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Abstract Early in visual processing neurons with small receptive fields can only 
signal the component of motion perpendicular to the orientation of the contour that 
passes through them (the “aperture problem”). A moving visual pattern with differ-
ently oriented contours can thus elicit neuronal responses that convey conflicting 
motion cues. To recover the true direction of motion of such a pattern, later visual 
areas must integrate the different motion cues over space and time. There is exten-
sive evidence which suggests that this integration is not instantaneous – instead 
it occurs over time and causes profound changes in the perception of direction of 
motion of some complex moving patterns. To account for such temporal dynamics, 
previous studies have focused on a two-pathway model of motion perception: a 
fast pathway to account for the early percept, and a slow one to account for the 
late percept.

Neurons in macaque area MT are selective for the direction of motion of an 
object, and their responses appear to be connected directly to the perception of 
complex motion stimuli in the natural environment. In this chapter, we will discuss 
neurophysiological data from MT neurons which illustrate how the process of 
motion perception occurs dynamically. The responses of individual neurons in 
MT appear to reflect the process by which the primate visual system produces 
an initial estimate of motion direction and then refines it over time. We will 
argue that MT neuronal responses are consistent with a single pathway model of 
motion perception in which temporal dynamics emerge due to two factors: 
the contrast of elements in the pattern and the time required for the pattern 
computation.
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3.1  Introduction

In the natural world, our visual experience is not static. Our eyes scan rapidly over 
the scene before us, fixing on a position for a few hundred milliseconds at a time 
before moving to the next location. Even within that short fixation, the image on our 
retina is rarely still – our own bodies and objects in the world around us are in nearly 
constant motion. Our perception of motion is similarly dynamic, changing over time 
on a scale of tens to hundreds of milliseconds. Nonetheless, most studies of visual 
cortex have measured the mean activity of neurons over a period of seconds. In recent 
years, however, the temporal dynamics of neural response in visual cortex have 
become subject to increased scrutiny. Perhaps not surprisingly, a number of recent 
studies have shown extensive changes in the response of visual cortical neurons over 
time. These dynamics appear to reflect the time course of multiple excitatory and 
suppressive influences which combine to produce a neuron’s response. Comparison 
of the speed with which our psychophysical performance and physiological response 
unfold has proved to be an effective tool in understanding motion perception.

3.1.1  Temporal Dynamics in Primary Visual Cortex

Investigation of even the earliest stage of cortical visual processing has revealed 
significant dynamics in neuronal response. This includes modulation by stimuli 
which are confined to the receptive field and by those which extend well outside. 
A consideration of these findings in primary visual cortex (V1) is helpful in under-
standing the mechanisms of motion perception and the nature of perceptual effects. 
V1 neurons are tuned to the orientation of a stimulus within their receptive field 
(RF), and exhibit substantial time-dependent changes in that tuning (Ringach et al. 
1997; Ringach et al. 2003; Smith et al. 2006). For small stimuli confined to the 
receptive field these effects tend to be extremely fast, often occurring with latency 
equal to or less than the excitatory response onset (Smith et al. 2006). The speed of 
such phenomena makes it likely that they are generated either by modification of 
the feedforward input to V1 neurons or very fast computations within the local 
circuitry in a cortical column.

Stimuli which extend beyond the receptive field, into the non-classical surround, 
also exert considerable influence on the responses of V1 neurons. In V1, neurons are 
modulated by a number of oriented stimuli which extend outside the receptive field. 
Various studies have shown that this effect arrives with some delay after the onset 
response for a number of stimuli, including fields of bars (Knierim and Van Essen 
1992), oriented texture (Lamme 1995; Zipser et al. 1996; Lee et al. 1998), and sinu-
soidal gratings (Bair et al. 2003; Smith et al. 2006). The timing of surround suppres-
sion is one factor that has led most authors to conclude that it originates via feedback 
to V1 from extrastriate cortex. Angelucci et al. (2002), drawing on data from physi-
ology and neuroanatomy, argued that the spatial scale of surround suppression is 
well matched to that of feedback circuits from extrastriate cortex to V1.
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In searching for neural correlates of perceptual effects in V1, several studies 
have revealed the presence of dynamics in the response. These effects occur for a 
number of contextual stimuli presented to an awake animal performing a behavioral 
task, including curve-tracing (Roelfsema et al. 1998), figure-ground stimuli 
(Lamme 1995; Lee et al. 1998), illusory contours (Lee and Nguyen 2001), and 
shape-from-shading (Lee et al. 2002; Smith et al. 2007). The modulation of neu-
ronal response in these paradigms occurs with greater delay than that found for 
extended iso-orientation stimuli. However, the pattern of neuronal response is similar: 
it remains normal for some time after the onset, and then after a delay the modulation 
due to the stimulus context becomes evident.

Finally, there is an additional factor which affects the dynamics of visual pro-
cessing: the contrast of the stimulus. Specifically, low contrast targets are processed 
slower than high contrast ones (Albrecht 1995; Carandini et al. 1997; Gawne et al. 
1996). This effect is distinct from observations of contextual modulation, in that the 
latency and magnitude of a neuron’s response changes gradually with contrast, and 
this effect occurs for stimuli confined to the receptive field. Furthermore, the 
change in latency with contrast can be quite large, spanning up to 100 ms between 
the lowest and highest contrast stimuli.

3.1.2  Temporal Dynamics in Motion Perception

The relatively small receptive fields and proportion of direction-selective neurons 
in area V1 make it poorly suited for encoding complex moving stimuli. However, 
area MT of macaque visual cortex contains a high proportion of neurons which are 
selective for the direction of stimulus motion (Albright 1984; Movshon et al. 1985; 
Van Essen et al. 1981; Zeki 1974). Neurons in area MT have also been shown to 
play an important role in visual motion perception (Britten et al. 1992; Newsome 
and Paré 1988; Salzman and Newsome 1994). A significant portion of MT neurons 
encode the true velocity of a stimulus (Perrone and Thiele 2001; Priebe et al. 2003), 
whereas V1 neurons have independent spatial and temporary frequency responses 
(Tolhurst and Movshon 1975; Holub and Morton-Gibson 1981; Friend and Baker 
1993). Similarly, many MT neurons are capable of decoding the true direction of 
motion of complex visual patterns such as a plaid stimulus (Fig. 3.2a), composed 
of two sinusoidal gratings with different orientations (Movshon et al. 1985; 
Rodman and Albright 1989), a behavior that is not present in V1 neurons that 
project to MT (Movshon and Newsome 1996). The responses of MT neurons to 
plaid patterns also vary in a manner consistent with the perceptual phenomenon of 
motion coherence (Stoner and Albright 1992). However, even though MT neurons 
have rather precise temporal response properties (Bair et al. 1994), the true direc-
tion of pattern motion is not represented in their initial responses. Instead, the 
encoding of pattern motion direction lags behind the initial estimate of direction by 
50–75 ms (Pack and Born 2001; Smith et al. 2005). Taken together, these findings 
indicate that the detection of complex motion in the visual world is a property 
which emerges through computation in circuits within area MT.
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The dynamics of neural response in area MT are paralleled by psychophysical 
results in humans. A number of studies have reported that manipulating the com-
ponents of a complex moving stimulus affects the perception of human observers. 
When the speed of the component gratings of a plaid stimulus is unequal, observers 
perceive mostly component motion in brief presentations and pattern motion only 
after a delay (Yo and Wilson 1992). Similarly, short-latency ocular following 
responses in humans initially track the motion of a component grating, but later 
reflect the motion of the pattern (Masson and Castet 2002). A related effect occurs 
when the aspect ratio of an aperture around a grating stimulus is elongated – 
observers first track the grating motion and over time are biased toward the aper-
ture’s long axis (Masson et al. 2000). Patterns composed of line segments have a 
similar effect on motion perception. With an array of line segments moving at vari-
ous angles relative to their orientation, a pair of studies (Castet et al. 1993; 
Lorenceau et al. 1993) reported that observers were biased by the orientation of the 
line segments in short observation windows (100–200 ms), but over time they rec-
ognize the true motion direction. The initiation of smooth-pursuit eye movements 
in humans shows a similar bias for stimuli composed of line segments (Masson and 
Stone 2002), diamonds (Wallace et al. 2005), and a combination of first and sec-
ond-order motion cues (Lindner and Ilg 2000). The common finding in all of these 
studies is that observers tend to show an initial bias toward the orientation of com-
ponents of a pattern, but over the span of 100 ms or more, tend to perceive the true 
motion direction. The dynamics evident in these results have led to a number of 
models of how the visual system computes pattern motion. We will consider each 
of these models in turn.

3.2  Models of Pattern Motion Detection

Consideration of the data from physiological and psychophysical studies has 
revealed that motion information is processed in at least two stages. The first, likely 
located in primary visual cortex (V1), extracts basic information (such as orienta-
tion) about simple moving patterns from a local region of space. The second stage 
computes information about the true direction and speed of complex moving pat-
terns by combining inputs from the first stage. Models which strive to explain 
motion perception typically reflect this two-stage processing in their instantiation.

One such model linearly combines the signals from nonlinear V1 subunits 
(Heeger et al. 1996; Simoncelli and Heeger 1998), a so-called linear–nonlinear 
(“L–N”) model. This simple model is able to capture many of the properties of 
direction-selective neurons in macaque area MT, but cannot adequately account for 
pattern direction selectivity (Simoncelli and Heeger 1998; Mante 2000). A modifi-
cation of this basic structure, a cascaded L–N model in which the second stage acts 
on signals from a population of direction-selective units, can accurately decode the 
motion of complex patterns while maintaining fidelity to the known cortical archi-
tecture (Rust et al. 2006). In the cascade model (Fig. 3.1), a stimulus passes through 
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a population of direction-selective V1 neurons and is divisively normalized. The 
outputs of these model cells feed into a MT neuron which computes their linear 
weighted sum. The result is converted into firing rate by a nonlinear function, simu-
lating the effect of spike threshold and any additional nonlinear effects which occur 
post-summation. In the framework of this model, pattern selectivity arises from the 
recurrent circuit which combines V1 inputs to produce MT neuronal responses. If 
such a network takes time to stabilize, the selectivity of individual neurons would 
change over time – first reflecting the simple direction selectivity of input neurons, 
and later evolving pattern selective responses. One aspect of the cascade model, an 
orientation-tuned normalization mechanism, may reflect suppressive input from 
outside the classical receptive field of V1 neurons. This surround suppression is 
known to occur with some delay after response onset (Bair et al. 2003; Smith et al. 
2006), and may lead to the delay in pattern motion computation observed in MT 
neurons (Smith et al. 2005).

Another class of model, which separately analyzes the contour and terminator 
information present in a scene (Shimojo et al. 1989; Grossberg and Mingolla 1993; 
Lorenceau et al. 1993), has also been proposed as a means of decoding motion in 
complex patterns. A version of this approach uses two parallel pathways (Fourier 
and non-Fourier), the outputs of which are combined to compute pattern motion 
(Wilson et al. 1992; Wilson and Kim 1994; Löffler and Orbach 1999). However, 
the cortical pathways which underlie this model are unknown, and studies of the 
proposed candidate areas (V2 and V3) do not suggest an important contribution to 
pattern selectivity (Gegenfurtner et al. 1997; Levitt et al. 1994).

A third approach proposes that neural networks separately process the ambigu-
ous and unambiguous portions of the scene, with the unambiguous locations “fill-
ing in” over time (Hildreth 1984; Beutter and Stone 1998). Neural models using 
recurrent (Lidén and Pack 1999) or feedback (Chey et al. 1997) circuits to decode 
pattern motion have implemented this proposal. If such a model is tuned so that 
early responses reflect feedforward signals, and later responses are shaped by 

Fig. 3.1 The cascade model
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recurrent or feedback connections, then the dynamics of pattern motion perception 
can be replicated.

These three classes of model may provide us with some insight into the dynam-
ics of pattern motion computation. By adjusting the latency or dynamics of the two 
stages or pathways in each model, it is possible to generate a pattern motion detec-
tion system with dynamics which are similar to those shown in experimental studies. 
It is clear that further exploration of neurophysiological responses is necessary to 
distinguish the neural mechanisms clearly. We will now describe one series of 
experiments which aims to explore these mechanisms, and explain the neural basis 
for our changing perception of complex moving patterns over time.

3.3  Responses of MT Neurons to Plaids

Area MT in the extrastriate cortex of the macaque contains a high proportion of 
directionally selective neurons (Albright 1984; Movshon et al. 1985; Van Essen 
et al. 1981; Zeki 1974) and plays an important role in the perception of moving 
patterns (Britten et al. 1992; Newsome and Paré 1988). When presented with a 
drifting sinusoidal grating stimulus, the vast majority of MT neurons respond in a 
direction selective manner (Fig. 3.2b, left). Plaid stimuli, obtained by adding two 
sinusoidal gratings with different orientations (Fig. 3.2a, right), have been used to 
demonstrate an important property of some MT neurons which is not present at 
earlier stages of motion processing. When presented with a plaid stimulus, a direc-
tionally selective neuron might respond only to the direction of motion of the com-
ponent gratings (solid line in Fig. 3.2b, right plot), or it might respond to the true 
direction of motion of the plaid stimulus (dashed line in Fig. 3.2b, right plot). The 
former behavior is termed component direction selectivity (CDS) and the latter pat-
tern direction selectivity (PDS).

Fig. 3.2 Pattern and component selectivity (modified from Smith et al. 2005)
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The classification of a neuron as CDS or PDS is made by comparing its actual 
tuning curve to a plaid, with two predictions (Fig. 3.2b, right plot) made based on 
its direction tuning to a single grating. In a population of MT neurons (Fig. 3.2c), 
25% were classified as PDS (white circles) and 41% were classified as CDS (gray 
circles), with the remainder unclassed (Smith et al. 2005). The solid lines indicate 
significance boundaries for the classification of neurons as PDS or CDS. V1 neu-
rons signal only the direction of motion of the component gratings (CDS) and not 
the true pattern direction (Movshon et al. 1985; Movshon and Newsome 1996). 
This is also true of V1 neurons which project directly to MT (Movshon and 
Newsome 1996), which is consistent with the idea that pattern motion is computed 
by circuits within MT.

3.4  Dynamics of MT Neuronal Response

There is evidence from both physiology and psychophysics that the neural repre-
sentation of complex patterns evolves over tens to hundreds of milliseconds (Pack 
and Born 2001; Kooi et al. 1992; Lorenceau et al. 1993; Yo and Wilson 1992; 
Masson and Castet 2002). Since MT neurons are known to play a role in the percep-
tion of complex moving patterns, and human observers of plaid stimuli appear to 
refine their estimate of the direction over time, MT is a natural location in which to 
look for dynamics of response to such patterns.

Figure 3.3a–d contain scatter plots of pattern and component correlation, 
computed in the same way as the one shown in Fig. 3.2c. Each panel shows data 
taken from a small window of time cut out from the full stimulus period. Each 
point represents one neuron, and the points are colored to indicate the selectivity 
of that neuron over the entire stimulus period (CDS neurons are gray circles, PDS 
neurons are white circles, and unclassed neurons are black circles). In the top 
panel (Fig. 3.3a), only the period from 30 to 50 ms after stimulus onset is 
included. In this response window, before the onset latency for many MT neurons, 
there is little or no significant tuning for this measure. In Fig. 3.3, the response 
window in each row includes an additional 20 ms of data. CDS selective behavior 
is evident (as indicated by the gray circles that have already crossed the 
significance line) only 70 ms after stimulus onset (Fig. 3.3b). PDS neurons, 
however, take longer to show their characteristic behavior. Some neurons reach 
significance by 90 ms after stimulus onset (Fig. 3.3c), while many others take 
longer - up to 110 ms (Fig. 3.3d). At this time, 110 ms after stimulus onset, most 
of the CDS neurons but less than half of the PDS neurons have responded in a 
way consistent with their final tuning. In the right column (Fig. 3.3e–h), the same 
analysis is shown using a sliding window. Comparison of the rows reveals that 
this phenomenon is not due to the reduced noise that comes from averaging over 
a longer response window. Instead, these scatter plots demonstrate that PDS 
neurons lag behind CDS neurons in the time it takes them to show their 
characteristic response.
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Fig. 3.3 Evolution of pattern and component selectivity for individual neurons



633 Dynamics of Pattern Motion Computation

Figure 3.4a shows the evolution of PDS and CDS behavior for the population 
averages of the three classes of neurons from Fig. 3.2c (Smith et al. 2005). For cells 
which are eventually labeled as PDS, CDS, or unclassed (based on their response 
over the full stimulation period), the three lines show the evolution of their pattern 
and component correlation values over time, starting with the stimulus onset (time 
after stimulus onset is indicated with the numbers and connected lines). The CDS 
neurons (dashed gray line) cross the significance threshold much earlier in the 

Fig. 3.4 Evolution of pattern and component selectivity in the population average response 
(modified from Smith et al. 2005)
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response than the PDS neurons (solid gray line). The difference between the pattern 
and component indices is shown in Fig. 3.4b, to produce an index of “paternness” 
for PDS cells (solid gray line) and “componentness” for CDS cells (dashed gray 
line). When examining the times at which these two populations cross the signifi-
cance threshold (horizontal black line), there is a difference of approximately 
60–70 ms between the average CDS cell and the average PDS cell.

CDS neurons therefore develop their characteristic response tuning much earlier 
(60–65 ms) than PDS neurons (125–130 ms), a trend which is evident in the popu-
lation and also in the responses of individual neurons (Smith et al. 2005). This 
additional time for pattern direction selectivity to become manifest is considerable, 
and suggests that circuits more complex than a simple feed-forward network are 
involved in the computation of pattern motion.

3.5  Relationship Between Bar and Plaid Stimuli

Bar textures moving obliquely to their orientation change apparent direction at low 
speeds and contrasts. Initially they seem to be moving perpendicular to the orienta-
tion of the bar, and over the course of 200–300 ms a human observer’s perception 
tends to shift to the true direction of motion (Castet et al. 1993; Lorenceau et al. 
1993). Neurons in macaque area MT exhibit behavior which is analogous – their 
initial response is based on motion perpendicular to the bar orientation, and their 
preference later shifts toward the direction in which the terminators move (Pack and 
Born 2001). These results are consistent with models in which the contours and 
terminators in a scene are analyzed separately, on different timescales – a rapid 
signal related to contours or edges and a slower signal related to terminators 
(Shimojo et al. 1989; Grossberg and Mingolla 1993; Lorenceau et al. 1993; Wilson 
et al. 1992; Wilson and Kim 1994; Löffler and Orbach 1999).

These models would be able to produce results similar to physiological data 
through a transition between the two motion signals. If the terminator-related 
motion signal is processed separately and more slowly than signals related to con-
tours, it is possible to explain physiological and psychophysical observations of 
dynamic changes in motion perception. There is an alternative interpretation, how-
ever, which does not rely on a separate pathway for processing terminator motion. 
Instead, it may be that contours and terminators only appear to be processed sepa-
rately due to the well known effect of contrast on visual processing: lower contrast 
targets are processed slower than high contrast ones (Albrecht 1995; Carandini 
et al. 1997; Gawne et al. 1996). In order to assess this proposal, we first have to 
consider a frequency analysis of the bar texture stimuli.

Figure 3.5a shows standard line, dot and bar stimuli in the top row. The motion 
of the first stimulus (left), a series of lines behind an aperture (a rectangular 
grating), is ambiguous. Motion of this stimulus in any direction is interpreted by an 
observer (and by MT neurons) as being perpendicular to the orientation of the 
lines. When there is motion of the second stimulus (middle) - a field of dots - it is 
unambiguous. The third stimulus, a bar texture (right), contains elements common 
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to both lines and dots. It is this stimulus which elicits a dynamically changing 
perception in observers (Castet et al. 1993; Lorenceau et al. 1993) and response in 
MT neurons (Pack and Born 2001).

The Fourier Transform decomposes any image into a sum of sinusoids of various 
amplitudes, spatial frequencies, and orientations. In the case of lines, dots, and bars, 
the Fourier Transform can provide a concrete basis for understanding the common-
alities and differences between the stimuli. The first stimulus (left), a rectangular 
grating, has a Fourier amplitude spectrum composed of a sum of sinusoidal gratings 
of the same orientation but a range of spatial frequencies. In contrast, the dots 
(middle) have a broad amplitude spectrum, consisting of a sum of sinusoidal grat-
ings across a wide range of orientations and spatial frequencies. For both the rect-
angular grating and dots, however, all the components have similar amplitude 
(contrast). Although the bar texture (right) may at first appear to consist of contours 
of only one orientation, examination of its Fourier amplitude spectrum reveals that 
this is not the case. Although it shares features of the lines (a dominant axis of 
power at one orientation) and dots (broad power), the bar texture’s spectrum differs 
in an important way – the amplitude (contrast) of the components depends on their 
orientation. Components parallel to the orientation of the bar texture have the 
highest amplitude, while those at oblique orientations have lower contrast. Changing 
the contrast of these oblique components has an interesting effect – a decrease in 
amplitude lengthens the bars until they connect and form continuous lines, while 
increasing shortens the bar length until they approximate dots.

The bottom row in Fig. 3.5b contains filtered analogs of the corresponding 
stimuli in the top row. These filtered textures contain only the fundamental spatial 
frequency components of the original images in Fig. 3.5a. The line stimulus can 
be approximated by a single grating (left) and the dot stimulus by a type of plaid 
composed of four gratings of equal contrast (middle). The filtered bar texture 

Fig. 3.5 Grating and bar stimuli
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(right) is produced by combining the same four constituent gratings but with 
unequal contrast: a high contrast grating parallel to the bar texture orientation, and 
three low contrast gratings at +45°, +90° and +135° relative to the high contrast 
grating. The filtered bar image has no obvious terminators, but nonetheless retains 
the essential structure of the original bar image. Thus, it is a good stimulus with 
which to test our hypothesis about the role of contrast in processing bar textures.

3.6  Response to Filtered Bar Textures

If the filtered bar texture shown on the bottom right of Fig. 3.5 is indeed a good 
approximation to the corresponding bar texture directly above it, then MT neurons 
should have dynamically evolving responses to this stimulus. Figure 3.6a shows 
the temporal evolution of direction selectivity in a population of MT neurons to 

Fig. 3.6 Dynamics of direction selectivity to filtered textures
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the three filtered stimuli described above (Majaj 2006). In order to compute the 
population average, the responses are adjusted so that both the direction prefer-
ence and onset latency are aligned. When all four components of the filtered 
stimuli are of equal contrast, the resulting filtered dot texture appears to move to 
the right, and the neuronal population exhibits consistent direction tuning (thick 
black line). With a single component (a grating), the population of neurons 
responds prefers the direction orthogonal to the orientation (thin black line). These 
two results are expected based on previous physiological studies of MT and psy-
chophysical studies of human motion perception. For the filtered bar texture, pos-
sessing components of different contrast, the direction preference does not remain 
constant over time. Instead, there is a distinct change in the direction preference 
over a period extending to 120 ms after stimulus onset (medium black line). The 
early response resembles the direction preference to a single grating; it changes 
over the next 50 ms, and by 120 ms it stabilizes to resemble the direction prefer-
ence to the filtered dots.

The change in direction selectivity for filtered bar textures resembles the 
 psychophysical findings of Lorenceau et al. (1993) and physiological results of 
Pack and Born (2001). Figure 3.6b shows the evolution of direction selectivity for 
filtered bar textures (middle line from Fig. 3.6a) compared with that for unfil-
tered bar textures (data replotted from Pack and Born 2001). The dynamics 
observed in response to the filtered bar texture are remarkably similar to those 
obtained in response to the texture itself, even though the filtered texture is 
composed of four sinusoidal gratings and contains no obvious terminators. This 
suggests that a common mechanism might underlie the dynamics in response 
to these two stimuli.

3.7  Effects of Contrast on Response Dynamics

The similarity between these two results might be explained by a well known 
phenomenon in vision. The contrast of a visual stimulus has a powerful effect on 
the speed of visual processing: neurons respond to low contrast stimuli with a 
long latency, but high contrast stimuli are processed with a short latency (Albrecht 
1995; Carandini et al. 1997; Gawne et al. 1996). The filtered bar texture stimulus 
is composed of gratings with different contrast – a high contrast grating parallel 
to the bar texture orientation, and three low contrast oblique gratings. If the dif-
ferent components of the filtered bar texture are processed with different laten-
cies, then the response to the combined stimulus might be expected to exhibit 
dynamics.

Stimulus contrast affects response magnitude and latency in MT neurons. 
Figure 3.7 shows this effect for the responses of a single MT neuron. Each row of 
the figure shows a raster plot of responses to repeated presentations of a drifting 
grating stimulus in the preferred direction, ranging from 100% contrast (top row) 
to 10% contrast (bottom row). A histogram, binned at 1 ms precision, of the firing 
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rate over time is shown with a gray line in each row. The response latency of this 
neuron, measured from the response onset or the time to reach peak firing rate, 
grows as contrast decreases (from the top to bottom rows). In this example neuron, 
the onset latency changes from approximately 65 to 110 ms as the contrast 
decreases. The trend evident in the responses shown for the single neuron in 
Fig. 3.7 is also observed in a larger population of MT neurons (Thiele and Hoffman 
1996; Thiele et al. 1999; Majaj 2006). A delay of 100 ms is typical between onset 
latency at low and high contrast.

In the filtered bar texture, the component gratings may be processed by the 
visual system with different latencies due to their different contrasts. The highest 
contrast component, parallel to the orientation of the comparable bar texture, would 
be processed first. The other components - lower in contrast and at oblique angles 
relative to the primary component - would be processed with some delay. As an MT 
neuron integrates the information in all of these components, its direction prefer-
ence will change over time. The early responses will be dominated by the high 
contrast grating, but as the lower contrast oblique gratings are processed the later 
responses will reflect this information.

Fig. 3.7 Effect of contrast on response latency
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3.8  Conclusions

In natural vision, our experience of the world is rich with temporal dynamics. Our 
visual system has evolved to be able to evaluate and interpret this information with 
the speed necessary to make fast judgments based on our perceptual experience. 
Nonetheless, the integration necessary to determine the motion direction of a com-
plex visual pattern is not instantaneous. In this chapter, we have described physio-
logical evidence that neurons in macaque area MT have response dynamics which 
evolve over the first 100–200 ms after a visual stimulus appears. The temporal 
profile and directional selectivity of these responses parallels results from a well 
established psychophysical literature based on experiments in human observers.

A number of models have been proposed to explain the dynamics observed in 
physiological and psychophysical studies. The most common approach has been to 
propose separate pathways for analyzing different visual features (terminators and 
contours) – essentially, parallel one- and two-dimensional motion analysis. Here, 
we have reasoned from data and models that one-dimensional orientation-selective 
mechanisms can account for these experimental observations. This is not to imply 
that two-dimensional features are unimportant for visual processing, but rather that 
a separate pathway for analysis of such features is not necessary to explain dynam-
ics in motion perception. A linear–nonlinear cascade, which incorporates a number 
of physiologically realistic processes into a functional model, is an alternative 
approach which provides a good fit to the neuronal and perceptual data.

3.9 Supplementary materials (CD-ROM)

Movie 1 Field of moving upright bars (file « 3_M1_Bars0.avi ») A field of bars 
moving perpendicular to their orientation (all of the motion cues in the stimulus are 
consistent). Videos 1 & 2 are modeled after the stimuli used by Pack and Born 
(2001).

Movie 2 Field of moving tilted bars (file « 3_M2_Bars45.avi ») Moving bars 
with an orientation of +45˚ relative to the direction of motion. This is the moving 
version of the stimulus shown in the right panel of Fig. 3.5a. In this case, the local 
motion signal along the edges of the bars is in conflict with the true direction of 
motion.

Movie 3 Grating motion (see Fig. 3.5) (file « 3_M3_Filteredlines.avi ») A sin-
gle drifting grating stimulus at +45˚ (Fig. 3.5b, left panel). Because there is only a 
single orientation present in the stimulus, and no access to terminators (the “aper-
ture problem”), the direction of motion is perceived to be perpendicular to the ori-
entation of the grating.

Movie 4 Filtered dot texture (see Fig. 3.5) (file « 3_M4_Filtereddots.avi ») The 
filtered analog of a dot texture, this is a type of plaid stimulus (Fig. 3.5b, middle 
panel) composed of four gratings of equal contrast. The grating orientations are +0˚, 
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+45˚, +90˚ and +135˚ relative to the bar texture shown in Movie 2. The result is a 
filtered dot texture similar to the dot image shown in Fig. 3.5a (middle panel).

Movie 5 Filtered bar texture (see Fig. 3.5) (file « 3_M5_Filteredbars.avi ») 
This filtered bar texture (Fig. 3.5b, right panel) is composed of the same four 
gratings as in Movie 4, but with unequal contrast: a high contrast grating parallel 
to the bar texture orientation, and three low contrast gratings at +45˚, +90˚ and 
+135˚ relative to the high contrast grating.

Movie 6 Filtered bar texture and grating components (file « 3_M6_Texture-
components.avi »). This video shows the filtered bar texture (from Video 5) decomposed 
into its four constituent gratings and then re-assembled.
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