were asymptotically stable
have been omitted for clarity. The fitted values of o
for these sets of data ranged from 0.054 to 0.163. It is
clear that the slopes of each data set in Fig. 6b were
steeper than that of the overall mean values shown in
Fig. 6a, and that the curve of steeper slope in Fig. 6a
provides a much better estimate of these individual
slopes than does the shallower curve.

In each of the 18 cases for which we performed this
analysis, the short-term estimate of # was higher than
that obtained over the whole experiment. Figure 7
shows a scatter diagram of these cases: the abscissa
represents the value of f obtained over the whole
experiment, and the ordinate represents the value of f§
obtained from the block-by-block analysis. On average,
the short-term estimate of § was about 25% higher
than the long-term estimate. As would be expected,
the data sets yielding the largest increase in f also
showed the greatest scatter in x across the trials of the
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Fig. 6. Analysis of the short-term response variability for a
complex cell from a cat. The spatial frequency was
2.2c¢/deg and the temporal frequency was 4 Hz. (A) The
probabilities based on all 10 blocks (100 trials) of the ex-
periment. Two fitted versions of equation (1) are shown:
the shallower curve represents a single fit to the whole data
set; the steeper curve represents the mean of the curves
fitted as described in the text to each of the 10 sets of trials.
(B) The probabilities for four of the 10 blocks considered
separately. The data sets shown were fit by values of « of
0.054, 0.076, 0.127 and 0.163 (squares, circles, triangles and
crosses, respectively); these include the lowest and highest
values obtained in the 10 blocks of the experiment. Each
point represents a probability estimate based on ten trials
at each contrast. Points at either end of each curve whose
values are asymptotically stable have been omitted for
clarity.

experiment. For different neurons, the scatter of
values of « ranged from 1.5 to | to over 3 to 1. We
conclude that some slow fluctuation contributed sig-
nificantly to our estimates of ff, and that the instan-
taneous value of f was in fact somewhat larger than
our estimates.

DISCUSSION

In this paper we have examined the variability of
response to visual stimuli of neurons in the striate
cortex. By constructing “psychometric functions™ for
individual neurons and using analyses derived from
signal detection theory, we have tried to frame our
data in a manner as similar to common psychophysi-
cal practice as we could. While the data could also
provide a basis for a formal statistical model of the
processes underlying the response variability, our pre-
liminary attempts in this direction have been unsuc-
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cessful. Simple Poisson or renewal statistics are inad-
equate to account for the data for several reasons.
First, the ratio of response variance to mean response
is typically greater than one. Second, the slopes of the
probability functions are invariably greater than |
Fig. 5b); moreover, these slopes do not increase with
increases in criterion. Two-stage models (cf. Smith
and Smith, 1965) show some promise in accounting
for these observations, but are still inadequate.

Physiological and psychophysical variability

Our data allow us to examine the relationship
between the activity of single cortical neurons and the
behavior of human and animal observers in psycho-
physical situations. To do this we make several
assumptions.

One important assumption is that the performance
of neurons in anesthetized animals may usefully be
compared with that of alert observers. It is generally
believed that both neural sensitivity and response
variability are affected by general anesthesia. Respon-
siveness has been reported to be depressed by sleep or
anesthesia for neurons in the lateral geniculate nu-
cleus (Maffei and Rizzolatti, 1965; Coenen and Ven-
drik, 1972) and visual cortex (Ikeda and Wright, 1974;
Livingstone and Hubel, 1981). Anecdotal evidence
(e.g. Livingstone and Hubel. 1981) also suggests that
the statistical character of activity may also be
changed, but the quantitative analyses that are avail-
able for the spontaneous activity of neurons in cer-
ebral cortex suggest that this effect is slight (Noda
and Adey, 1970, 1973; Webb, 1976). We are aware of
no data on the variability of visually-driven responses
in awake animals, and so we tentatively assume that
the instantaneous statistics of neuronal discharge are
not grossly altered by anesthesia, even though sensi-
tivity may be reduced. It is also uncertain whether the
slow changes in responsiveness we observe are idio-
syncratic to anesthetized animals. Periodic sensitivity
fluctuations have been reported for alert human ob-
servers (Semenoff, 1941 ; Lee, Finch and Pounds, 1945),
and the period and time-course of these fluctuations

Short- term B

1 | | |
I 2 4 8
Long- term 8

Fig. 7. A scatter diagram of the values of # obtained from
long-term (abscissa) and short-term (ordinate) analyses of
data for 18 neurons.
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are comparable to those we observed in neurons (Figs
6 and 7; Tolhurst et al., 1981). It may therefore be
reasonable to suppose that the drifts in neuronal re-
sponsiveness reflect a normal rather than a pathologi-
cal process.

A second assumption is that all variability impor-
tantly affecting psychophysical responses occurs at or
before the level of the striate cortex. While this rather
sweeping assumption might at first seem implausible,
it is worth noting that many of the spatial and tem-
poral characteristics of mechanisms thought to
mediate contrast detection and discrimination are
very similar to the observed spatial and temporal
characteristics of visual cortical neurons (see Robson,
1980, for a review). If it is the properties of neural
mechanisms like those found in visual cortex that
limit visual detection and discrimination performance,
then it does not seem unreasonable to suppose that
cortical variability should reflect psychophysical
variability in these tasks.

Contrast sensitivity

The contrast required to elicit a reliable discharge
from any but the most sensitive neurons we observed
is probably higher than the contrast threshold of a
whole cat or monkey. Unfortunately, the magnitude
of the discrepancy is difficult to assess. First, most
behavioral studies have used displays of rather low
luminance, and luminance importantly affects the
contrast sensitivity of both neurons (Hess and Lilly-
white, 1980) and cats (Pasternak and Merigan, 1981).
Second, as discussed above, anesthesia would be
expected to depress the sensitivity of our sample of
neurons to some degree. Third, while all the neurons
in our sample had receptive fields relatively close to
the visual axis, contrast sensitivity falls rapidly (at
least in man) as stimuli are presented further into the
retinal periphery (Robson and Graham, 1981).
Finally, the estimates of x we obtained depend slightly
on our (essentially arbitrary) choice of sampling inter-
val. Shorter sampling intervals would increase o,
while longer ones would decrease it. There is no
objective basis for choosing any particular interval,
since we have no way of knowing the interval over
which whole observers monitor neural activity when
making threshold judgements.

Assuming that there is a genuine sensitivity differ-
ence between our neurons and whole animals, the dis-
crepancy would be automatically resolved if more
than one neuron were capable of responding to the
low contrast stimulus, and if the chance that any par-
ticular neuron would respond were independent of
the chance that any other neuron would respond. The
probability of overall response at any contrast would
then be given by

P=1-[10-p G

where p; gives the detection probability for each
neuron. A property of the Weibull formulation for the

psychometric function [equation (1)] is that under
probability summation with constant f§, the psycho-
metric function does not change shape when plotted
on a log contrast axis: f remains constant and = de-
creases by an amount given for n identical neurons by

o = M (4)

where «, is the overall threshold and =« is the
threshold of each neuron. This is illustrated in Fig. 8a,
which shows a psychometric function of the form of
equation (1) (with f = 2), and its transformations
under probability summation with values of n of 2, 4,
8 and 16. For this choice of f, the value of z, is
reduced by /2 for each doubling of the number of
neurons available. If # were higher, the change in o,
would be correspondingly less.

Psychometric function slope

Our estimates of the slope constant f§ (Fig. 5b) had
a mean of 1.84, and ranged from 1.2 to 4.7. This range
is rather lower than that obtained from human ob-
servers In psychophysical experiments: there, values
of B usually fall between 3 and 5 (Quick, 1974; Wat-
son, 1979:; Nachmias, 1981). Well-trained monkeys
also yield psychometric functions whose slopes fall in
this range. W. H. Merigan of the University of
Rochester and R. Harwerth of the University of Texas
Medical Center made some of their psychometric
function data for macaque monkeys available to us.
Fitting equation (1) with the same procedure that we
used for the neurophysiological data gave estimates of
f between 2.4 and 5.7; the logarithmic mean of 11
slopes for monkey psychometric functions was 4.2.
Even if we accept that the short-term estimates of f§
shown in Figs 6 and 7 represent an appropriate psy-
chophysical comparison, our physiological estimates
of ff do not approach these ranges. Cats typically pro-
duce psychometric functions of shallower slope: we fit
equation (1) to a collection of published psychometric
functions for cats (Bisti and Maffei, 1974; Pasternak
and Merigan, 1981}+—§ lay between 1.2 and 3.2. with a
mean of 2.0 for these data. Cats are, however, notor-
iously difficult animals to train effectively, and it is
possible that the shallow slopes of their measured
psychometric functions are in part due to poor atten-
tion by the animal observers in the testing situation.
We observed no systematic difference between the
values of f for neurons from cats and monkeys (Fig.
5). We conclude that the slopes of “psychometric
functions™ measured for single cortical neurons are in
general shallower than the slopes of psychometric
functions measured in whole human and animal ob-
servers, and thus reject the notion that individual cor-
tical neurons are as reliable in their performance as
alert observers.

This discrepancy between the values of fi for single
neurons and whole observers could, however, be
resolved if an observer failed to respond if only a
single neuron from the available pool were active
alone. If, instead, detection were possible only when
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several neurons were active together, and the likeli-
hood of their activity was again independent, the
overall probability of detecting a particular contrast
would be given by “probability multiplication™. The
predicted detection probabilities here have the form

P= l__lp‘-. (5)

While the Weibull function does not retain its analy-
tic form under this manipulation, its shape is not
markedly altered. Figure 8b illustrates the same
psychometric function as Fig. 8a, and its transform-
ations under probability multiplication with an n of 2,
4, 8 and 16. If equation (1) is fitted to these curves, the
resulting f§ rises rapidly with n, becoming 3.0 for an n
of 2, 4.1 forannof4, 5.1 for an nof 8 and 6.0 for an n
of 16. If § is intially higher, the rise is correspondingly
more rapid. The increase in f§ is of course obtained at
the expense of an increase in 2 (i.e. a decrease in sensi-
tivity), but this increase is not dramatic:  is elevated
by about 50%, for an n of 5, and by a factor of 2 for an
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Fig. 8. Two simple models of the way in which signals
from single neurons might be combined to yield “overall™
psychometric functions. (A) “Probability summation™. The
overall response occurs if any of the neurons respond. The
rightmost function represents the modelled psychometric
function for one neuron. It is equation (1) with « = 0.1,
f =2 v=0andd = L The four functions to the left rep-
resent (in right-to-left sequence) computed psychometric
functions for combinations of 2, 4, 8§ and 16 neurons. (B)
“probability multiplication”. The overall response occurs
only if all neurons respond. The leftmost function is the
same model function as in Fig. 8a. The four functions to
the right represent (in left-to-right sequence) psychometric
functions for combinations of 2, 4, 8 and 16 neurons.
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n of 16. But this increase in « could easily be over-
come by probability summation, which in combi-
nation with probability multiplication could certainly
reconcile our observations on single neurons with the
performance of human and monkey observers.

These two combinatorial mechanisms for lowering
threshold and for increasing the slope of the psycho-
metric function beyond the values encountered in
single neurons rely on an important assumption: the
activity of a neuron on a particular trial is unrelated
to the activity of other neurons in the available pool.
Toyama et al. (1981a, b) have recently shown that the
discharges of pairs of neurons in the cat’s visual cor-
tex can be markedly correlated, especially when they
are recorded within 100 to 200 um of one another. If
the activity of the neurons were correlated to some
degree, a larger pool of neurons would have to be
available to produce the same lowering of threshold,
and more neurons would have to be active simul-
taneously to produce the same steepening of the
psychometric function at those shown in Fig. 8,

Neural substrate

We may conclude that, given the assumptions dis-
cussed above, psychophysical detection of a reliability
similar to that shown by human and macaque ob-
servers could be mediated by combining the signals
from a small number (between 2 and 8) of cortical
neurons having properties like those reported here.
The requisite contrast sensitivity would result from
probability summation over several such small groups
of neurons. While this number seems minute when
compared with the number of visual cortical neurons
available, a brief reflection makes it seem less start-
ling. Most of the cortical neurons whose receptive
fields include a particular patch of the visual field are
selective for a number of visual stimulus dimensions,
including orientation, spatial frequency, direction of
movement, color, binocular disparity and eye domin-
ance. We may suppose that among these neurons
there is a sufficient variety of combinations of stimu-
lus preference that any particular combination is
closely approached. If this is so, then relatively few
neurons can be available whose preferences precisely
match any given stimulus. It is thus not implausible
that a mere handful of visual cortical neurons
would be involved in detecting any particular visual
stimulus.
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