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Synchrony Unbound: Review
A Critical Evaluation
of the Temporal Binding Hypothesis

Singer, 1994). The basis for this argument is that it is
necessary to “tag” each visual neuron to signify the
object to which its activity relates. Each neuron therefore
has to carry two distinct signals, one that indicates how
effective a stimulus is falling on its receptive field, and
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†Howard Hughes Medical Institute and a second that tags it as a member of a particular cell

assembly. To make these signals distinct, von der Mals-Center for Neural Science
New York University burg (1981) proposed that the “effectiveness” signal

would be carried by a conventional rate code, while theNew York, New York 10003
“tag” signal would be created by synchronizing the spike
activity of the neuron with spikes from other neurons inIntroduction
the same assembly. This novel idea has led to a great
deal of experimental work and to several further elabora-In the early stages of visual processing, objects and

scenes are represented by neurons with small visual tions of the original theory.
In this paper, we will articulate our doubts and con-receptive fields. Each neuron provides information about

local features of a scene, but to describe a scene in cerns about this theory and its experimental support. We
consider first whether the theory is an a priori reasonableterms of objects requires that these features be com-

bined. Objects can cover wide areas of visual space and approach to solving the binding problem, and conclude
that it is at best incomplete. We then ask whether spikebe partially occluded by other objects, so the problem

of binding the separate representations of parts into synchrony can plausibly be used as an informational
code, and conclude that there are significant practicalcoherent wholes is not a simple one. This “binding

problem” has received considerable attention. Gestalt and theoretical obstacles both to encoding and to de-
coding information in this way. We then examine thepsychologists articulated a number of principles for

grouping and organizing scene elements (Köhler, 1930; experimental evidence usually adduced to support the
synchrony hypothesis, and conclude that the evidenceKoffka, 1935; Kanisza, 1979), and more recently the re-

lated problem of image segmentation has received a is largely indirect and has no proven relevance to the
issue of binding per se. We will finish by asking whethergood deal of attention in computer vision (see, for exam-

ple, Pal and Pal, 1993, for a review). The binding problem the binding problem is truly of unique difficulty and re-
quires a unique solution, and by considering some strat-is really best considered as a series of related problems,

all of which require the combination of information from egies for solving the binding problem that do not require
the creation of a special neural code.multiple sources. Information must be integrated across

the visual field and combined according to specific attri-
butes. Some of those attributes are pictorial features Addressing the Binding Problem with a Temporal Code
like line orientation, texture, color, simultaneity of ap- The Temporal Binding Hypothesis
pearance, and common motion, but others require more Von der Malsburg (1981) proposed temporal correlation
complex information about such things as 3D shape, to escape a combinatorial problem in neural coding.
lighting, and object surface properties (Gregory, 1970; Theories that propose the creation of “cardinal” cells to
Marr, 1982; Shimojo et al., 1989; Adelson, 1993; Ullman, represent particular combinations of signals from lower-
1996; Adelson, 1999; Kersten, 1999). order neurons are implausible because the number of

All of these levels of representation must be combined combinations to be coded exceeds the number of neu-
to solve the binding problem. A simple example is cari- rons available. In Von der Malsburg’s theory, the activity
catured in Figure 1A. The four arrows are effortlessly of low-order neurons would be combined only when
perceived as separate overlaid objects, but the compu- their spike activity was synchronized to within a few
tations that generate this percept must be informed by milliseconds to create a synchronously active cell as-
notions of occlusion and object continuity and must sembly (Hebb, 1949; Braitenberg, 1978; Abeles, 1991).
remain unconfused by serendipitously shared features Synchronization would be dynamically modulated, so
like orientation and surface color. that a particular cell could belong to one cell assembly

Higher-level vision poses many problems; some, like at one moment and to a second at another; in this way,
visual object recognition, seem at least as difficult to the combinatorial bullet could be dodged and arbitrarily
solve as the binding problem. But, in recent years, von large numbers of states coded with a reasonable num-
der Malsburg and others have advanced the view that ber of neurons.
binding is a special problem and requires a special solu- Although he conceived the “temporal correlation the-
tion (von der Malsburg, 1981, 1985, 1995; von der Mals- ory” to have broad applications to neural computation,
burg and Schneider, 1986; Reitboeck et al., 1987; Wang Von der Malsburg offered the specific problem of figure–
et al., 1990; Grossberg and Somers, 1991; Sporns et al., ground discrimination as a sample case, suggesting that
1991; Neven and Aertsen, 1992; Tononi et al., 1992; spike synchronization would group together the ele-

ments that make up figure and ground (see Lamme and
Spekreijse, 1998, for a test of this particular idea). The‡ To whom correspondence should be addressed (e-mail: movshon@

nyu.edu). most enduring application of this theory has been the
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elaboration of this sample case by Eckhorn et al. (1988),
and by Singer and his colleagues (Gray et al., 1989;
Singer, 1993, 1994, 1999a; Singer and Gray, 1995; Engel
et al., 1997; Roelfsema and Singer, 1998; Herculano-
Houzel et al., 1999), into the “temporal binding hypoth-
esis.” These authors extended von der Malsburg’s ideas
by proposing that the solution of the binding problem
is that populations of cells that represent low-level fea-
tures (for example, neurons in primary visual cortex)
synchronize their activity when they respond to different
elements that are to be linked in the analysis of a scene.
Singer’s laboratory and others have presented support-
ing evidence, discussed in more detail below, that syn-
chronous activity can be observed in these cells and
that it can be modulated by stimulus features related to
binding.
The Structure of the Binding Problem
There seem to be a number of problems with the idea of
binding by a temporal code. Perhaps the most obvious is
that the hypothesis is not a theory about how binding
is computed; it is a theory only of how binding is sig-
naled. The theory proposes that the result of the binding
computation is represented by synchronous neuronal
activity. This begs the question of what algorithms are
actually used to solve the binding problem—how does
the visual system decide which elements are part of
single objects and which belong to different objects?
To segment a complex image is computationally quite
challenging, as is evident from the substantial literature
on the topic in computer vision (e.g., Pal and Pal, 1993).

Image segmentation requires information from multi-
ple sources. Simple features such as collinearity, color,
texture, and common motion, which might easily be
extracted from representations in primary visual cortex,
only begin to define a solution to the problem, and even
these feature-based combination rules must operate
over wider areas of visual space than can plausibly be
processed by neurons in V1. Consider the arrow seg-
mentation cartoon of Figure 1A. Here, the cues of collin-
earity and common color seen by small V1 receptive
fields at locations y and z would lead to an incorrect
binding of contours to objects. Strategies for grouping
in complex cases like the one shown must also takeFigure 1. Feature Binding and Related Problems in Visual Per-

ception account of more highly elaborated representations that
(A) Contours falling in the receptive fields x and y are bound to a are not available in V1, representations that make ex-
common object. The contours falling in y and z are not bound despite plicit such “mid-level” features as the computation of
their collinearity and shared color. The solution to this binding prob- pattern motion from more elementary motion informa-
lem requires sophisticated computation of surface order and border tion, as in Figure 1B (Movshon et al., 1985), or surface
ownership and possibly knowledge about the nature of objects.

computations based on specific characteristic types of(B) The gray cross is moving coherently up and to the right (solid
contour combinations, as in Figure 1C (Adelson, 1993,arrow). Motion sensors whose receptive fields lie at x and y cannot
1999). Full image segmentation probably requires evendetermine that the local displacement of contours is up–right. They

process a component of motion that is either up or right (open higher-level analyses, including the explicit inclusion of
arrows). The local contour motion is ambiguous until these features information from memory about the nature and structure
are bound to a common object. A partial solution to this problem of previously viewed objects and scenes.
has been shown to occur in the extrastriate visual cortex (area MT It is important to distinguish binding object represen-
or V5), where feature motion detectors converge upon neurons with

tations across space from the problem of binding partic-larger receptive fields (after Movshon et al., 1985).
ular feature qualities (e.g., color and orientation) to a(C) The interpretation of brightness at x, y, and z is affected through

binding of x and y to a common plane. Although x and z are physically
identical in their intensity, we see x as similar to y, because they
represent surfaces of the same reflectance that are differently are not selective for conjunctions of features. If the orientation de-
illuminated. The computation leading to this solution is believed to tectors do not signal color, how does the brain associate red with
involve a comparision of intensities at corner junctions (after Adel- horizontal and green with vertical? This problem is thought to be
son, 1993, 1999). solved by storing spatial tags, via attention (see Treisman, 1998),
(D) Binding of different feature types, such as color and orientation, but a more complicated solution may be required for terminators,
poses a problem for the nervous system to the extent that sensors as in z, especially as the gratings are brought into proximity.
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common object at a single spatial location. This latter of the specific mechanisms needed to generate such
feedback-based synchrony.form of binding is commonly discussed in the context of

visual search for feature conjunctions (Treisman, 1996, Binding by Synchrony and “Cardinal Neurons”
Another flaw in the temporal binding hypothesis con-1998), and is likely to have a relatively straightforward

solution because features are naturally assigned spatial cerns the question of which neurons would read the
binding signal, and how. Singer, von der Malsburg, andtags in topographic representations within the visual

cortex. Thus, while this form of the problem is not others have emphasized the point that synchronized
signals would be particularly effective in activating post-solved—we do not know how the brain recognizes con-

junctions—it does not pose the same sort of combinato- synaptic neurons that operate as coincidence detectors.
We will discuss below our doubts about the utility ofrial difficulties as binding across space. For example,

there is no combinatorial explosion if a neural represen- coincidence detection models for cortical neurons, but
suppose for a moment that we grant the existence oftation can encode whether there is a horizontal or verti-

cal contour, or a red or a green one, at a particular these detectors. If there were special detectors config-
ured to detect the coincident activity of particular groupslocation (Figure 1D).

Anatomical Considerations of their input neurons, it is not clear how these would
differ in any important way from the “cardinal” neuronsIt seems that the object binding problem cannot be

solved in primary visual cortex, and that the computa- whose implausibility led to the creation of the temporal
binding hypothesis in the first place. Arguments can betions involved cannot be completed until a fairly high

level in the visual cortical hierarchy. The neurological made that the binding tag is not read by cardinal neurons
but is instead used to modulate the activity of popula-literature supports the idea that binding is a high-level

process. Visual binding deficits are vividly seen in Bal- tions of neurons. But then the utility of synchrony is
again unclear, because the population of output neuronsint’s syndrome, “an acquired disturbance of the ability

to perceive the visual field as a whole, resulting in the (which modulate their firing rate in response to synchro-
nous input) would lack the tags needed to representunpredictable perception and recognition of only parts

of it (simultagnosia)” (Damasio, 1985; Friedman-Hill et which signals should and should not be combined for
further processing. Synchrony is supposed to be specialal., 1995; see also Rafal, 1997). Balint’s syndrome is

strongly linked to bilateral damage to the occipitoparie- because it preferentially activates neurons that “read”
the timing code. Usually, coincidence detectors are heldtal region, including regions of the posterior parietal

cortex associated with the direction of visual attention. to modulate their activity in response to synchronous
inputs—this is how they are supposed to combine theLesions to lower-order visual representations produce

a variety of visual and perceptual deficits, but none seem conventional rate-modulated discharge to accord with
their grouping. In any meaningful sense, this amountsobviously related to binding per se (Damasio, 1985).

If binding is not computed in the primary visual cortex, to no more than a special way to create cardinal neurons.
Binding Is an Operational Signalwhy is synchrony to be expected there? It might be that

synchrony is imposed by feedback connections from It is perhaps valuable at this point to restate the binding
problem in operational terms. How are the signals fromthe higher cortical areas in which the computation is
distinct populations of neurons combined for higher-done, but it is unclear what the utility would be of feeding
level computation? How do high-level neurons deter-back information of this kind. If the computations are
mine which inputs carry information requiring furtherdone at higher levels of the system, then the answer
analysis? The problem would not arise if higher-orderis already represented there and does not need to be
neurons received input from just a few selected sources,rerepresented at lower levels of the system. One reason
but the complexity of our sensory world and its neuralcould be that high-level representations are too general
representation seems to preclude this. It is more likelyand too categorical to allow the tagging of individual
that higher-order neurons receive input from a varietystimulus features. For example, a neuron in temporal
of sources, representing, for example, many locationscortex that responds specifically to a particular object
in space and many different local features. They mustmight not adequately identify all the contours and ele-
therefore determine which of these inputs carry signalsments of that object. If such a neuron could control
worthy of further computation. The question that re-precisely organized feedback signals, these might tag
mains unexplained by the temporal binding hypothesisthe responses of primary cortex cells whose signals
is how synchrony could usefully contribute to this deter-describe elements belonging to the object. But this kind
mination.of feedback would require exquisitely precise and dy-

namically configurable connections, not only to topo-
graphically specific parts of the primary visual cortex, Biological Plausibility of a Synchrony Code

Let us explore some implications of the proposal thatbut to particular orientation columns and laminae. The
available data on feedback projections suggest that synchronous spikes bind neural signals for subsequent

operations. For this scheme to be useful, postsynaptictheir organization is far too crude for this purpose (see
Salin and Bullier, 1995, for a review). These projections neurons must be able to distinguish synchronous from

asynchronous spikes. Synchronous spikes stand out asseem designed to modulate neuronal activity in quite
large regions of primary cortex, perhaps as a nonspecific special only if they do not arise frequently by chance.

A receiving neuron cannot distinguish chance coinci-“attentional spotlight” (Crick, 1984). There is no obvious
way that such a coarse spotlight could be the source dences among asynchronous inputs from “special”

synchronous spikes that would convey the additionalof a specific object-based synchronization signal that
recruited specific neurons within the spotlight and ex- information required for binding. How often would syn-

chronous events occur among the inputs to a neuroncluded others; we see no evidence for the existence
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by chance? A general answer to this question is difficult, arranged as a column, sometimes termed a mini-column
(Szentagothai, 1973; Mountcastle, 1978; Braitenbergdepending as it does on the number of inputs, their

spike rates, and the time window in which synchrony and Schuz, 1991; Peters and Sethares, 1991; Peters and
Yilmaz, 1993). The remaining half can be traced mainlyis supposed to carry special meaning. A brief specific

example is nonetheless instructive. to a local network of horizontal connections originating
in nearby cortex, leaving a minority of inputs from moreSynchrony in a Sparse Network

Consider a neuron that receives convergent input from remote cortical and subcortical structures. Within the
100–200 mm radius cylinder around a neuron there arean ensemble of ten neurons, each discharging asyn-

chronously at an average rate of 10 spikes/s. By chance, roughly 1000 neurons that provide direct excitation. This
number comes from an estimate of neuron densityany 1 input spike will occur within 5 ms of 3 other input

spikes with an expected probability of 0.014. This is (z105/mm3) and from the observation that, on average,
each neuron within the cylinder makes a contact withcalculated as follows. The ensemble input rate is 100

spikes/s. From the time of 1 spike, the waiting time for another neuron in the cylinder with probability of 0.09
(Braitenberg and Schuz, 1991; Hellwig et al., 1994).3 spikes is approximated by a gamma distribution. The

waiting time is less than 5 ms for about 1.4% of the These numbers suggest that cortical neurons receive
abundant excitatory input and are embedded in a net-input spikes. Therefore, a neuron that emits a spike

when at least 4 inputs arrive within a 5 ms window would work of highly convergent signals. Because of the recur-
rent nature of the network, it is likely that most excitatorydischarge only 1 spike/s by chance. This is a sufficiently

low background rate to allow us to identify spikes from neurons receive similar inputs and emit spikes under
similar conditions. This does not mean that all neuronsthis neuron as an indication that something special has

occurred, leading to at least 4 spikes from the 10 input in a mini-column fire identically, but only that the condi-
tions that lead to a response of any one neuron are likelyneurons within a short time interval. A spike from this

hypothetical neuron would indicate that at least 4 of the to involve considerable activity from a large number of
its inputs and its targets. A conservative estimate is that10 input neurons were active together. We cannot tell

which group of 4, but the 210 possibilities (10 choose each neuron receives several hundred excitatory input
spikes for each spike it emits (Shadlen and Newsome,4) could be further refined by combination with other

neurons that received input from partially overlapping 1994, 1998). This number depends on a number of fac-
tors, such as cortical area and layer. The precise inter-inputs. Coincidences of 3 events occur with a probability

of nearly 10% and would occur about 10 times/s by pretation depends on factors influencing the efficacy of
synaptic input, such as synaptic failure rates, synapticchance. Coincidences among 5 or more inputs would

very rarely occur by chance, but at this point the idea adaptation, and dendritic amplification. But it nonethe-
less seems certain that cortical neurons receive manybegins to lose relevance to the binding problem—by

inventing a neuron that responds when more than half input spikes in the interval between one output spike
and the next.of its inputs are active, we have effectively solved the

binding problem by connecting the right neurons and It therefore seems inevitable that many input spikes
will arrive—in apparent synchrony—within any brief timebuilding a “cardinal” neuron.

We can still grant that if a neuron were to receive window while the cortical column is active. Realizing
this, what special significance can be attached to “syn-sparse excitatory input—meaning that very few excit-

atory input events arrive in the intervals between its own chronous” spikes? In a window of, say, 5–10 ms, the
answer would appear to be none: in effect, all spikesspikes—then it is reasonable to suppose that a set of

excitatory inputs arriving within a short time of one an- occur in synchrony with other spikes. We cannot imagine
how a neuron could sort the synchronous “binding”other (say, within 5 ms) could lead to production of a

spike sooner rather than later. This notion of coincidence spikes from those that occur by virtue of cortical design.
Perhaps we should consider a shorter time window.detection was formulated clearly by Abeles (1982a). The

idea seems only to be of value when cortical neurons The same numerical argument suggests that synchro-
nous events are less common if we define a narroweroperate in a regime characterized by low firing rates and

sparse effective input. But when cortical cells operate window of synchrony. Perhaps a neuron could receive
as few as 10–20 spikes in one tenth of an interspikein this regime, there is no binding problem—if firing rates

are low and the number of effective inputs to a neuron interval. Synchronous spikes occurring within a millisec-
ond or less could be regarded as distinctive, makingis small, there is no need to tag them, or select among

them, or multiplex a grouping signal with signals repre- a synchrony code on this time scale more plausible
computationally. There are two problems with this idea.senting other attributes. We bring up these numbers to

illustrate that the idea of spike synchrony as a signal First, there is no biophysical evidence that cortical neu-
rons can respond selectively to synchronous input ofcan work, but only in a regime that seems inconsistent

with what we know about the cerebral cortex. this precision. Unlike specialized neurons in the auditory
brainstem, cortical neurons probably lack the biophysi-Synchrony in Realistic Cortical Networks

In what sort of computational environment does a corti- cal mechanisms needed for precise coincidence detec-
tion at a millisecond time scale (Reyes and Fetz, 1993;cal neuron operate? This question may seem intractable

in the face of computations that we do not fully compre- Reyes et al., 1994, 1996; see also Koch, 1999, for a
review). Second, reports of cortical activity with syn-hend, but the facts of cortical architecture provide guid-

ance. Neurons in cortex receive 3,000–10,000 synaptic chrony this precise are rare; experimental reports de-
scribe “synchronous” spikes in a somewhat broaderinputs, 85% of which are excitatory. Nearly half of the

excitatory input to any one neuron comes from nearby window of 10–20 ms (e.g., Gray et al., 1989); in some
cases, correlogram peaks 50 ms wide or more haveneurons that fall within a 100–200 mm radius cylinder,
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been taken as evidence for synchrony (e.g., Brecht et intrinsic oscillatory signal that is not time-locked to the
al., 1998). It is worth noting that in his original paper, visual stimulus. How is the brain supposed to distinguish
von der Malsburg (1981), perhaps cognizant of some the temporal modulation due to visual input from the
of the problems we have explored, suggested that the temporal modulation produced intrinsically?
synchronous spikes carrying messages related to bind- Kiper et al. (1996) explored this apparent conflict di-
ing would need to occur within a much smaller window rectly. They created displays in which groups of lines
of about 3 ms. were segmented into regions by an orientation cue, and
Synchrony from Visual Inputs attempted to influence observers’ segmentation perfor-
Let us imagine that some mechanism, presently un- mance by altering the temporal relationships among dif-
known, does exist that is capable of detecting synchro- ferent elements of the display. Kiper et al. were unable
nous activity in a window of 10–20 ms. The natural ques- to discern any influence of these temporal relationships
tion that then arises is, does synchronization at this on perceptual binding, suggesting that visual timing sig-
time scale uniquely signal binding? Empirically, this is nals are processed independently of the spatial cues
equivalent to asking whether other processes in the that give rise to binding; a similar conclusion was
nervous system produce activity that is synchronized reached by Fahle and Koch (1995).
with this same degree of precision. The answer to this Thus, temporally precise visual activity is sufficient
question seems unequivocally to be “yes”—transient for binding, but it is not necessary for binding and its
visual inputs are capable of eliciting bursts of cortical disruption does not affect binding elicited by other cues.
activity whose onset is reliable to within a few millisec- Timing can indicate a common designation, but, like
onds, and whose duration can be as brief as 10 ms color and orientation, it can also be ignored (cf. Figure
(Shadlen and Newsome, 1994; Bair and Koch, 1996; Bair 1A). The natural conclusion is that whatever code the
et al., 1997; Buračas et al., 1998; see also Bair, 1999, visual system uses for binding, that code does not rely
for a review). The afferent volley of neural activity that on intrinsically synchronized neural activity.
follows brief visual events thus has a precision of syn-
chrony that is at least as good as that reported for Experimental Evidence on Binding by Synchrony
coherently oscillating groups of cortical neurons (e.g., in Visual Cortex
Gray et al., 1989). So even if this degree of synchrony Characterizing Correlated Neural Activity
could be detected, there is no obvious way to discrimi- The main experimental evidence that supports the tem-
nate visually elicited synchrony from synchrony due to poral binding hypothesis comes from studies of syn-
binding. chronous activity in recordings from spatially separated

Given the precision of visually elicited timing, it is neurons in the visual cortex. Analysis in the main uses
natural to wonder whether the timing of visual events the cross-correlation technique (Perkel et al., 1967;
on a millisecond scale can influence perception. There Moore et al., 1970; Palm et al., 1988; Aertsen et al.,
are many examples of perceptual phenomena that de- 1989; Fetz et al., 1991), which reveals the probability of
pend on such timing. Our capacity to judge the relative encountering a spike in one train as a function of the
position of two moving objects depends on sensory

time lag before or after a spike in another train. Spike
representation of both the place and time of the objects

synchrony reveals itself as a peak in the cross-correla-
(e.g., see Burr, 1979; Fahle and Poggio, 1981; Carney

tion between the spike trains near time lag 0.
et al., 1995). In a well-known example attributed to Pul-

Neurons can covary their discharge for many reasons.frich, a fine timing difference induced between the
The simplest of these is spike timing covariation, thatmovement of features on the two retinae produces an
is, a tendency unrelated to firing rate for the two neuronsapparent spatial disparity between the eyes, thus pro-
to discharge at the same time—this corresponds to theducing the sensation of stereoscopic depth (Carney et
common understanding and to our use of the term “syn-al., 1989; Howard and Rogers, 1995).
chrony.” But factors other than synchrony can and doIn the context of the present discussion, a number of
create peaks in cross-correlograms and many of thesegroups have demonstrated that figure–ground segrega-
certainly contribute to many reported cases of corre-tion can be driven solely by temporal cues (Leonards et
lated firing.al., 1996; Alais et al., 1998; Usher and Donnelly, 1998;

To demonstrate that correlogram peaks are not dueLee and Blake, 1999). These experiments have shown,
to other kinds of spike rate modulation, the correlogramusing a variety of displays, that the visual system can
is typically corrected to remove the effects of that modu-group features on the basis of similarity of time course,
lation. These “shuffle correction” techniques can onlya natural extension of the Gestalt concept of “common
remove components from correlograms that are due tofate”—a common modulation in time is an obvious cue
events that cause the same spike rate modulation onfor similarity (Köhler, 1930). It is reasonable to suppose
every repetition of an experiment, time-locked to somethat temporally coherent patterns of response would
measurable event like the onset of a visual stimulusresult from this common modulation, based on the sim-
(Perkel et al., 1967; Melssen and Epping, 1987; Aertsenple premise that the time domain in the visual system
et al., 1989; Vaadia et al., 1991; Das and Gilbert, 1995).is used to code the time course of visual events.
Should a pair of neurons change their discharge rateThese demonstrations support von der Malsburg’s
together, for whatever reason, in a manner that is not sooriginal (1981) conjecture that temporal synchrony could
time-locked, the cross-correlation will appear to showbe created by visual input. But the findings are difficult
synchrony even after shuffle correction. Modulation ofto reconcile with later versions of the temporal binding
this kind appears in paired intracellular recordings fromhypothesis, since these are based on the idea that syn-

chrony binding would be produced by modulating an neurons in the visual cortex (Lampl et al., 1999). It is
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not time-locked to experimental events and therefore Engel et al. (1990) and Livingstone (1996) report a num-
ber of cases of correlation when the stimulating orienta-cannot be removed by shuffle correction. Yet, it mani-
tion is matched on the two receptive fields, but do notfests itself in the cross-correlation and in all probability
state whether any of their cases involve collinear stimu-represents nothing more than shared variability due to
lation with a single target. Second, the enhancement ofthe fact that inputs are themselves weakly correlated.
correlation during stimulation by a long connected barThis correlation prevents spontaneous fluctuations in
is the result that would have been predicted by theafferent activity from being completely averaged out by
earlier results of Ts’o et al. (1986), who showed a de-synaptic convergence (Zohary et al., 1994; Mazurek and
crease in correlation with distance—presumably, theShadlen, 1998, Soc. Neurosci., abstract; Shadlen and
use of a long bar “filled in” the gap between the sitesNewsome, 1998).
with neurons that enhanced the correlated activity ofExperiments on visual cortical neurons almost always
the two remote sites (see also Das and Gilbert, 1995).involve correlating visually driven activity. In this case,
Third, the reduced correlation observed when the barsas Brody has recently shown (Brody, 1999a, 1999c),
moved in opposite directions would be expected if theseveral factors other than spike timing covariation can
time course of the responses was less oscillatory andproduce peaks in cross-correlograms that give the ap-
if the receptive fields were less precisely aligned with thepearance of synchrony. These factors include correlated
trajectory of the moving bars—differences in responseslow response variability (expected if the overall excit-
time course and temporal structure can be seen in theability of the neurons varies from trial to trial in a corre-
published data (Gray et al., 1989, their Figure 2). Finally,lated manner), correlated response latency (expected
the finding is of uncertain relevance to perceptual bind-with moving stimuli if the position of the eyes with re-
ing—many objects in the visual world give rise to imagesspect to the stimulus varies from trial to trial), and corre-
of separated contours that differ in orientation or motionlated visual responses associated with fixational eye
(e.g., Figures 1A and 1B), yet under these conditionsmovements (Bair and O’Keefe, 1998). All of these latter
Gray et al. (1989; Engel et al., 1990) report that correla-phenomena can be quite prevalent in visual cortical re-
tion is reduced or absent.cording experiments; their contribution to the reported
Correlation and Oscillatory Activityincidence of “synchrony” is difficult to establish but may
The issue of synchrony is intimately bound up with thebe considerable (see Brody, 1998, for a striking ex-
phenomenon of oscillatory firing in cortical neurons.ample).
Gray and Singer (1989) reported that at a substantial

Determinants of Correlated Activity
number of cortical recording sites, neurons and multiunit

Several groups have applied the cross-correlation tech- activity responded to visual stimuli by emitting clusters
nique to visual cortex to uncover functional interactions of spikes at intervals of about 25 ms, leading to a more
between groups of neurons. Notable among these stud- or less regular rhythmic firing pattern at around 40 Hz.
ies are those of Toyama et al. (1981a, 1981b) and Ts’o The prevalence of these oscillatory responses varies
et al. (1986), which showed that significant correlations widely from laboratory to laboratory, for reasons that
between neurons are quite widespread in visual cortex remain unresolved. While Singer’s group and some oth-
and are strongest between neurons with related visual ers (e.g., Eckhorn et al., 1988; Livingstone, 1996) find
stimulus preferences. Correlated activity in cortical neu- oscillatory responses in about half their recordings,
rons is thus common and often serves as a functional most others find their prevalence to be far lower, in the
indicator of shared connectivity. range of 2%–5% of recording sites (Tovee and Rolls,

The crucial question for the temporal binding hypothe- 1992a; Young et al., 1992; Bair et al., 1994; J. A. M.,
sis is whether correlated activity represents anything unpublished data). The reasons for this striking differ-
more than shared connectivity. The largest and most ence are unclear. Gray and McCormick (1996) reported
frequently cited body of evidence bearing on this ques- that about 10%–15% of intracellularly recorded neurons
tion is the work of Singer and his colleagues. This group gave oscillatory “chattering” firing in response to depo-
has published numerous studies of neural activity in the larizing currents; their chattering cells appear to be con-
cortical and subcortical visual pathways, documenting fined to cortical layer III. While these results and some
extensive correlated activity both within and between earlier reports (e.g., Gray et al., 1989) suggest that oscil-
visual areas. Gray et al. (1989; see also Engel et al., latory firing is of cortical origin, others have suggested
1990) recorded from the striate cortex of anesthetized an important role for oscillatory patterns relayed from
cats, and compared the degree of correlation between the thalamus (Ghose and Freeman, 1992, 1997; Castelo-
pairs of multiunit recording sites as a function of the Branco et al., 1998).
separation between the recording sites and of the visual The importance of oscillatory responses to interneuro-
stimuli used. Their most striking finding was that the nal correlations was documented by König et al. (1995),
correlation between activity at moderately separated who showed that while correlations between nearby
sites (about 7 mm) was strongest when a single stimulus neurons could be observed when the neurons emitted
covered both sites’ receptive fields, weaker when similar unpatterned responses, correlations between widely
but separated stimuli activated each receptive field, and separated sites were very rarely observed in the ab-
weakest when independent stimuli moving in opposite sence of oscillatory responses. The low prevalence of
directions activated each receptive field. This result is oscillatory responses in most laboratories suggests that
perhaps the single finding that propelled the temporal the dependence of these “long-range” correlations (i.e.,
binding hypothesis into the foreground and is worth correlations between neurons separated by more than
examining in more detail. 2 mm or so) on oscillatory responses may be a problem

First, this particular observation was made in only a for the temporal binding hypothesis—if oscillations are
small number of cases out of a very much larger number only an occasional phenomenon, long-range correla-

tions are likely to be rare and it is difficult to see howstudied—two cases are reported in Gray et al. (1989).
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Figure 2. Experimental Task to Test the Temporal Correlation Hypothesis

A monkey is trained to fixate on a small spot (blue). Several overlapping arrows appear, one of which is cued transiently (red). After a delay
period, the fixation point is extinguished and the monkey is required to shift gaze to the other end of the cued arrow. The arrangement of the
objects is adjusted to stimulate two neurons in an early visual area whose receptive fields are shown by the broken ellipses in the task panels.
(A) Features in the receptive fields belong to different objects. On correct trials (illustrated), the monkey indicates that the features are not
part of the same arrow.
(B) Features in the receptive fields belong to the same arrow, as indicated by the monkey’s gaze shift. The synchrony binding theory predicts
that synchronous spikes, estimated by cross-correlation of the spike trains, will be more common in (B). The task is designed to allow the
monkey to indicate that features are bound to particular objects. The monkey is rewarded for correct choices, but responses on error trials
on such a task could be analyzed to see if changes in correlation predict binding errors. Other useful variants of this experiment are described
in the text.

they could be a critical component of so important a Relating Synchrony to Perception
Two criticisms were quickly raised about the initial ob-perceptual process.

If, on the other hand, oscillations are ubiquitous, a servations of Singer and his colleagues. First, the data
were obtained from anesthetized animals and somedifferent problem arises—the combination of oscillation

frequencies and temporal precisions found in the litera- were concerned that the correlations might be a conse-
quence of anesthesia. Kreiter and Singer (1996) ad-ture would be capable of creating only a small number

of independent assemblies. There is only 25 ms in one dressed this concern by documenting correlated re-
sponses by neurons in the middle temporal area (MT)cycle of a 40 Hz oscillation. If “synchrony” is defined

with a precision of 5–10 ms, this only allows time for a of awake, behaving macaque monkeys, and by showing
that these correlations could be modulated by stimulussmall handful of distinct epochs to be defined by differ-

ent phase relationships. The informational gain to be features. Kreiter and Singer did not describe the kind
of long-range correlations previously described in catobtained in this way seems rather meager.
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V1; instead, they showed that neural activity in MT neu- establish a secure link between perception and corre-
lated neuronal activity.rons with overlapping receptive fields was strongly cor-

related when a single bar activated both recording sites, Fries et al. (1997) used a different method to approach
the question of perceptual relevance. Using cats whoseand less correlated when the same sites were stimulated

with two bars of different orientations. This result curi- cortical binocularity was reduced by strabismus, they
studied cortical responses and correlated activity whileously contrasts with the reports of Movshon et al. (1985)

and Rodman and Albright (1989), who showed that many the two eyes viewed different stimuli. These conditions
provoke binocular rivalry in human observers—the twoMT neurons combine signals from multiple orientations

to compute “pattern motion.” It seems inconsistent with eyes’ views are not seen together; rather, one or the
other dominates perception. In separate experimentsthe temporal binding hypothesis that this form of low-

level perceptual binding (schematized in Figure 1B) is using an eye movement technique on the same animals,
Fries and his colleagues established conditions in whichassociated not with an increase but with a decrease in

correlated firing. one eye’s percept was reliably dominant. They showed
that under conditions in which this eye was presumedThe second criticism is that because no perceptual

judgments were made during the experiments, evidence to be dominant, cortical correlations were enhanced.
When the tested eye was presumed to be suppressed,that the chosen stimulus configurations actually pro-

moted perceptual binding was circumstantial—the ex- correlation was reduced. The authors suggest that this
result reveals a role for correlated activity in perceptualperiments typically used stimuli that promoted binding-

like effects in human observers, but did not establish dominance during binocular rivalry. Regrettably, the
neural measurements were not made at the same timethat experimental animals perceived the stimuli in the

same way. This concern has not been directly addressed as the rivalry measurements, nor were the visual stimula-
tion conditions similar for the two cases. Thus, the claimby Singer and his colleagues, but they have conducted

several studies in an effort to approach the issue of that the changes in correlation were due to perceptual
changes can only be taken as an intriguing conjectureperceptual relevance.

Roelfsema et al. (1994) studied response correlations and not as a proven fact.
Perceptual States Are Signaled by Changesin the visual cortex of esotropic cats (i.e., cats with

convergent strabismus) which developed amblyopia, a in Firing Rate, Not Correlation
One of the implications of the temporal binding hypothe-developmentally induced disorder of vision thought to

reflect changes in visual cortical function (reviewed by sis is that changes in perceptual state associated with
binding phenomena might not be revealed by a conven-Kiorpes and Movshon, 1996; Kiorpes and McKee, 1999).

They reported that response correlations between neu- tional analysis of neuronal firing rate. The reasoning is
that firing rate provides the afferent perceptual data,rons driven by the amblyopic eye were weaker than

between neurons driven by the fellow eye, and con- while synchrony provides the code that glues those data
together into percepts (e.g., deCharms and Merzenich,cluded that the loss of neuronal synchronization was

the substrate of the amblyopia. The connection between 1996; Fries et al., 1997). There are, however, many dem-
onstrations that a rate code carries behaviorally relevantamblyopia and temporal binding is potentially of inter-

est, since some aspects of the abnormalities of human information when animals perform perceptual tasks re-
lated to binding, and a few demonstrations that syn-amblyopic vision suggest a deficit of perceptual binding

(Hess et al., 1978; Polat et al., 1997; but see also Levi chrony carries no information under the same condi-
tions.and Sharma, 1998).

The study of Roelfsema and his colleagues is there- Several groups have studied neuronal activity in be-
having animals making perceptual judgments. Britten etfore topical but is weakened by a number of deficiencies.

Since esotropia produces amblyopia only in a fraction of al. (1992, 1996; Shadlen et al., 1996) studied the percep-
tion of global motion in random dot kinematograms.subjects, amblyopia needs to be shown for each animal.

The documentation of amblyopia in this study was in- While this is not a traditional binding task, the perceptual
judgment in these studies requires integration of com-complete, and the main behavioral finding was of rather

profound visual deficits in both eyes. Moreover, al- mon local motion signals over space and is arguably a
form of binding. Britten and his colleagues showed thatthough they do not actually show the data, Roelfsema

and his colleagues claimed to find no difference in the stimulus-induced modulations of firing rate could ac-
count for animals’ psychophysical performance. Moreresponse properties or spatial resolution of cells repre-

senting the two eyes; reports on amblyopia in both cats pertinently, they showed that when the visual stimulus
conditions were unvarying, changes in psychophysicaland monkeys suggest that such changes are a frequent

and perhaps invariable component of amblyopia (Eg- performance were correlated with changes in firing rate
(Britten et al., 1996). Bradley et al. (1998) studied a struc-gers and Blakemore, 1978; Chino et al., 1983, 1991;

Movshon et al., 1987; Crewther and Crewther, 1990; ture-from-motion discrimination task and again showed
that in the absence of unambiguous cues to depth,Kiorpes et al., 1998). It is possible that Roelfsema and

colleagues’ animals were not true unilateral amblyopes, the animals’ perceptual judgments were reflected in
changes in firing rate. Logothetis and his colleaguessuggesting that the reported effects on interneuronal

correlation may have been related to factors other than have studied neural activity while animals reported
which eye controlled perception during binocular rivalryamblyopia. It is also notable that the difference in corre-

lation between the eyes reached significance in only (Logothetis and Schall, 1989a; Leopold and Logothetis,
1996; Sheinberg and Logothetis, 1997; Logothetis, 1998).two of four animals tested with bar stimuli, and in only

one of three animals tested with grating stimuli. There- They found that neurons in several visual areas modu-
lated their firing rates in association with changes infore, the results, while suggestive, cannot be taken to



Review: Shadlen and Movshon
75

rivalry dominance, which occur without changes in the the tail of an object whose head has been cued. Suppose
we record from two neurons with separated receptivevisual stimulation conditions. These results are more

compelling than the rivalry experiments of Fries et al. fields (green ellipses). We can align the display so that
the two receptive fields either do or do not fall on con-(1997, discussed above), because Logothetis and his

colleagues directly compared neural activity and behav- tours belonging to the same object (Figures 2A and 2B)
and then compare neuronal correlations between theseioral state on every trial.

Zohary et al. (1994) used the paradigm of Britten et two conditions.
This design would make it possible to explore a varietyal. (1992) to study interneuronal correlations during psy-

chophysical performance. Analysis of their data reveals of factors that have been associated with binding. The
experiment can be done with receptive fields of anythat variations in psychophysical performance are not

associated with changes in the synchrony of firing be- location and orientation preference by suitably adjusting
the configuration of the figures, to assess the role oftween neurons; moreover, the more salient—and argu-

ably more strongly bound—high-coherence stimuli in collinearity and shared orientation preference. The role
of contour connection and occlusion can be determinedtheir studies elicited slightly weaker synchrony than the

low-coherence ones (W. Bair, E. Zohary, and W. T. New- by using occluded or unoccluded objects to stimulate
the two receptive fields. The role of focal attention andsome, personal communication).

Lamme and Spekreijse (1998) offered what is perhaps movement preparation in binding can be explored by
comparing conditions in which the cued object fallsthe most direct test of the temporal binding hypothesis

to date. They recorded from separated groups of neu- within one or both receptive fields with conditions in
which an uncued object stimulates the neurons. Therons in macaque visual cortex while monkeys viewed

(and made judgments about) a figure–ground display validity of correlation change as a predictor of behavioral
performance can be established by using suitable sin-created from oriented line segments. While keeping the

receptive field stimulation constant, they measured cor- gle-trial statistics to compare activity on “correct” and
“error” trials under the same stimulus conditions (cf.related activity when the two recording sites repre-

sented the same region (figure or ground) and con- Britten et al., 1996). The temporal binding hypothesis
makes clear predictions for all these cases, and bothtrasted that with correlated activity when the two

recording sites represented different regions of the dis- positive and negative findings could be clearly dis-
cerned and interpreted.play; they found no differences in correlated activity

between the two conditions. Lamme and Spekreijse did
not attempt to relate correlated activity directly to per- Binding without Synchrony
ception by analyzing trials on which the animals made In the preceding sections, we examined the temporal
errors, and it is notable that the peaks in their published binding hypothesis and reevaluated many of the data
correlograms are so broad that they may not indicate that have been held to support it. We now turn to the
synchrony in the sense of spike timing covariation, as issue that led to the hypothesis in the first place, the
discussed above (Brody, 1999c). Nonetheless, the clar- idea that binding is a special problem that cannot be
ity of their negative findings is striking. solved by “conventional” mechanisms of neural signal-

ing (von der Malsburg, 1981). Such “conventional” think-In summary, the results of these studies all suggest
that changes in perceptual state are not associated with ing would postulate that, like other complex problems

in perception, the binding problem is solved by the suc-changes in correlated cortical activity. At least when
recordings are made from areas outside the primary cessive elaboration of progressively more complex rep-

resentations of visual scenes. It does not seem thatvisual cortex, perceptual changes are invariably associ-
ated with changes in firing rate. It is of course not neces- there is any good reason to abandon this strategy. We

need not embrace “grandmother cell” theories but sim-sary to the temporal binding hypothesis that rate modu-
lations be absent when perceptual changes occur. ply consider that higher cortical areas encode scene

attributes and object identity, along with other resultsNonetheless, it is striking that perceptual changes are
associated with changes in firing rate and are not associ- of perceptual analysis, in the distributed rate-encoded

activity of populations of neurons.ated with changes in response correlations.
Rigorously Testing the Temporal Binding Hypothesis While explanations of this kind have not received ex-

tensive attention, at least one serious attempt has beenMost of the data that are usually held to support the
temporal binding hypothesis prove to be flawed or cir- made to explain feature binding in this way (Olshausen

et al., 1993, 1995; Tsotsos, 1995). This theory postulatescumstantial; experiments that seem to test the hypothe-
sis more directly generally yield negative results. Still, convergence to cells in higher cortical areas but ac-

knowledges that some problems cannot easily beit can be argued that, despite more than 10 years of
research, the right experiment has not been done. What solved by simple convergence. These problems are ad-

dressed by special circuits, controlled by the pulvinar,kind of experiment might we devise to provide a true
test of the hypothesis? which act dynamically to alter the flow and combination

of visual signals. The “binding problem” in this theoryIn Figure 2, we outline a proposed experimental de-
sign, which has some features in common with that of is implicitly solved in higher cortical areas that receive

the dynamically routed and recombined information. NoLamme and Spekreijse (1998). Recall the binding display
caricatured in Figure 1A. This nest of superimposed specially coded form of neural activity is required.

Solving the Binding Problem in the Context of Actionarrows cannot be correctly perceived unless the sepa-
rate parts of the objects are bound together. Operation- We believe that the visual cortex may not be the only

place to solve the binding problem; nor is it the appro-ally, we can learn whether binding occurs by asking the
experimental animal to select with an eye movement priate place to represent the solution. A more sensible
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locus is the association cortex, more specifically the and more generally from other sources. In this context,
posterior parietal cortex. We are guided by the clinical then, binding is the designation of spatial salience of a
observation that failure of binding occurs with damage local feature in the neural receptive field on the basis of
of the parietal cortex (Damasio, 1985; Friedman-Hill et another feature or features located outside the receptive
al., 1995; Rafal, 1997; Robertson et al., 1997). While field. This notion of binding is specifically related to
our understanding of the neurophysiology of posterior neural circuits that organize behavior, such as the target
parietal cortex lags behind that of the visual cortex, of a gaze shift or a reach movement. In this sense,
what is known seems compatible with the idea that binding can be viewed as a grouping of features that
the parietal cortex computes a solution to the binding leads to the designation of behavioral targets.
problem. This style of computation has the structure of a hy-

There is increasing evidence that the parietal cortex pothesis test, strongly reminiscent of von Helmholtz’s
organizes information from the visual cortex in terms of (1925) and Gregory’s (1970) ideas on how perceptual
its significance for behavior. For example, neurons in information is grouped to generate the perception of
the lateral intraparietal area (LIP) respond to a variety objects and scenes. Parietal computation evaluates the
of visual targets when they specify the location of an evidence for a specific behavioral act that would be
intended eye movement (Andersen, 1995; Colby et al., directed to the neuron’s response field. For example, a
1996; Platt and Glimcher, 1997). Neurons in more medial working definition of the response field for a neuron in
cortex respond before reaching movements to targets LIP is the locus of stimulus positions that cause the
(Caminiti et al., 1996; Snyder et al., 1997), and, more neuron to respond, especially when the stimuli comprise
anteriorly, Sakata and colleagues have described neu- a target for a saccadic eye movement. The evaluation
rons that respond to shapes that elicit particular grasp- is based on perceptual data, learned associations, and
ing postures (Sakata et al., 1995; Murata et al., 1996). predictive coding. An example of a learned association
In each of these cases, the neuron responds to visual is a spatial cue that directs an eye movement to a partic-
stimuli in a manner that reflects their salience with regard ular target. In the experiments of Shadlen and Newsome,
to an action or behavior (Rizzolatti et al., 1997; Colby a monkey observes a visual display and learns to shift
and Goldberg, 1999). its gaze to a particular target based on the display’s

These observations are related to binding because properties. Neurons in LIP indicate qualitatively by their
the designation of salience can be based on information response to the visual display whether or not the target
derived from a separate spatial location—a visual stimu- in the response field is the one that will be chosen, and
lus within the receptive field of a parietal neuron can be quantitatively the degree to which perceptual evidence
designated as salient by another stimulus outside the supports this choice. This response pattern is perfectly
neuron’s receptive field. This property is captured in formed to represent the generation and evaluation of a
experiments in which a monkey is instructed to make perceptual hypothesis (Shadlen and Newsome, 1996;
eye movements to one of two visual targets depending Kim and Shadlen, 1999).
on properties of a third stimulus placed elsewhere in Our proposal represents only the skeleton of an alter-
the visual field. For example, neurons in parietal cortex native to the various theories we considered above. To
respond to a visual stimulus within their receptive fields put solid theoretical flesh on its bones will require sub-
and also to a complex motion stimulus placed outside stantial refinement and experimental scrutiny. For exam-
the receptive field, which serves to instruct a gaze shift ple, feature binding for the purpose of reaching and
to the receptive field stimulus (Shadlen and Newsome, scanning may not be the same as binding for perceptual
1996). These neurons encode the binding between one awareness—the neural circuits that mediate object iden-
sensory stimulus (the instruction) and a second, behav- tification may be distinct from those that control grasp
iorally relevant stimulus within the receptive field (Assad and gaze (Ungerleider and Mishkin, 1982; Goodale,
and Maunsell, 1995; Platt and Glimcher, 1997; Eskandar

1993; Goodale and Humphrey, 1998; but see also Franz
and Assad, 1999; Horwitz and Newsome, 1999; Kim and

et al., 1999). We have not specified with precision how
Shadlen, 1999; see also Leon and Shadlen, 1998, for a

the computation is performed—yet it is clear that thereview).
calculations involved can be done within the “conven-How do such observations relate to the binding of
tional” framework of rate-modulated neural representa-object features? We do not imagine that binding is
tions, without recourse to a new and special kind ofsolved by making movements of the eyes and limbs.
signal. These ideas are also attractive because they areHowever, neural circuits that guide reaching and gaze
consistent with neurological evidence on parietal lobedepend on a solution to the binding problem. The control
damage. This formulation also tames the combinatorialof grasp, for example, presupposes knowledge of spa-
explosion of features and objects because the group-tial relationships between features and the object to
ings are constrained by possible action (Churchland etwhich they are bound. Lifting a pencil by its eraser or a
al., 1994). Features are bound together to the extentteacup by its handle, or shifting gaze to the tail of an
that one feature can be viewed as an instruction to actarrow based on the sight of the tip (Figure 2), all require
in some way upon another.that the binding problem be solved. We propose that the

requisite computations, which begin in primary visual
Conclusioncortex and are elaborated in successive visual represen-
We have presented a critical evaluation of the hypothe-tations, are completed and synthesized in the parietal
sis that a temporal code based on synchrony of spikelobe. Specifically, the parietal cortex determines the rel-
timing represents the process of feature binding. Weevance of local features to particular behaviors, based

on instructions from other locations in the visual field considered several lines of reasoning that suggest that
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the theory is inadequate in conception and impover-
ished in support. The theory is incomplete in that it
describes the signature of binding without detailing how
binding is computed. Moreover, while the theory is pro-
posed for early stages of cortical processing, both neu-
rological evidence and the perceptual facts of binding
suggest that it must be a high-level computation. Con-
sideration of the architecture of the cerebral cortex sug-
gest that it lacks the mechanisms needed to decode
synchronous spikes and to treat them as a special code.
There is ample experimental evidence for correlated cor-
tical activity but little that directly or compellingly links
this activity to binding. In contrast, there is considerable
evidence that the rate-modulated activity of cortical cell
populations is crucial in mediating perceptual binding.

The conclusion seems inescapable that the theory
as proposed is untenable. Nonetheless, the theory has
sparked renewed interest in the problem of binding and
has provoked a great deal of important research. It has
also highlighted the crucial question of neural timing
and the role of time in nervous system function. The
problems that gave rise to the theory are still important
problems that remain to be solved, and it is certain that
the efforts of the theory’s proponents and opponents
will advance our knowledge both of higher visual func-
tions and of the algorithms used by that most enigmatic
of computers, the cerebral cortex.

Acknowledgments

Preparation of this paper was supported by grants from the National
Institutes of Health (EY02017, EY11378, RR00166) and by the
McKnight Foundation. We are grateful to Wyeth Bair, Carlos Brody,
Eb Fetz, Josh Gold, Lynne Kiorpes, Bill Newsome, Robert Rafal,
and Alex Reyes for their helpful advice and comments.

References

A comprehensive reference list for all reviews can be found on pages
111–125.



Neuron, Vol. 24, 111–125, September, 1999, Copyright 1999 by Cell Press

References for Reviews on the Binding Problem

Bair, W., and Koch, C. (1996). Temporal precision of spike trains
in extrastriate cortex of the behaving monkey. Neural Comput. 8,
44–66.

Abeles, M. (1982a). Role of cortical neuron: integrator or coincidence
detector? Israel J. Med. Sci. 18, 83–92.

Abeles, M. (1982b). Studies of Brain Function, Volume 6, Local Corti-
Bair, W., and O’Keefe, L.P. (1998). The influence of fixational eyecal Circuits: An Electrophysiological Study (Berlin: Springer-Verlag).
movements on the response of neurons in area MT of the macaque.Abeles, M. (1991). Corticonics: Neural Circuits of Cerebral Cortex
Vis. Neurosci. 15, 779–786.(Cambridge: Cambridge University Press).
Bair, W., Koch, C., Newsome, W., and Britten, K. (1994). PowerAbeles, M., Prut, Y., Bergman, H., and Vaadia, E. (1994). Synchroni-
spectrum analysis of bursting cells in area MT in the behaving mon-zation in neuronal transmission and its importance for information
key. J. Neurosci. 14, 2870–2892.processing. Prog. Brain Res. 102, 395–404.
Bair, W., Cavanaugh, J.R., and Movshon, J.A. (1997). ReconstructingAdam, H. (1998). Figur-Grund-Abtrennung mit rückgekoppelten
stimulus velocity from neuronal responses in area MT. In AdvancesMerkmalsfeldern. PhD Thesis, Department of Physics and Astron-
in Neural Information Processing Systems, M.C. Mozer, M.I. Jordan,omy, Ruhr University, Bochum, Germany.
and T. Petsche, eds. (Cambridge, MA: MIT Press).

Adelson, E.H. (1993). Perceptual organization and the judgment of
Baldi, P., and Meir, R. (1990). Computing with arrays of coupledbrightness. Science 262, 2042–2044.
oscillators: an application to preattentive texture discrimination.

Adelson, E.H. (1999). Lightness perception and lightness illusions. Neural Comput. 2, 458–471.
In The Cognitive Neurosciences, M.S. Gazzaniga, ed. (Cambridge,

Ballard, D.H., Hinton, G.E., and Sejnowski, T.J. (1983). Parallel visualMA: MIT Press).
computation. Nature 306, 21–26.

Adelson, E.H., and Movshon, J.A. (1982). Phenomenal coherence of
Barbas, H. (1988). Anatomic organization of basoventral and medio-moving visual patterns. Nature 300, 523–525.
dorsal visual recipient prefrontal regions in the rhesus monkey. J.

Aertsen, A., Gerstein, G.L., Habib, M.K., and Palm, G. (1989). Dynam- Comp. Neurol. 276, 313–342.
ics of neuronal firing correlation: modulation of “effective connectiv-

Barbas, H., and Pandya, D.N. (1989). Architecture and intrinsic con-ity.” J. Neurophysiol. 61, 900–917.
nections of the prefrontal cortex in the rhesus monkey. J. Comp.

Aertsen, A., Diesmann, M., and Gewaltig, M.-O. (1996). Propagation Neurol. 286, 353–375.
of synchronous spiking activity in feedforward neural networks. J.

Barlow, H.B. (1972). Single units and cognition: a neurone doctrine
Physiol. (Paris) 90, 243–247.

for perceptual psychology. Perception 1, 371–394.
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