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We have documented previously a close relationship between 
neuronal activity in the middle temporal visual area (MT or V5) 
and behavioral judgments of motion (Newsome et al., 1989; 
Salzman et al., 1990; Britten et al., 1992; Britten et al., 1996). 
We have now used numerical simulations to try to understand 
how neural signals in area MT support psychophysical deci- 
sions. We developed a model that pools neuronal responses 
drawn from our physiological data set and compares average 
responses in different pools to produce psychophysical deci- 
sions. The structure of the model allows us to assess the 
relationship between “neuronal” input signals and simulated 
psychophysical performance using the same methods we have 
applied to real experimental data. 

We sought to reconcile three experimental observations: 
psychophysical performance (threshold sensitivity to motion 
stimuli embedded in noise), a trial-by-trial covariation between 
the neural response and the monkey’s choices, and a modest 
correlation between pairs of MT neurons in their variable re- 

sponses to identical visual stimuli. Our results can be most 
accurately simulated if psychophysical decisions are based on 
pools of at least 100 weakly correlated sensory neurons. The 
neurons composing the pools must include a broader range of 
sensitivities than we encountered in our MT recordings, pre- 
sumably because of the inclusion of neurons whose optimal 
stimulus is different from the one being discriminated. Central 
sources of noise degrade the signal-to-noise ratio of the pooled 
signal, but this degradation is relatively small compared with 
the noise typically carried by single cortical neurons. This sug- 
gests that our monkeys base near-threshold psychophysical 
judgments on signals carried by populations of weakly inter- 
acting neurons: these populations include many neurons that 
are not tuned optimally for the particular stimuli being 
discriminated. 

Key words: motion perception; area MT; neural modeling; 
signal detection; visual psychophysics; sensory coding 

How do physiological events in sensory areas of the brain give rise 
to perceptual performance? To address this fundamental prob- 
lem, we have drawn from two experimental traditions, sensory 
neurophysiology and psychophysics. In this we follow Mountcastle 
and his colleagues, whose work remains a fundamental point of 
reference for the study of perception (Werner and Mountcastle, 
1963; Mountcastle et al., 1969, 1972). By comparing the responses 
of neurons in somatosensory cortex of the monkey with psycho- 
physical measurements obtained from human and monkey sub- 
jects, Mountcastle and his colleagues identified potential cortical 
substrates for specific tactile sensations. We have extended this 
approach to analyze neural events underlying the perception of 
visual motion. 

We recorded from directionally selective neurons in the middle 
temporal visual area (MT) of rhesus monkeys (Allman and Kaas, 
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1971; Dubner and Zeki, 1971; Van Essen et al., 1981) while the 
animals discriminated the direction of motion in a stochastic 
visual display. Our principal innovation was to measure neuronal 
responses and psychophysical judgments simultaneously, under 
conditions in which the activity of the neuron under study was 
most likely to contribute to the perceptual judgment made by the 
monkey. The results provide three important insights concerning 
the relationship between physiology and psychophysics. First, op- 
timally stimulated MT neurons are, on average, as sensitive to the 
direction of motion in our stochastic display as is the monkey 
psychophysically (Britten et al., 1992). Second, there is a subtle 
but reliable trial-by-trial association between the activity of a 
single MT neuron and the behavioral choices made by the mon- 
key. Different presentations of the same motion stimulus do not 
elicit identical neuronal responses and, near psychophysical 
threshold, this variable neuronal.response appears to be linked to 
the monkey’s choice (Britten et al., 1996). Finally, stochastic 
response fluctuations are correlated between nearby MT neurons, 
suggesting that these neurons share a common noise source 
(Zohary et al., 1994). 

In this paper, we attempt to integrate these experimental ob- 
servations into a model of the process by which sensory signals 
carried by cortical neurons generate psychophysical performance. 
The model simulates performance by pooling neuronal responses 
(based on responses actually recorded from MT neurons) and 
invoking a simple comparison to produce psychophysical deci- 
sions. The structure of the model allows us to assess the relation- 
ship between “neuronal” input signals and simulated psychophys- 
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ical performance using the same metrics we have applied to real 
experimental data. Our goal was to establish whether, and under 
what conditions, the model accurately reproduces the relation- 
ships observed in the experimental data, and thereby to gain 
insight into the neural processes underlying perceptual judgment. 

To reconcile simulation results with experimental data, we 
found it necessary to address four key issues: (1) the number of 
neurons within the sensory pools underlying performance; (2) the 
degree of correlated firing among these neurons; (3) the fidelity 
with which motion signals are encoded by individual neurons 
within the sensory pools; and (4) the amount of noise that arises 
after the sensory representation but before the psychophysical 
decision. Our experimental data-mostly from single neurons- 
are ambiguous about each of these issues, although multiunit 
recordings in MT provide an approximate upper bound on the 
degree of correlated firing, as discussed below. We therefore 
explored the effects of these four quantities by casting them as 
free parameters in various simulations. 

We find that experimental results can be simulated accurately if 
psychophysical decisions are based on pools of weakly correlated 
sensory neurons. In the form of the model that best fits the 
experimental data, pools are composed of at least 100 neurons but 
may include many times this number, because model predictions 
are essentially identical for all larger pools of correlated neurons. 
The pools must include many neurons that are not optimally 
tuned to the particular stimuli being discriminated. Central 
sources of noise degrade the signal-to-noise ratio of the pooled 
signal, but this degradation is relatively small compared with the 
noise typically carried by single cortical neurons. 

Preliminary accounts of some of this work have been presented 
previously (Britten et al., 1992; Newsome et al., 1995). 

Background 
The simulations in this paper attempt to link physiological and 
psychophysical data obtained in the context of a specific visual 
discrimination task. A brief review of the psychophysical paradigm 
and of our previous experimental results is necessary to appreciate 
why we adopted this particular model architecture, to enumerate 
the physiological constraints on the model, and to understand the 
methods we used to analyze the simulation results (Britten et al., 
1992, 1993, 1996; Zohary et al., 1994). 

The experimental data were obtained from 254 experiments in 
four rhesus monkeys (Macaca muluttu). In each experiment, ac- 
tion potentials were recorded from a directionally selective MT 
neuron while the monkey performed a two-alternative forced- 
choice discrimination of motion direction. The monkeys discrim- 
inated opposed directions of motion in a set of dynamic random 
dot patterns that contained a unidirectional motion signal embed- 
ded in a field of random motion noise. The strength of the motion 
signal, which we term the coherence of the display, could be varied 
from trial to trial by changing the percentage of dots carrying the 
unidirectional (i.e., “coherent”) motion signal. 

In the recording experiments, we measured neuronal responses 
under circumstances in which the activity of the neuron under 
study was likely to influence the monkey’s psychophysical judg- 
ments. The psychophysical discriminanda were tailored to activate 
each neuron optimally. Random dot stimuli were centered within 
the receptive field of the neuron. The axis of the direction dis- 
crimination was set to the preferred-null axis of the neuron (i.e., 
the direction that yielded best response and its opposite), and the 
speed of the coherent motion was set to the preferred speed of the 
neuron. Preferred and null direction stimuli were presented with 

equal frequency over a range of coherence levels spanning psy- 
chophysical threshold. The response of the neuron was considered 
to be the number of action potentials occurring during each two 
second presentation of the visual stimulus. In addition to the 
neuronal data, we recorded the monkey’s decision on each trial. 

These experiments yielded three salient results that constrain 
our model. Figure L4 illustrates the finding that the sensitivity of 
an average MT neuron to directional signals in the stochastic 
display is equal to the behavioral sensitivity of the monkey. The 
open circles (dashed cuwe) are psychometric data depicting the 
proportion of correct decisions made by the monkey as a function 
of motion coherence. The closed circles (solid cuwe) indicate the 
performance expected of an ideal observer judging the direction 
of stimulus motion by monitoring the responses of the neuron. 
Each neuronal data point was derived from a signal detection 
analysis of the responses of the neuron to preferred and null 
direction motion at the appropriate coherence level (see Appen- 
dix 1) (Britten et al., 1992). From this analysis, we derive a 
“neurometric” function that expresses the sensitivity of the neu- 
ron to directional signals in a form commensurate with the mon- 
key’s behavioral sensitivity measured on the same set of trials. For 
the experiment illustrated in Figure L4, the MT neuron signaled 
the direction of stimulus motion with a fidelity comparable with 
psychophysical performance. 

From each of the fitted curves in Figure L4, we extracted two 
parameters: a threshold parameter indicating the motion coher- 
ence level that supports 82% correct performance by the monkey, 
and a slope parameter reflecting the steepness of the relationship 
between performance and motion coherence. The threshold and 
slope correspond to the constants cr and /3 in the best-fitting 
cumulative Weibull distribution function (Quick, 1974): 

c p 
p = 1 - O.Sexp - ; , 

t 1 

where c is motion coherence andp is the probability of a correct 
choice. The similarity of the neuronal and psychophysical data 
varied widely across the 254 experiments in our study, with some 
neurons being considerably more and others considerably less 
sensitive than the monkey. On average, however, the ratio of 
neuronal to psychophysical threshold was 1.19 and the ratio of 
neuronal to psychophysical slope was 0.995, indicating that the 
near identity of neuronal and psychophysical performance in 
Figure L4 was typical of the data set as a whole (Britten et al., 
1992). 

Figure 1B illustrates the second major experimental result that 
constrains the model (Celebrini and Newsome, 1994; Britten et 
al., 1996). The figure depicts the responses of an MT neuron to 80 
successive presentations of a 0% coherence stimulus (these trials 
were interleaved with other, n&zero coherence trials in the actual 
experiment). Closed circles indicate trials on which the monkey 
reported seeing the preferred direction of motion, and open 
circles depict trials on which the monkey reported null direction 
motion. The frequency histograms at the right were obtained by 
summing the individual data within horizontal bins. Thus, the 
solid bars form a distribution of responses observed when the 
monkey reported the preferred direction, whereas the open bars 
comprise an analogous distribution for decisions favoring the null 
direction. Comparison of the two distributions reveals a covaria- 
tion between the responses of this neuron and the psychophysical 
judgments of the monkey: decisions favoring the preferred direc- 
tion predominated when the neuron fired strongly, whereas null 
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Figure 1. Two experimental observations relating neuronal activity in MT 
to psychophysical decisions. A, Psychometric and neurometric functions 
collected in one experiment (e065). @en symbols and dashed cuwe depict 
the monkey’s performance on a two-alternative forced-choice discrimina- 
tion of motion direction as a function of stimulus strength. The filled 
symbols and solid curve show the performance that would be achieved by 
an ideal observer monitoring the spike discharge from the MT neuron. 
Curves are best-fitting cumulative Weibull functions. In this example, 
which is representative of the average, the neuron was nearly as sensitive 
to stimulus motion as the monkey. The stimuli used in this experiment 
were tailored to the receptive-field preferences of the neuron, matching its 
preferences for location, size, speed, and direction (preferred and null). B, 
Response from neuron e065 on 80 presentations of the 0% coherent 
motion stimulus. Solid and open symbols indicate trials in which the 
monkey judged motion to be in the preferred and null direction, respec- 
tively, of the neuron. The distributions of responses for each type of trial 
are shown by the histograms (right). The difference between these distri- 
butions reveals that on a trial-to-trial basis, there was a weak covariation 
between the monkey’s judgments of motion direction and the variation in 
neural response. The spike count from this neuron predicted the monkey’s 
choice with 68% accuracy, a value we refer to as choice probability. 

direction decisions were more frequent when the neuron fired 
weakly. Note that the only difference between the trials included 
in the two frequency histograms was the monkey’s decision; the 
visual stimulus itself had the same coherence on each trial. In 
other words, the response variance of this single MT neuron could 
account for a measurable fraction of the variance in psychophys- 

ical decisions for repeated presentation of a constant subthreshold 
stimulus. 

To quantify the effect in Figure lB, we constructed a receiver 
operating characteristic (ROC) from the two frequency histo- 
grams (Green and Swets, 1966). The normalized area under this 
curve, which we term the “choice probability,” provides a criterion 
free measure of the discriminability of the two behaviors based on 
the neural response. The choice probability represents the accu- 
racy with which an ideal observer could predict the monkey’s 
decision from the response of the neuron, given previous knowl- 
edge of the distributions in Figure 1B (see Appendix 1). The 
analysis reflects the association of the responses of the neuron 
with the behavioral output of the system rather than with the 
sensory input to the system. A choice probability of 0.5 reflects a 
random association between neuronal response and decisions, 
indicating that the cell provides no basis for predicting the mon- 
key’s choices. A value of 1.0 represents perfect predictive power. 
Across our sample of MT neurons, the mean choice probability 
was 0.55, significantly greater than 0.5 (permutation test, p < 

0.0005; see Britten et al., 1996). For the data set on which most 
simulations in this paper are based, the value was 0.59. Thus, small 
fluctuations in the responses of MT neurons are related to near- 

threshold fluctuations in the monkey’s decision process. 
It is natural to suppose that the brain combines the activity of 

neurons having similar stimulus preferences. Yet combining ac- 
tivity within a pool of neurons should reduce noise sharply, 
yielding psychophysical sensitivity substantially better than the 
sensitivity of individual neurons. Similarly, if the pool were at all 
large, the response variance of any single neuron in the pool 
should have negligible impact on the monkey’s decisions. Thus, 
each of our findings suggests that the pools of neurons underlying 

performance are very small, limiting the beneficial effects of 
averaging and raising the possibility that noise carried by each 

neuron would measurably influence the outcome of near- 
threshold decisions. Because these notions depend on the noise 
carried by different neurons being statistically independent, a 
critical piece of data for resolving this issue is the level of corre- 
lated noise among neurons in the sensory pool (Newsome et al., 
1989; Britten et al., 1992). To consider an extreme example, 
trial-to-trial fluctuations in responsiveness to a given stimulus 
might be perfectly correlated among neurons in the pool. In this 
case, pooling cannot average out common noise and, therefore, 
would confer no benefit for psychophysical sensitivity. 

Zohary et al. (1994) conducted a multiunit recording study to 
measure the amount of correlated noise shared between neigh- 

boring MT neurons. They recorded simultaneously from two (and 
on rare occasions three) MT neurons while random dot stimuli 
were presented within the receptive fields of the neurons. They 
calculated correlation coefficients between the responses of the 
two neurons to repeated presentations of each stimulus condition. 
The correlation coefficients were independent of stimulus condi- 
tion and therefore were combined across conditions to obtain a 
single coefficient for each pair of MT neurons. The coefficients 
varied widely around a mean of 0.12. For pairs that shared similar 

direction preferences (separated by <90”), the mean coefficient 
was 0.19. Both mean values were significantly greater than zero 
(t test,p < 0.0001 in both cases), and we therefore conclude that 
MT neurons carry weakly correlated noise during performance of 
the direction discrimination task. 

Modestly correlated noise can fundamentally limit the sensitiv- 
ity gains accrued by pooling (Johnson et al., 1973; Johnson, 1980b; 

van Kan et al., 1985; Britten et al., 1992; Gawne and Richmond, 
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Pooled MT Signal 

F&LL~~ 2. We simulated psychophysical judgments by comparing neural 
signals in two pools. On each trial the response from N neurons preferring 
motion in the direction of stimulus motion, and N neurons preferring 
motion in the opposite direction are represented by the random variables 
~p...X$‘andXj”““...X $,,,, respectively. Intersecting lines indicate that 
these neural responses may be weakly correlated. The responses from 
each pool are averaged. The larger Pooled MTSignal dictates the Decision. 
The expected response for each neuron was derived from physiological 
data. 

1993) and can lead, in principle, to a covariation of neuronal 
response and psychophysical decision even when the relevant 
neuronal pools are large (Zohary et al., 1994). We have not tried 
previously to reconcile quantitatively the experimentally observed 
correlation level with the key experimental constraints-neuronal 
sensitivity to the motion signals, the monkeys’ psychophysical 
sensitivity, and the magnitude of the choice probability. The goal 
of the current study is to accomplish this reconciliation, and 
thereby gain insight into the nature and composition of the 
neuronal pools supporting performance and sources of noise 
intervening between sensory signal and psychophysical decision. 

Simulation methods 
Architecture 
To address these issues, we performed a set of computer simula- 
tions using Monte Carlo methods. Our calculations were based on 
a flexible pooling model, outlined in Figure 2, that permitted us to 
test several hypotheses concerning the link between neuronal 
responses and psychophysical decisions. For a single iteration of 
the model, the input was a visual stimulus of a specified coherence 
and direction, and the output was a single judgment of the 
direction of stimulus motion. The stimulus elicited responses in 
two pools of sensory neurons that were modeled after the direc- 
tionally selective MT neurons recorded in our experiments. In 
performing the discrimination, we assume that the monkey mon- 
itors two pools of neurons with opposed preferred directions. 
Because neither direction is intrinsically privileged, it seems un- 
likely that the monkey would monitor neurons selective for only 
one direction. Rather, decisions are likely to result from a com- 
parison of the evidence in favor of each alternative. Following this 
logic, our model chose the most likely direction by comparing 
activity in the two neuronal pools. Rules for pooling responses 
and forming decisions are indicated below. 

Input 

Neuronal responses. Neuronal inputs to the model were simulated 
from physiological data for the 254 MT neurons described above. 

For each neuron in our database, we measured spike counts for a 
minimum of 10 repetitions per stimulus condition tested (direc- 
tion and coherence level). The mean spike count thus defines the 
expected response of each neuron for each stimulus condition. 
Because response magnitude is a reasonably linear function of 
stimulus strength for most MT neurons (Britten et al., 1993) we 
occasionally interpolated between measured response values to 
generate an expected response to stimulus strengths that were not 
actually tested in a particular experiment. 

To perform a simulation, we randomly selected a pool of N 
neurons (with replacement) from the MT cells in our database. 
We then simulated the responses of each neuron to several 
hundred stimulus presentations, using random dot stimuli cover- 
ing a range of near-threshold motion strengths. On each simu- 
lated “trial,” the response of each neuron in the pool was gener- 
ated as a random pick from a normal distribution whose mean was 
the expected response for the stimulus presented, and whose 
variance was 1.5 times the expected response (see below). The 
object was to remain faithful both to the average responses of real 
MT neurons and to the trial-to-trial variability in these responses 
(Snowden et al., 1992; Britten et al., 1993). 

Each neuron actually contributed two response values on each 
trial, one drawn from its distribution of responses to preferred 
direction motion (pool qp . . . p$ in Fig. 2) and one drawn from 
the corresponding distribution for null direction motion (pool 
e”‘, . . . X$““n). Up and down are arbitrary designations that 
allow us to conceptualize a specific experiment, and from here on, 
we imagine that the preferred direction of every neuron in our 
data set is upward. Thus, each neuron in the data set doubled as 
a second neuron having identical response statistics but the op- 
posite direction preference. This procedure instantiates the rea- 
sonable assumption that the composition of the two pools is 
similar in all respects except the preferred direction of motion. 
For the 0% coherent motion stimulus, the expected response of 
any neuron is the same for both pools. The Monte Carlo methods 
used in generating these responses are described in more detail in 
Appendix 1. 

In simulating neuronal responses, we attempted to mimic the 
variability observed in our data. The variance of the spike count, 
measured over multiple repetitions, is nearly proportional to the 
mean response (Britten et al., 1993). Although this relationship is 
often described by a power law (Tolhurst et al., 1983; Vogels et al., 
1989; Snowden et al., 1992; Britten et al., 1993), the departure 
from proportionality is negligible (Dean, 1981). Our own data 
suggest that the variance is -1.6-2.0 times the mean (95% con- 
fidence interval for linear regression). Because these physiological 
data are typically acquired over several tens of minutes to hours, 
the ratio is likely to be inflated by slow drifts in responsiveness 
(Dean, 1981; Bradley et al., 1987). Controlling for this effect, 
Dean (1981) found that response variance was reduced to 1.5-1.7 
times the mean response. We adopted the lower value of 1.5 for 
all simulations in this paper. We performed simulations using 
larger values (within the observed range) and power law relation- 
ships, but these manipulations did not affect our results apprecia- 
bly. Notably, the variance of the neural response is not attribut- 
able to variations in the stochastic motion display because 
removal of stimulus variance (i.e., presenting the exact same 
pattern of dots on every trial) does not alter our estimate of 
variability (Britten et al., 1993). 

Number of neurons. The number of neurons, N, that provide 
input to the pools was a free parameter in our early simulations, 
because one of our major goals was to determine the range of pool 
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sizes compatible with our experimental data. Thus, the outcome 
of our simulations is sometimes plotted as a function of pool size. 
The number of simulated inputs was typically varied from 1 to 
1024. When N = 1, the pooling model reduces to the simple 
neuron-antineuron formulation we have used in the past to mea- 
sure the sensitivities of single neurons (Britten et al., 1992; Cele- 
brini and Newsome, 1994). When N is large, several simulated 
neurons may be modeled on data from the same neuron in our 
database. This allows us to simulate pool sizes larger than our 
original data set, a technique commonly used in statistical boot- 
strapping (Efron and Tibshirani, 1993). Because the responses of 
simulated neurons are stochastic, each “copy” gives rise to its own 
simulated responses and, thus, each may be regarded as a distinct 
neuron. Depending on which N neurons are chosen as inputs, the 
simulated psychophysical data can vary substantially. To minimize 
the impact of the selection procedure, we repeated each simula- 
tion several hundred to several thousand times (depending in- 
versely on N), randomly selecting a different set of N neurons for 
each simulation. The results presented in this paper are mean 
values for all repeated simulations of a particular pool size. 

Covariance between neurons. Weak covariance in the activity of 
sensory neurons can dramatically affect the outcome of a pooling 
process (Johnson et al., 1973; Zohary et al., 1994). In the present 
calculations, we modeled correlated activity among neurons by 
enforcing a prescribed covariance on their responses. At the 
beginning of a simulation, when populating the two pools with 
input neurons, we generated a set of coefficients that described 
the expected correlation between any member of the pool and 
each of the other neurons in that pool. For present purposes, we 
assume no correlation between the two pools (see below). In most 
instances, the correlation, rjj, between any pair of neurons in a 
pool was a random value between 0 and 0.4. In practice, this range 
yielded a mean correlation coefficient of 0.18, approximating the 
value measured experimentally (Zohary et al., 1994). Because the 
measurements of correlated firing in MT were obtained with a 
single electrode from neighboring MT neurons, the values may be 
considered as an upper bound to the actual degree of correlation 
within the sensory pools. More distantly separated neurons are 
likely to share less common input, leading to less response covari- 
ante. We conducted simulations incorporating various correlation 
values to determine whether our conclusions depend critically on 
the precise amount of correlation in the pools. A method for 
simulating random responses with a desired set of correlations is 
described in Appendix 1. 

Suboptimally stimulated neurons. In our physiological experi- 
ments, we always tailored the psychophysical discriminanda to 
activate optimally the neuron under study. Simulations based 
solely on such data implicitly assume that optimally tuned neurons 
are the only ones that influence decisions. If  this assumption were 
flawed, however, such simulations would incorporate an inflated 
estimate of the average sensitivity of the sensory neurons under- 
lying performance. We therefore modeled the effects of including 
neurons less sensitive to the stimuli being discriminated, casting 
the average sensitivity of the input neurons as a free parameter. 

To model less sensitive neurons, we randomly assigned to each 
neuron in the pool a scaling factor between zero and one. We used 
this factor to modify the expected response of the neuron to 
motion of any given strength. The procedure had no effect on the 
responses to 0% coherence stimuli (random noise) but attenuated 
any change in spike discharge associated with an increase in 
stimulus motion strength. For each neuron, we subtracted the 
response to 0% coherence from the response to every other 

stimulus condition, and multiplied these differences by the as- 
signed scaling factor to yield the new expected response function 
for a “less sensitive neuron.” Again, the variance for each stimulus 
condition was estimated as 1.5 times the new mean. This maneu- 
ver retains the realistic response distributions of the original data, 
while attenuating the sensitivity of the neuron to random dot 
motion. 

Although it is rational that the scaling factors should be 
bounded between zero and one, it is not obvious how the factors 
should be distributed over this interval. We show in Appendix 2, 
however, that the actual shape of the distribution is irrelevant; 
simulation results depend on the average sensitivity of neurons in 
the pool (and their correlation). In our simulations, therefore, we 
tested the effects of different sets of scaling factors that yielded 
progressively lower average sensitivity values (i.e., higher neuro- 
nal thresholds) within the pool of sensory neurons. 

Pooling 
Calculating the pooled signals. Each simulated decision reflects a 
comparison between the activity of two pools of neurons (labeled 
xL’r’ and X“Ow”’ in Fig. 2). Because we do not know how the brain 
pools these signals, we explored a number of pooling mechanisms, 
all of which yielded the same basic pattern of results (Britten et 
al., 1992). For the present study, therefore, we computed a simple 
average of the inputs because the pooled signal can then be 
interpreted intuitively in terms of spike rates. 

Pooling noise. The brain cannot compute the averaged (pooled) 
firing rates with arbitrary precision. To reflect this, we perturbed 
the pooled average by adding what we call pooling noise. On each 
trial, the averaged values from up and down pools were not 
compared directly, but provided the mean values of two Gaussian 
distributions from which the pooled responses were picked at 
random. We allowed the variance of the pooling noise to scale 
proportionally to the pooled mean and therefore express pooling 
noise as a ratio of variance-to-mean-variance of the zero-mean 
Gaussian noise source, divided by the pooled mean. Parameter- 
izing pooling noise in this manner helped us develop intuitions 
about the neurons underlying the pooling stage (see Appendix 3). 
Conceptually, pooling noise encompasses all sources of variability 
that would intervene between our calculation of the pooled aver- 
age and the decision. 

Note that for simplicity we performed our initial simulations 
assuming no pooling noise. Thus, Figures 3 and 4 reflect calcula- 
tions of precisely averaged response values from MT. Pooling 
noise is incorporated explicitly in Figure 5 and subsequent 
analyses. 

output 

Decision rule. Simulated psychophysical decisions were computed 
simply. The model’s “choice” was the direction corresponding to 
whichever pool of neurons gave a larger mean response. As 
discussed in the preceding paragraph, the mean values could be 
corrupted by the addition of pooling noise, but the decision rule 
remained the same: the larger pooled value won. 

On all simulated trials, stimulus motion was upward-that is, in 
the preferred direction of neurons comprising the upper pool in 
Figure 2. Thus, the simulated decision was correct when the 
pooled response of the up pool was larger and incorrect when the 
response of the down pool was larger. The designations of “direc- 
tion” and “correct” are arbitrary for the 0% coherent motion 
stimulus. 

Our approach represents one possible architecture of the deci- 
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sion process, even though others might be plausible. Rather than 
pooling and then comparing, for example, we might consider the 
reverse: comparing responses between pairs or small groups of 
neurons and then pooling decisions as one would tally votes in an 
election. We have explored this and other models, some of which 
seem implausible from a biological point of view and many of 
which make obviously erroneous predictions (see Appendix 4 for 
one example). 

Predicted psychophysical performance. Once the parameters for 
a given simulation were specified, the model generated 500 trials 
for each of several motion strengths, and simulated decisions were 
tabulated as the percentage of correct choices as a function of 
stimulus strength. These data were fitted with a sigmoidal curve 
like those in Figure L4 (Quick, 1974) and threshold and slope 
parameters (a and /3, Eq. 1) were extracted as described for the 
real experimental data. We repeated the entire process several 
hundred times, each time populating the pools with a new set of 
neurons, but otherwise enforcing the same set of assumptions. We 
considered the geometric mean threshold and average slope from 
these repetitions to be the prediction of the model for psycho- 
physical performance given the initial set of assumptions. We then 
varied an assumption (e.g., the number of neurons in the pool) 
and repeated the process, to explore the effect of each model 
parameter on simulated psychophysical performance. 

We compared the mean thresholds and slopes thus obtained 
with the mean thresholds and slopes actually produced by our 
monkeys in our recording experiments. 

Predicted choice probability. An attractive feature of the model 
is that the responses of each input neuron and the psychophysical 
decision were declared explicitly on each trial. We could therefore 
compute a choice probability for each simulated neuron, to indi- 
cate the degree of trial-to-trial association between simulated 
neuronal responses and simulated psychophysical decisions. We 
calculated these choice probabilities in the manner illustrated in 
Figure 1B for a real MT neuron (see also Appendix 1) (Celebrini 
and Newsome, 1994; Britten et al., 1996). For every simulation, 
choice probabilities were computed for each neuron at 0% 
coherence. 

Comparisons with experimental data 

Our central goal was to identify simulation parameters for which 
(1) simulated psychophysical thresholds matched the geometric 
mean thresholds generated by our monkeys during the MT re- 
cording experiments, and (2) simulated choice probabilities 
matched the average choice probabilities measured for our MT 
neurons. Although we were primarily concerned with compari- 
sons of mean values, we found it helpful on occasion to consider 
distributions of values as well. 

At first glance, it might appear inappropriate to model average 
psychophysical performance using input from all MT cells that we 
recorded. After all, the responses of individual MT neurons were 
measured under a wide variety of psychophysical conditions, be- 
cause the stimulus parameters were adjusted to match the phys- 
iological characteristics of each cell. We checked the validity of 
our comparison procedure by analyzing a subset of experiments 
performed under stimulus configurations that resulted in psycho- 
physical thresholds near the population mean (11% coherence). 
Neuronal thresholds measured in this subset of experiments (4.0- 
91.7% coherence) covered nearly the full range of thresholds 
observed over the entire database (2.4-91.7% coherence). We 
concluded that it is reasonable to model average performance 
using the full set of data from neuronal recordings. 

Variability across subjects 

Psychophysical sensitivity, neuronal sensitivity, and choice proba- 
bility were quite similar for two of our experimental animals 
(monkeys E and K). Aspects of the data varied, however, in the 
other two animals (monkeys J and W). Coincidentally, monkeys E 
and K are the two animals for which experimental measurements 
of correlated activity are available (Zohary et al., 1994). Most of 
our simulations were therefore based on the 90 neurons recorded 
from these two monkeys. We did, however, also simulate the data 
from the other monkeys to identify differences that might account 
for the variations in the experimental data. 

RESULTS 
Each simulation incorporated a set of initial assumptions concern- 
ing the size and composition of the pools, the level of correlation 
among neurons in each pool, and the amount of noise at the 
pooling stage. Given the set of initial assumptions, each simula- 
tion generated two main predictions: psychophysical threshold 
and the choice probability for each neuron in the pool. Because 
the assumptions incorporated in the model are really hypotheses 
about the way calculations are performed by the nervous system, 
the output of the model was constantly checked against actual 
experimental observations. We wished to identify model condi- 
tions that produced thresholds and choice probabilities similar to 
the mean values observed in our experiments. We first present the 
simplest form of the model schematized in Figure 2, in which 
input neurons were restricted to those we actually recorded from 
MT and pooling noise was assumed to be absent. The simplest 
model failed to reproduce the experimental data, and this failure 
could not be overcome simply by manipulating the number of 
neurons in the pools. To rectify these problems, in subsequent 
sections we present simulations that used broader criteria for 
including neurons in the pools, and added pooling noise. 

In Figure 2 we showed the structure of the model and our 
neuronal notation in a general way. In this section, we will elab- 
orate this model and explore some variations on its general form. 
For this purpose, it is useful to adopt the thumbnail sketch 
representation shown in Figure 3A. The circle on the left repre- 
sents a pool of MT neurons preferring all possible directions of 
motion. The shading of elements preferring pure up and pure 
down motion represents a choice of input neurons restricted to 
those like the ones we recorded, optimized for the discrimination. 
In this form, signals from these neurons were simply compared 
and the decision followed the larger signal. 

Pool size and correlation 

Figure 3B depicts the familiar influence of pool size on simulated 
psychophysical threshold (Johnson et al., 1973, 1979; Britten et al., 
1992; Zohary et al., 1994). I f  each neuron contributes an inde- 
pendent signal to the pooled average (i.e., they share no corre- 
lated activity), simulated threshold falls with the square root of 
pool size, approximately, as illustrated by the solid line in Figure 
3B. This is a natural consequence of signal averaging, analogous 
to the improved estimation of the mean with increased sample 
size. If  neuronal activity in the sensory pools is correlated, how- 
ever, the common noise induced by correlation cannot be elimi- 
nated by averaging; the improvement in simulated threshold stops 
at a pool size of -100 neurons, as illustrated by the dashed line in 
Figure 3B. The dashed curves in Figure 3 were computed with an 
average correlation coefficient of 0.18, the average correlation 
between MT neurons having similar physiological properties (Zo- 
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Figure 3. Effect of pool size on threshold and choice probability for 
independent and weakly correlated neural responses. These simulations 
used only neurons from our data set and assumed no central pooling noise. 
A, Thumbnail sketch of the model used in these calculations. The Decision 
reflected a direct comparison of averaged responses from two pools of 
neurons. The shaded sector indicates that only neurons with appropriate 
receptive-field properties were included in the pool-that is, neuronal 
stimulus preferences that matched the direction, speed, and location of 
the discriminanda. B, Predicted Threshold is plotted as a function of the 
number of neurons in the pools, N. When neural responses were assumed 
to be independent (solid line) the threshold fell roughly with the square 
root of the number of neurons (slope = -0.58 on log-log scale). When 
responses were weakly correlated (F, = 0.18, dashed line) threshold fell to 
an asymptotic value. The horizontal line indicates the mean psychophysical 
threshold from monkeys E and K. C, Predicted Choice probability is 
plotted as a function of pool size. When neural responses were assumed to 
be independent (solid line), the choice probability approached chance 
(0.5) with increasing pool size. For weakly correlated neurons (dashed 
line), the average choice probability approached an asymptote of 0.64. The 
horizontal dotted line indicates the mean choice probability from the 
neurons recorded from monkeys E and K. D, Choice probability and 
predicted Threshold are plotted as a parametric function of pool size. The 
solid curve was obtained assuming independent neural responses; the 
dashed curve depicts simulated values when neural responses were weakly 
correlated. A few values of pool size are indicated to aid in comparison of 
the two curves. The dashed curve is shorter because predicted values 
reached an asymptote for IZ = 50-100 neurons. In this and subsequent 
figures, horizontal and vertical dotted lines indicate the mean observed 
choice probability and threshold (the same values plotted in4 and B); the 
shaded box represents the mean values -C 2 SE. 

hary et al., 1994). Thus, weak correlation like that observed in MT 
places fundamental limits on the benefits of signal averaging. 

Figure 3C illustrates the influence of pool size on the mean 
choice probability measured for single simulated input neurons. If 
each neuron is independent of the others (solid curve), mean 

choice probability approaches an asymptotic value of 0.5, indicat- 
ing only a chance relationship between the monkey’s decisions 
and the variable discharge of any single neuron in the pool. This 
is not surprising. If the responses of individual neurons fluctuate 
independently, any one neuron will have minimal impact on the 
trial-to-trial variation of the pooled average and thus on the 
decision. Conversely, weak correlation results in a robust choice 
probability, even for arbitrarily large pool sizes. With an average 
pairwise correlation coefficient of 0.18, simulated choice proba- 
bility approaches an asymptote of 0.64 by 50-100 neurons (Fig. 
3C, dashed curve). Weak correlation causes the response of each 
neuron to covary with the pooled average and hence with the 
decision (Zohary et al., 1994). 

The key question, however, is whether weak correlation can 
account both for the experimentally observed thresholds and for 
the choice probabilities. Inspection of Figure 3, B and C, shows 
that appropriate values of these two outputs are not obtained for 
the same values of pool size. Figure 30 illustrates this point in a 
way we will use a number of times, by means of a parametric plot 
of simulated choice probability versus simulated threshold for 
varying pool sizes. This graph shows the same results as in Figure 
3, B and C. The number of neurons is now not shown explicitly but 
is understood to increase as the curves traverse from high to low 
values on the threshold and choice probability axes. Again, the 
solid curve illustrates the results assuming independence of the 
sensory neurons, whereas the dashed curve depicts the outcome 
when the neurons in each pool share an average correlation 
coefficient of 0.18. The upper right terminus of each curve shows 
the predicted results when each pool is populated by a single 
neuron. As pool size increases, both curves sweep down and to the 
left toward lower choice probabilities and lower thresholds. The 
dashed curve is shorter than the solid curve because choice 
probability and threshold reach asymptotic values for large pool 
sizes. 

The dotted lines in Figure 30 represent the mean threshold and 
mean choice probability actually observed in the 90 experiments 
from monkeys E and K that served as the basis for the simulations. 
Thus, the intersection of the two dotted lines indicates the locus 
where simulation agrees perfectly with experiment. The shaded 
region around the intersection indicates 2 SE on either side of 
each experimental mean. Clearly, the simulated data do not 
approach the region that would satisfy the joint constraints of 
measured thresholds and measured choice probabilities. In es- 
sence, thresholds are best modeled by small pools, whereas choice 
probabilities are best modeled by larger pools. Introducing cor- 
relation into the pools helps, particularly for large pool sizes; the 
lower left terminus of the dashed line (representing large pool 
sizes) is much closer to the solution locus than the lower left 
terminus of the solid line. Neither form of the model, however, 
adequately satisfies the constraints. 

We believe the simple form of the model fails because it 
embodies unrealistic assumptions about the composition of the 
neuronal pools and about the precision of biological calculations 
based on the responses in these pools. 

Including suboptimally activated neurons in the pools 
We devised a method for simulating the impact on performance 
of including neurons that were not optimally driven by the stim- 
ulus, because we do not know a priori which sensory neurons 
actually influence the monkeys’ decisions. It might be that the 
monkey heeds signals that arise from neurons whose stimulus 
preferences do not match the stimuli being discriminated (e.g., 
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Figure 4. Inclusion of less well activated neurons in the pools affects pre- 
dicted threshold only. These simulations assumed weak correlation (Fq = 
0.18) and asymptotic pool size (n = 128); there was no central pooling 
noise. Dotted lines and box indicate experimentally derived constraints as 
in Figure 3. A, Thumbnail sketch of the model used to simulate these 
results. Shaded sectors convey one possible interpretation of the less 
sensitive neurons, namely, those selective for directions other than upward 
and downward. The sketch should be taken generically to reflect inclusion 
of neurons for which receptive-field properties did not match those of the 
discriminanda. B, Predicted psychophysical TJzreshold is plotted as a func- 
tion of mean neuronal threshold. The value for neuronal threshold was 
normalized to the mean obtained using only the neurons in our data set. 
A value of 1 indicates that only neurons from our data set are included; a 
value of 2 indicates that the pools contained neurons that were, on 
average, half as sensitive as those in our data set. C, Predicted Choice 
probability is plotted as a function of Mean neuronal threshold. Inclusion of 
less well activated neurons in the pool failed to affect thepredicted choice 
probability. D, Choice probability and predicted Threshold are plotted as a 
parametric function of mean neuronal threshold. Toward the left, the 
pools contained only neurons like those in our data set; toward the right, 
the pools were composed predominantly of relatively inactive neurons. 

neurons preferring other directions of motion). Inclusion of such 
neurons raised the mean neuronal threshold of the pool com- 
pared with the mean threshold of the optimally tuned neurons we 
actually studied. The ratio of these means (simulated neurons to 
actual MT neurons) provides a convenient way to parameterize 
the extent to which less sensitive neurons were included in a given 
simulation. The thumbnail sketch in Figure 4A represents these 
neurons by widening the range of neuronal preferred directions 
included in the “up” and “down” pools; note that this illustrative 
example is only one of several ways in which neurons insensitive to 
the test stimuli might influence perceptual decisions. 
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Adding such “insensitive” neurons to the pools is at odds with 
the notion that pool sizes are small. If decisions are based on a 
very small number of sensory neurons, the critical neurons should 
be well tuned to the psychophysical discriminanda; neurons of 
poor sensitivity should be excluded. (Very small pool sizes appear 
implausible on other grounds as well, an issue to which we will 
return in the Discussion.) In all of the following simulations, 
therefore, we populated each input pool with 128 neurons from 
the data set of monkeys E and K, a value that is asymptotically 
large when the input neurons are weakly correlated (Fig. 3). 

Figure 4 shows the effect of including less well activated neu- 
rons. An average correlation coefficient of 0.18 was incorporated 
into the sensory pools to mimic that observed in recordings from 
MT. Inclusion of these less sensitive neurons in the pools naturally 
elevated the average single unit threshold and therefore elevated 
the psychophysical threshold predicted by the model (Fig. 4B). 
Increasing values on the abscissa reflect progressively more liberal 
criteria for including neurons in the pools. Toward the left, the 
pools consist of neurons like the ones we recorded, well matched 
to the psychophysical task at hand. Toward the right, these 
matched neurons constitute only a minority of the pool. Figure 4B 
shows that simulated psychophysical thresholds could be recon- 
ciled with observed psychophysical thresholds when the presence 
of poorly activated neurons raised the mean threshold of the input 
pools by a factor of 3-4 over that of our sample of MT neurons. 

Perhaps less intuitively, Figure 4C shows that inclusion of less 
well activated neurons had no effect on the simulated choice 
probabilities, which remained roughly constant over a wide range 
of pooled sensitivities (solid line). To understand this result, recall 
that when the input pools are large, a significant choice probability 
exists o&y by virtue of correlated firing within the pools. In Figure 
3, for example, the choice probability approaches 0.5 for large 
pool sizes when the sensory neurons are independent, reflecting a 
random association between response and decision. When modest 
levels of correlation were introduced to the pools, however, the 
asymptotic choice probability increased to a robust value of 0.64. 
In essence, any neuron whose response fluctuations are correlated 
with the pooled signal will exhibit a choice probability; the sensi- 
tivity of the neuron is irrelevant. Thus, inclusion of suboptimally 
driven neurons, although reconciling simulated and experimental 
thresholds, cannot account for the experimentally observed choice 
probabilities. 

This failure is depicted in the parametric plot of Figure 40. 
Simulated psychophysical threshold is plotted against simulated 
choice probability as less sensitive neurons are added to the pool. 
The threshold ratio (the abscissa in Fig. 4B,C) is no longer shown 
explicitly, but is understood to increase as the curve traverses from 
low to high values on the threshold axis (left to right). The 
observed thresholds and choice probabilities again are repre- 
sented by the dotted lines, and the shaded region demarcates 2 SE 
of each mean observation. The line representing the simulation 
results lies well outside the shaded region, indicating a failure to 
satisfy both of our experimental constraints. We now consider 
solutions of this problem by introducing a new component into the 
simulations to represent the imprecision of central calculations. 

Pooling noise 
The brain must implement pooling operations with real neurons 
that are themselves sources of variability. We simulated this 
centrally generated noise by adding a zero-mean noise source to 
each pooled average response. The variance of the noise distri- 
bution quantifies the amount of pooling noise and is conveniently 
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Pooled “up” signal with experimental observation (dotted line) for variance-to-mean 
ratios of 1.5-2. 

Unlike adding less sensitive neurons, pooling noise reduced the 
choice probability (Fig. 5C). To understand this, realize that 
pooling noise uncouples the decision from the signals in the two 
pools of sensory neurons. A second source of variation now 
influences near-threshold decisions, and the new source of varia- 
tion is unrelated to the signals carried by the input neurons. Thus, 
pooling noise weakens the association between the sensory signals 

Pooled “down” signal 
and the decision. Simulated choice probability could be brought 
into agreement with observed choice probability (dotted line) 
when pooling noise attained a variance-to-mean ratio of 0.2-0.4. 
Clearly, however, the amount of pooling noise that reconciled 
simulation and experiment differed substantially for threshold and 
choice probability. 

Figure 5D illustrates this result by plotting simulated choice 
probability against simulated threshold for different amounts of 
pooling noise. Pooling noise is low at the upper left end of the 
curve and increases as the curve tracks downward and rightward. 
The curve fails to pass through the solution locus representing our 
experimental results (shaded region), indicating that adding pool- 
ing noise alone could not bring the model into conformity with 
both experimental constraints. Thus, neither noise at the input 
stage of the model (i.e., less sensitive neurons) nor noise at the 
pooling stage provided an adequate account of our data. 

Threshold (% coherence) 

0 I I 
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Figure 5. Effect of central pooling noise on predicted threshold and 
choice probability. These simulations assumed weak correlation (TV = 
0.18) and asymptotic pool size (N = 128). Only neurons from our data set 
were included in the pools. Dotted lines and box indicate experimentally 
derived constraints as in Figure 3. A, Thumbnail sketch of the model used 
to simulate these results. Pooled averages were perturbed by a zero-mean 
Gaussian noise source. The variance of the noise was proportional to the 
pooled average. B, Predicted psychophysical Threshold is plotted as a 
function of pooling noise. The latter is parameterized by the ratio: vari- 
ance of the zero-mean noise source divided by the pooled mean response. 
Predicted threshold increased as noise was added to the pooled response. 
C, Predicted Choice probability is plotted as a function of Pooling noise. 
The relationship between neuronal discharge and the simulated decision 
was attenuated by central pooling noise. D, Choice probability and pre- 
dicted Threshold are plotted as a parametric function of pooling noise. 
Notice that different amounts of pooling noise were required to reconcile 
the choice probability and threshold with experimentally derived values. 

Figures 40 and 5D suggest that a combination of suboptimally 
stimulated neurons and pooling noise might account for the 
experimental data. A thumbnail sketch depicting this kind of 
model is shown in Figure 6A, combining the broad selection rule 
of Figure 4A with the pooling noise introduced in Figure 5A. One 
recipe for reconciling both observations is to add pooling noise to 
the basic model, tracking downward and rightward along the 
curve in Figure 5D until the simulated choice probability agrees 
with the observed choice probability. Retaining this amount of 
pooling noise, we then populate the pools with less sensitive 
neurons, moving our curve rightward (as in Fig. 40) until simu- 
lated psychophysical threshold agrees with observed threshold. 

described as a fraction of the pooled (average) spike count, or as 
a variance-to-mean ratio. We now consider the effects of this noise 
on our model, without including the simulated insensitive neurons 
we have just considered in Figure 4. Figure 5A shows this form of 
the model as a thumbnail sketch. The pool of input neurons is 
again restricted to “pure” up and down neurons, as in Figure 3A, 
but with the addition of pooling noise. 

The curves and arrows in Figure 6B illustrate this strategy. The 
curve on the left shows the results from Figure 5D. As we added 
pooling noise to the model, the curve swept from point A toward 
higher thresholds and lower choice probabilities. By raising the 
average threshold of neurons in the pool, we shifted this entire 
curve directly rightward toward higher thresholds without affect- 
ing choice probabilities, causing the curve to intersect the shaded 
region where both experimental constraints are satisfied. Points C 
and D represent simulations with the same amounts of pooling 
noise as points A and B, respectively. The CD curve differs, 
however, in that the input pools in the model were composed of 
neurons 2.5 times less sensitive, on average, than those we re- 
corded from MT. The pooling noise associated with points B and 
D had a variance-to-mean ratio of 0.3. 

Figure 5B shows the effect of pooling noise on predicted thresh- 
old. The simulation incorporated 128 neurons and an average 
correlation coefficient of 0.18 (i.e., asymptotically large pools). 
The amount of pooling noise is plotted on the abscissa, with 
variance-to-mean values ranging from 0 (no pooling noise added) 
to 2 (substantial pooling noise added). Simulated threshold rose 
as pooling noise increased, coming into reasonable agreement 

With these particular values, we achieved our goal in the terms 
we originally established. It is interesting to consider just what 
these values mean. What does it take to persuade the’model to 
produce the proper outcomes? First, the threshold ratio of 2.5 
implies that pooling in the brain is not restricted to optimally 
tuned neurons, but includes neurons having a broad range of 
sensitivities. For example, the pools may include many neurons 
from MT or other visual areas that modulate only weakly along 
the directional axis of the psychophysical discrimination. This 

A successful model 



Shadlen et al. . Neuronal and Behavioral Responses to Visual Motion J. Neurosci., February 15, 1996, 76(4):1466-1510 1495 

A 0.7 
Pooled “up” signal 

0.65 

Pooled “down “ signal ‘a 
is 

0.7 0.55 

B 

065- A C 
0.5 

% 
1 IO 

g 

G 

‘Lb, 
B l 

Threshold (“? coherence) 

B 
-L 
“*q 

z 0.6. 
i, Figure 7. Effect of correlation strength on predicted threshold and choice 

jtJ -*w_(n_- ;,a*- D probability. Choice probability and predicted Threshold are plotted as a 

8 parametric function of pooling noise for five values of correlation. The 
‘8 curve representing a mean correlation coefficient of 0.18 corresponds to 

5 the successful model shown in Figure 6 (curve CD in that figure). The 
variance-to-mean ratio of the pooling noise varies from 0 to 2 as the curves 

0.55 - traverse from lef to right on the graph. Aster&h demarcate variance-to- 
mean ratios of 0.2 and 0.4. The pools included less sensitive neurons than” 
those recorded from monkeys E and K (mean unit threshold = 2.5 times 
observed mean). These simulations assumed an asymptotic pool size (N = 

05 
128). Dotted lines and box indicate experimentally derived constraints, as 

1 10 above. 
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Figure 6. A successful model. These simulations assumed weak correla- primary goal of reconciling experimentally observed neuronal 
tion (Fz, = 0.18) and asymptotic pool size (N = 128). Dotted lines and box sensitivities, choice probabilities, and psychophysical thresholds. 
indicate experimentally derived constraints as in Figure 3. A, The model The model suggests that perceptual decisions are based on pools 
incorporates features of the previous two figures. Pools contained neurons 
for which preferences did not necessarily match the properties of the of weakly correlated neurons, including many that are not tuned 
discriminanda, and noise was added to the pooled averages. B, Choice optimally for the particular stimuli being discriminated. Both 
probability and predicted Threshold are plotted as a parametric function of psychophysical sensitivity and choice probability are degraded 
pooling noise as in Figure 5. Curve AB was obtained using only neurons 
from our data set. Cclrve CD incorporated less sensitive neurons in the 

modestly by centrally generated sources of noise. We used this 

pool. The mean neuronal threshold‘was 2.5 times the mean value from our 
basic form of the model to explore several related questions of 

data set. These curves show how the model parameters can be manipu- interest. How are our results affected by changes in the level of 
lated to reconcile predicted choice probability and threshold with exper- correlated firing or, more generally, how do the various model 
imentally derived constraints. Point A marks the predictions using only parameters interact? Does the model accurately predict the mea- 
neurons from our data set and no pooling noise. To reach point B, pooling 
noise was added to achieve the proper choice probability. To reach point 

sured slope of the psychometric function? Can the model account 

D, less sensitive neurons were included in the pool. for an experimentally observed correlation between neuronal 
sensitivity and choice probability? How well does the model 

might mean that neurons selective for directions other than up- 
accommodate differences among the data sets of individual 
monkeys? 

ward and downward influence the monkey’s decision, as depicted 
in Figure 6A, or it might imply that neurons with different pref- Dependence on the level of correlated firing 
erences for speed, or size, or with receptive fields only partly Of the main observations we seek to reconcile, the degree of 
covering the stimulus could play a role. Second, the addition of correlated firing between neurons is the least determined. This is 
pooling noise suggests that the brain cannot achieve the degree of because the technique of recording adjacent neurons through a 
noise reduction accomplished by the averaging step in the model, single electrode may overestimate the degree of correlation 
although it comes close. This is not surprising because real neu- among neurons within the pools. For this reason, we explored the 
rons, not digital computers, must implement pooling operations in effect of variation in the level of correlated firing on the behavior 
the brain. Notice, however, that the amount of pooling noise of the model. 
incorporated in the model (variance-to-mean ratio = 0.3) is We generated predictions for threshold and choice probability 
substantially less than the noise typically associated with single as a function of pooling noise for five different levels of correlated 
cortical neurons (variance-to-mean ratio - 1.5). This is consistent firing (Fig. 7). After the results developed in preceding sections, 
with the idea that psychophysical decisions are based on pooled we populated the pools with neurons 2.5 times less sensitive, on 
neuronal signals that have much less variance than that expected average, than the ones we recorded. The parametric curves sweep 
of a single cortical neuron (see Appendix 3). from the upper left to the lower right as pooling noise is added to 
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the model. For comparison, asterisks demarcate the interval on 
each curve representing pooling noise with variance-to-mean ra- 
tios between 0.2 and 0.4, the range used in the successful analysis 
documented in Figure 6. 

As indicated previously, simulated and experimental data can 
agree nicely when the average pairwise correlation within the 
sensory pools is 0.18 (middle cuwe). Figure 7 also shows that small 
changes in the average correlation coefficient led to substantial 
shifts in the predictions of the model. Notice that the curves 
representing correlation coefficients of 0.09 and 0.3 miss the 
shaded solution locus. These simulations could be brought into 
agreement with experimental observations by adjusting the aver- 
age sensitivity of the pool, thereby shifting the curves horizontally 
(compare Fig. 6). Reconciliation was difficult, however, if the 
pairwise correlation was substantially higher or lower than these 
values. With an average correlation coefficient of 0.05, for exam- 
ple, the curve representing the simulated results (Fig. 7, bottom 
cuwe) passes below the shaded solution locus. Threshold and 
choice probability cannot be reconciled simultaneously unless we 
populate the input pools even more densely with suboptimally 
activated neurons, moving the lower curve directly rightward on 
the graph. For this strategy to work, however, we would have to 
assume a complete absence of pooling noise, which we believe to 
be implausible (see Appendix 3). For average correlations of 
~0.05, the model failed for any combination of suboptimally 
activated neurons and pooling noise. 

8 .- 
0 

6 

Threshold (Oh coherence) 

The model is no more tolerant of high correlation coefficients. 
The top curve in Figure 7, incorporating a mean pairwise corre- 
lation of 0.4, could be forced through the solution locus only if the 
pools were populated purely with optimally stimulated neurons, 
shifting the entire curve leftward. For this model to succeed, in 
fact, the pools had to be populated from a very select group of the 
most sensitive neurons we recorded. Even then, only the rightmost 
points on the curve intersected the shaded region, and these 
points reflected large amounts of pooling noise, with variance-to- 
mean ratios exceeding 1.5. Although such values may not be 
impossible, we will argue in Appendix 3 that they are unlikely. 

Figure 8. Effect of each of the model parameters on predicted choice 
probability and threshold, Using experimentally derived measures of neu- 
ral response and correlation, the pooling model predicted a psychophys- 
ical Threshold that is too low and a Choice probability that is too high 
(asterisk). These estimates pertain to pool size of >50-100 neurons. 
Effects of each manipulation are indicated qualitatively by the direction of 
the associated arrow. From these heuristics it is possible to predict the 
qualitative effects of various combinations of parameters. Dotted lines and 
box indicate experimentally derived constraints, as above. 

rises and choice probability falls. If correlation between sensory 
neurons is weaker, then choice probability becomes smaller while 
threshold becomes even lower (sensitivity improves). Finally, re- 
ducing the number of neurons in the pools would raise the choice 
probability and increase threshold, whereas larger pools would 
have negligible affect unless this manipulation were accompanied 
by a change in average correlation or unit sensitivity. 

The results in Figure 7 provide a useful perspective on our 
modeling effort. Perhaps most important, they show that the 
number of free parameters in the model did not guarantee suc- 
cess; plausible solutions depend critically on the degree of pair- 
wise correlation within the sensory pools. Put another way, the 
model predicts that the average correlation within the pools 
should lie between 0.1 and 0.3, a range that corresponds well with 
the correlation values measured in monkeys E and K (Zohary et 
al., 1994). 

Summary of interactions among model parameters 
We have considered several factors that affect the relationship 
between single-cell discharge and psychophysical decisions: pool 
size, single-unit sensitivity, correlation, and pooling noise. Figure 
8 illustrates qualitatively how these factors influence the model’s 
estimates of psychophysical threshold and choice probability. 

Figure 8 shows how these factors interact. For example, a 
slightly lower correlation would necessitate less pooling noise to 
drive the asterisk into the solution locus, but would require that 
less sensitive neurons comprise the pools. Similarly, if less sensi- 
tive neurons were more weakly correlated with the pool, their 
impact on sensitivity might be offset partially by a lower average 
correlation, and choice probability would be lower (see Appendix 
2). Although derived from an analysis of motion signals in MT, 
these heuristics are applicable, in principle, to many neural cir- 
cuits subserving near-threshold psychophysical decisions (John- 
son, 1980b). 

Shape of the psychometric function 

Our simplest pooling model, containing only optimally tuned 
neurons and lacking pooling noise, overestimated the choice 
probability and underestimated psychophysical threshold, as illus- 
trated by the asterisk. This asterisk corresponds to the upper left 
point of the curves in Figures 40 and 5D. Each arrow in Figure 8 
indicates the effect of changing a model parameter. For example, 
if the pools include less sensitive neurons, then the estimate for 
threshold rises while choice probability is unaffected. If noise 
intervenes between MT and the formation of a decision, threshold 

We have so far compared the monkey’s performance with an 
estimate of threshold sensitivity. Recall, however, that the mon- 
key’s behavior is described by a psychometric function, like the 
one in Figure L1, which has both a threshold and a slope. The 
threshold, used extensively in our previous analyses, is the stim- 
ulus strength supporting 82% correct choices. The slope (/3 in Eq. 
1) describes the rate of change in performance with changes in 
motion strength. An account of the monkey’s psychophysical 
performance should explain both the slope and threshold of the 
observed psychometric function. 

The average slope of the psychometric function for our mon- 
keys was 1.20 (for E and K, it was 1.23); human observers have 
similar psychometric function slopes on this task (Downing and 
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Figure 9. Predicted slope of the psychometric function. The observed 
mean slope from monkeys E and K is indicated by the horizontal dotted 
line. A, The slope of the PMF is plotted as a function of Meavl unit 
threshold (normalized to the mean of neurons selected from our data set). 
These simulations used asymptotically large pool size (iV = 128), weak 
correlation (Y,), but no pooling noise. A decrease in the sensitivity of the 
pool was associated with a modest rise in the slope of the PMF. B, The 
slope of the PMF is plotted as a function of increasing Pooling noise, These 
simulations assumed the same parameters as in A, except the mean unit 
threshold was 2,5 times the mean of neurons selected from our data set. 

Movshon, 1989). All of the simulations summarized thus far 
produced estimates of slope between 1.0 and 3 ..4. Because of the 
uncertainty associated with estimation of these slopes (Nachm ias, 
1980), it may be wise to regard any of these results as compatible 
with the data. Nevertheless, we observed an interesting effect on 
slope when adding the two noise sources to the pooling calcula- 
tions. These effects are summarized in Figure 9. Using asymptot- 
ically large pools of weakly correlated neurons recorded from 
monkeys E and K, we obtained a mean slope of 1. By including 
less sensitive neurons in the pool (Fig. 9A), the slope increased to 
a maximum value of 1.34. The simulations used to produce Figure 
9A were the same as those used for Figure 4. The abscissa 
represents the average single-unit threshold normalized to the 
neurons in our database. When the mean threshold was 2.5 times 
greater than the neurons in our database, the slope was 1.10-1.15. 

Adding pooling noise to the model also modestly increased the 
slope of the psychometric function, as shown in Figure 9B. To 
generate this plot, we included less sensitive neurons in the pools 
so that the average neuronal threshold was 2.5 times greater than 
the neurons in our sample (same simulations as Fig. 6, curve CD). 
Thus, with no pooling noise, the curve intersected the ordinate at 
P = 1.1. As pooling noise was added to the model, the slope 
increased to a value of 1.30. It is striking that the model generated 
a slope of 1.23 (the mean value for monkeys E and K) when the 
pooling noise had a variance-to-mean ratio of 0.3. This is the same 
combination of pooling noise and the same mixture of neuronal 
preferences that we found compatible with the observed threshold 
and choice probability. Although this is gratifying, we recognize 
that these effects are small, and we are disinclined to exclude any 
range of model parameters on the basis of this analysis. We have 
analyzed other classes of models, however, that make more ex- 
treme predictions for the slope parameter (Britten et al., 1992), 
and we will consider one such model in Appendix 4. 

Choice probability 
sensitive neurons 

is greater for more 

We have described elsewhere an inverse relationship between 
neuronal threshold and choice probability in both MT and the 
medial superior temporal visual area (MST): the responses of 
low-threshold neurons covary more strongly with the decision 
than do the responses of high-threshold neurons (Celebrini and 
Newsome, 1994; Britten et al., 1996). In the simulations presented 
so far, however, the value of choice probability was uniform across 
the pools of input neurons. We explored two ways to incorporate 
the heterogeneity of choice probability into the model, taking the 
successful model depicted in Figure 6 as our starting point. 

The inverse relationship between threshold and choice proba- 
bility suggests that sensitive neurons influence the monkey’s de- 
cisions more strongly. More sensitive neurons might be connected 
to the pooling stage with greater weight, thereby influencing the 
decision stage more effectively. We incorporated this hypothesis 
into the model by assigning greater weight to the responses of 
sensitive neurons in the pooling process, basing decisions on 
suitably weighted averages of activity in the two pools. To our 
surprise, we could not mimic the experimental observation in this 
way, although we tried a number of different strategies for assign- 
ing weights. We realized that these efforts were frustrated by the 
correlation of activity within the pools. Recall from previous 
sections that if the neuron pools are large, choice probability 
results only fkm correlated activity within the sensory pools. For 
example, correlated responsiveness preserved significant choice 
probabilities even when very poorly activated neurons were incor- 
porated in the sensory pools (Fig. 4). These simulations, there- 
fore, suggest a rather counterintuitive property of MT neurons: if 
the responses of a neuron covary with the responses of other 
members of the pool, the responses of that neuron will covary 
weakly with the decision regardless of the weight assigned to the 
neuron. Even if a neuron has zero weight, its activity will show a 
choice probability if its response is correlated with that of neurons 
with nonzero weight. 

This insight led us to try to account for the observation that 
different neurons have different choice probabilities by varying the 
structure of the correlations among neurons in the pool. If choice 
probability is determined by correlation irrespective of weight, 
choice probability should be changed by varying the pairwise 
correlation of neurons within the ~001. Neurons that are better 
correlated with the rest of the pool should covary more strongly 
with the pooled average and hence with decisions, and thus have 
higher choice probabilities. This hypothesis can be incorporated 
into the model by assigning an average correlation coefficient to 
each neuron according to its sensitivity, 

We used a variant of the asymptotic model developed in pre- 
ceding sections. As before, we constructed pools of 128 cells from 
neurons sampled from monkeys E and K. The model included less 
sensitive neurons (average threshold elevated by a factor of 2.5) as 
in Figures 6 and 7, and pooling noise with a variance-to-mean 
ratio of 0.3. Neuronal responses were pooled by simple averaging, 
but sensitive neurons were better correlated with other neurons in 
the pool. We created a gradation in the mean correlation coeffi- 
cient between a neuron and all others in the pool so that the most 
sensitive neurons received the highest coefficients, and so on. The 
most sensitive neuron in the pool had an average correlation 
coefficient of 0.3 with the other members of the pool, and the least 
sensitive neuron had an average coefficient of -0.03. This proce- 
dure yielded a mean correlation coeficient of 0.1 for the popula- 
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Figure IO. An inverse relationship between neuronal Threshold and 
Choice probability. In these simulations, neurons were assigned correlation 
coefficients according to their relative sensitivity: the more sensitive neu- 
rons in the pool were assigned higher correlation coefficients with other 
members. Although the pools were composed of neurons representing a 
broad range of sensitivity, only those resembling the units in our data set 
are shown (scaling factor was >0.9). 

tion of neurons at large and 0.16 for the subset of more sensitive 
neurons that were scaled by ~10%. We considered this latter 
group to be representative of the neurons actually recorded from 
MT. For these neurons, the mean choice probability and pre- 
dicted psychophysical threshold were 0.57 and 8.9% coherence, 
respectively, falling within the solution locus (shaded box in Figs. 
3-6). Our methods for assigning these highly structured correla- 
tion coefficients and performing the calculations are described in 
greater detail in Appendix 1. 

Figure 10 illustrates the outcome of 10 simulations based on 
this model. The scatter plot shows the relationship between sim- 
ulated choice probability and neuronal threshold for 146 simu- 
lated neurons, revealing a significant inverse relationship between 
the two parameters. Sensitive neurons appear more closely linked 
to psychophysical decisions, even though the responses of these 
neurons were not given additional weight in the pooling process. 
Their disproportionate influence is attributable solely to stronger 
covariation with other neurons in the pool, hence with the pooled 
average and with the decision. Note that only the minimally 
attenuated neurons are shown in this plot, representing the neu- 
rons that we encountered in our experiments. The less sensitive 
neurons in general have high thresholds and choice probabilities 
near 0.5. 

The relationship in Figure 10 matches that observed in our 
experimental data (Celebrini and Newsome, 1994; Britten et al., 
1996) and the experimental effect, therefore, may be attributable 
to a link between neuronal sensitivity and effective connectivity 
with other neurons in the pool. This hypothesis is supported by 
physiological evidence that the noise carried by neurons with 
similar properties is better correlated than that carried by neurons 
with dissimilar properties (Zohary et al., 1994). I f  the most sen- 
sitive neurons in a pool are those best tuned to the discriminanda, 
their responses will covary most strongly, presumably because of 
greater common input. 

The most important insight from these simulations is that 
variation in choice probability can arise from variation in the 

average correlation of each neuron with other neurons in the 
pool. Unfortunately, we can only speculate on the exact pattern of 
correlation between all pairs of pooled neurons in the brain. The 
simulations suggest that correlation coefficients are not randomly 
related to neuronal sensitivity, but the highly structured set of 
correlations used in the simulations of Figure 10 seems artificial. 
A less rigidly constrained covariance structure might be more 
plausible (see Appendix 1 for additional details). 

Individual monkeys 

The simulations presented thus far were based on combined data 
from two of our four monkeys, E and K. As summarized in Table 
1, these monkeys had similar psychophysical thresholds, single- 
unit thresholds, and choice probabilities. In addition, our simula- 
tions are on firmer ground with these data because our measure- 
ments of pairwise correlation were actually made in these two 
monkeys (Zohary et al., 1994). A third monkey, W, differed from 
monkeys E and Kin relatively minor ways, but the fourth monkey, 
J, differed more dramatically. Can we modify the pooling model to 
account for the data from monkeys W and J? 

Treating the neurons from each animal as independent data 
sets, we attempted to model the psychophysical threshold and 
choice probability measured for each animal. Figure 11 depicts 
the results. As in previous figures, the shaded areas depict solution 
loci defined by the mean of the experimental observations -t 2 SE. 
In each panel, the solid curve illustrates simulated results assum- 
ing a mean pairwise correlation of 0.18 and inclusion of subopti- 
mally activated neurons at the level derived above in the com- 
bined analysis of monkeys E and K. Not surprisingly, these 
parameters worked well for monkeys E and K considered inde- 
pendently. A small difference in neuronal sensitivity between the 
two monkeys compensated for the small difference in psychophys- 
ical sensitivity apparent in Figure 11. For monkeys W and J, 
however, the parameters derived from analysis of monkeys E and 
K do not account for the observed data. 

Monkey W differed from monkeys E and K in that its neurons 
were slightly less sensitive and, more important, its average choice 
probability was substantially lower. Thus, the solid curve in Figure 
11 misses the solution locus. There are two ways to remedy this. 
First, restricting the pools to more sensitive neurons-like the 
ones we recorded-would shift the solid curve leftward, bringing 
the lower right end of the curve close to the solution locus. This 
would imply that monkey W polled a more select subset of 
neurons, but degraded the pooled signals substantially with pool- 
ing noise. The amount of pooling noise necessary to achieve this 
remedy appears implausible, however, because it exceeds the 
variability expected from a single neuron that would represent the 
pooled response. We can simulate monkey W’s data most effec- 
tively by incorporating weaker pairwise correlation into the sen- 
sory pools. With an average pairwise correlation of 0.09, the 
model reconciled psychophysical threshold and choice probability 
(Fig. 11, dashed cuwe). This manipulation is consistent with the 
intuition developed above that the choice probability reflects 
correlated responses in the sensory pool; smaller choice prob- 
abilities should reflect weaker correlation. Interestingly, the 
amount of pooling noise that best explained the data of monkey 
W is similar to the amount that worked for monkeys E and K, 
if the average pairwise correlation is allowed to drop to 0.09 
(see Table 1). 

We adopted a more substantial change in parameters to simu- 
late the data from monkey J (Fig. 11, bottom right; Table 1). This 

monkey is an outlier in several respects because its psychophysical 
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Table 1. Comparison of experimental data and optimal simulation parameters for four monkeys 

Neuronal Behavioral Simulation parameter 

Threshold Threshold Choice Average Mean unit threshold Pooling noise 
Monkey (% coherence) Slope (% coherence) Slope probability correlation (simulated/observed) (variance/mean) 

E 17.2 1.06 11.3 1.13 0.587 0.18 2.8 0.4 

K 11.7 1.25 7.7 1.38 0.593 0.18 2.1 0.2 

w 15.9 1.40 8.2 1.14 0.539 0.09 2.3 0.3 

J 29.1 1.52 20.8 1.21 0.510 0.05 2.3 1.0 

Values to the left of the double line summarize the experimental data. Our simulations reconcile each monkey’s neuronal measurements with the observed psychophysical 
performance and choice probability (boldface area). Optimal parameters are tabulated to the right of the double line. These values correspond to the curves shown in Figure 
11, at the intersection of the cul~es with the shaded box that represents the solution locus. Our best simulation of combined data from monkeys E and K (Fig. 6) required a 
mean correlation of 0.18, mean unit threshold of 2.5 (normalized), and pooling noise of 0.3. The values for mean unit threshold were achieved using identical criteria for 
inclusion of suboptimally stimulated neurons (i.e., the same range of response scaling factors that produced a value of 2.5 in the combined data from E and K). 

and neuronal thresholds were substantially higher than the other 
monkeys and its choice probability was substantially lower (Brit- 
ten et al., 1996). Interestingly, monkey J was the only animal 
whose single neuron thresholds were lower, on average, than 
psychophysical threshold (see Fig. 9A in Britten et al., 1992). In 
other words, the data from this monkey suggest that the monkey 
benefited the least from pooling given the sensitivity of its 
neurons. 

These two trends-less benefit from pooling and lower choice 
probabilities-are at odds with each other according to the logic 
of our model. We expect choice probabilities to be weak or absent 
if pairwise correlation in the pools is exceedingly weak. But low 
correlation should lead to more effective pooling because response 
covariance is a major obstacle to noise reduction through averag- 
ing. A possible solution is to assume that any gains derived from 
low correlation are offset by high pooling noise, as illustrated by 
the dashed curve in Figure 11 (bottom right). This curve passes 
through the solution space when the pooling noise is -1.0. Recall 
that the value of pooling noise in our successful model was -0.3, 
consistent with the idea that psychophysical decisions are based 
on a pooled neuronal signal whose variability was much less than 
that expected of single neurons. The value needed to fit the data 
from monkey J, however, implies that the variability of the signal 
supporting decisions would approach that expected of a single 
neuron. It seems unreasonable to posit that the pooled neuronal 
signal is as variable as the single neuron signals that contribute to 
it. We believe that this solution is different in spirit from the 
model we have developed, in which pooling by groups of neurons 
is a key element. We address these issues in more detail in 
Appendix 3. 

Table 1 lists the parameter values that satisfied the constraints 
derived from experimental observations for each of the four 
monkeys. These values correspond to the intersection of the 
curves shown in Figure 11 with the shaded solution loci (solid 
curves for monkeys E and K, dashed cUWes for monkeys W and J). 
Except for monkey J, model parameters are remarkably similar. 
In round numbers, the model suggests an average pairwise corre- 
lation of 0.1-0.2, a mean neuronal threshold that is 2.5 times the 
value obtained for optimally driven neurons, and pooling noise 
that is -20% of the response variance commonly measured in 
single cortical neurons. 

DISCUSSION 

The goal of this study was to gain insight into the relationship 
between neuronal activity in the cerebral cortex and psychophys- 
ical performance on a direction discrimination task. To this end, 
we developed a quantitative model linking the responses of neu- 

rons in extrastriate area MT to psychophysical performance mea- 
sured during the physiological recordings. The model was con- 
strained by several experimental observations: (1) the responses 
of MT neurons to motion signals in the visual displays (Britten et 
al., 1993); (2) the psychophysical sensitivity of the monkeys to the 
same motion signals (Newsome et al., 1989; Britten et al., 1992); 
(3) the shape of the psychometric function (i.e., the rate of 
improvement in performance with increasing stimulus motion 
strength) (Newsome et al., 1989; Britten et al., 1992); (4) the 
trial-to-trial covariation between neuronal responses and psycho- 
physical decisions made by the monkey (i.e., choice probability) 
(Celebrini and Newsome, 1994; Newsome et al., 199.5; Britten et 
al., 1996); and (5) weak correlation among pairs of MT neurons in 
their response to repetitions of identical stimuli (Zohary et al., 
1994). Free parameters in the model included the number and 
average sensitivity of neurons in the sensory pools and the amount 
of noise introduced at the pooling stage. The model provided an 
acceptable account of the various experimental data over a re- 
stricted range of conditions. 

Together, our experimental and theoretical results suggest sev- 
eral conclusions concerning the relationship of neuronal activity 
to performance. Psychophysical decisions are based on a compar- 
ison of signals from pools of weakly correlated neurons. The pools 
are probably composed of at least 100 neurons but may include 
many times this number because model predictions are essentially 
identical for all larger pools of correlated neurons. Neurons 
contributing to the pools are likely to include many that are not 
optimally tuned to the particular motion stimuli being discrimi- 
nated. Central sources of noise are likely to degrade the pooled 
signal, but this degradation appears small in comparison with 
response fluctuations typically measured in single cortical 
neurons. 

Some of these principles were anticipated decades ago by 
investigators of the somatosensory system. For example, Johnson, 
Darian-Smith, and their colleagues attempted to relate the re- 
sponses of “warm” and “cold” fibers in the peripheral nervous 
system to psychophysical sensitivity for temperature increments 
and decrements (Johnson et al., 1973, 1979). To our knowledge, 
they were the first to explore systematically the effect of pool size 
and correlated responsiveness on psychophysical performance. 
Johnson subsequently incorporated these and other themes into a 
formal theory relating neural activity to psychophysical discrimi- 
nation (Johnson, 1980a,b). Unfortunately, these ideas could not 
be tested rigorously because electrophysiological recordings were 
never extended to suitable structures in the CNS. In the present 
study, recordings in the central visual system permitted us to 
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Figure 11. Model results for each of the four monkeys used in our experimental studies. Each simulation was based on neurons sampled from the monkey 
indicated in the top left comer of each graph. The pools also included less sensitive neurons than those recorded from each of the monkeys (mean unit 
threshold = 2.1-2.8 times observed). Each curve shows the predicted Choiceprohahility and psychophysical Threshold from the model as pooling noise 
increased from 0 to 2. Solid curves were obtained using model parameters identical to those in the “successful” model (curve CD in Fig. 6). Dashed lines 
(bottom panels) incorporated a lower mean correlation. For Monkey IV, the mean correlation was 0.09; for Monkey J, the mean correlation was 0.05. The 
dotted lines and shaded region indicate the mean 2 2 SE for choice probability and threshold, for each monkey. Optimal simulation parameters for each 
monkey are summarized ;n Table 1. 

measure the motion sensitivity, choice probability, and correlated 
responsiveness associated with sensory neurons underlying per- 
formance on the direction discrimination task. Together, these 
measures provide tighter experimental constraints on models 
linking physiology to psychophysics than have been available 
until now. 

Sources of error 
Our procedures incorporate enough assumptions, both implicit 
and explicit, that we have likely erred at some points. Let us 
consider four potential sources of error. 

Neuronal sensitivity 
It is possible that we have overestimated the sensitivity of single 
neurons in our sample by assuming that the brain can use the 
spikes generated over the entire 2 set stimulus epoch. If the 
average sensitivity of MT neurons were in fact lower than our 
estimates, psychophysical sensitivity could be modeled using neu- 

rons more like those in our data set-that is, without degrading 
the pools with less sensitive neurons. Supposing, for example, that 
the brain can only count spikes for 500 msec, the average sensi- 
tivity of neurons in our data set would be halved, obviating the 
need to incorporate less sensitive neurons in the pools. 

We believe that this is unlikely for two reasons. First, psycho- 
physical thresholds for our monkeys and for human observers 
improve as viewing times increase up to 2 set (Downing and 
Movshon, 1989; Britten et al., 1992), suggesting that spikes occur- 
ring at any time during the 2 set epoch can influence the decision. 
Moreover, spikes counted from the final 500 msec of a trial exhibit 
the same choice probability as spikes counted during the first 500 
msec, again suggesting that no segment of the viewing interval is 
privileged in its impact on decisions (Celebrini and Newsome, 
1994; Britten et al., 1996). Thus, it seems likely that our estimates 
of neuronal sensitivity are reasonably accurate and, therefore, that 
the pools of neurons influencing the judgments of the animals 
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must contain neurons less sensitive than those we recorded. It is 
worth noting that revised estimates of neuronal sensitivity would 
not affect our conclusions concerning pooling noise. The amount 
of pooling noise incorporated in the best form of the model is 
determined solely by the need to reconcile experimental and 
simulated choice probabilities. 

Behavioral sensitivity 
Another potential source of error lies in our measurements of 
behavioral threshold. This has particular implications for our 
decision to include less sensitive neurons in the pools. Inspection 
of Figure 6 shows that if we formed the best model without the 
inclusion of suboptimally driven neurons, it would predict a value 
of behavioral threshold of -5%, approximately half the value we 
observed (the point labeled B). I f  we had somehow consistently 
overestimated behavioral threshold, this might be the “true” 
value. We believe this is unlikely. The monkeys were trained on 
the motion discrimination task for many months before record- 
ings were begun, and were performing quite stably then and 
thereafter. They routinely produced smooth and regular psycho- 
metric functions asymptoting near 100% performance; if they 
were not under complete behavioral control, we would expect the 
psychometric functions to asymptote at a lower value. It is none- 
theless true that their behavioral thresholds varied from day to 
day in a way that we were unable to predict completely from such 
factors as the size, speed, and retinal locus of the motion display 
(Britten et al., 1992), and we cannot be entirely sure that some 
erroneously inflated thresholds were not included in our data- 
base. To the degree that this was true, our estimate of the 
proportion of less sensitive neurons to be included in the pools 
might be too high. 

Correlation 
Correlated noise among input neurons is a critical feature of the 
model, limiting the benefits of signal averaging and accounting for 
the choice probability associated with MT neurons. In our simu- 
lations, input neurons were typically assigned correlation coeffi- 
cients varying randomly between 0 and 0.4 with a mean near 0.18. 
These figures approximate the correlation coefficients measured 
in multiunit recordings from pairs of MT neurons (Zohary et al., 
1994). Because these recordings were performed with a single 
electrode in combination with a spike sorter, we do not know the 
extent of correlated firing between neurons in different columns 
or between neurons at different locations in the same column. The 
observed values probably represent an upper bound on correlated 
firing, because adjacent neurons can safely be presumed to share 
common signals more than others (Braitenberg and Schiiz, 1991; 
Stevens, 1994; Douglas et al., 1995). As illustrated in Figure 7, the 
best form of our model can tolerate a range of average correla- 
tions between 0.1 and 0.3. 

Interestingly, the overall sensitivity of the pooled signal is 
limited by the average correlation within the pool, and the choice 
probability is determined by the average correlation of a neuron 
with other members of the pool (Zohary et al., 1994). The detailed 
connectivity is largely irrelevant. Thus, in extrapolating from mea- 
surements of correlation to the overall covariance structure of the 
pool, we require only that the these averages remain greater than 
0.1 or so. 

In all of our simulations, we assumed that neurons in the 
opposing direction pools are independent. Multiunit recordings 
from MT are consistent with this notion because neurons with 
disparate preferred directions were less well correlated than neu- 

rons with similar preferred directions (Zohary et al., 1994). We 
presume, however, that the opposing pools are drawn largely from 
columns with opposite preferred directions (consistent with mi- 
crostimulation studies; see Salzman et al., 1992; Salzman and 
Newsome, 1994). In the event that noise in the opposing pools is 
positively correlated, comparison of activity in the two pools could 
negate their common noise, analogous to the action of a differ- 
ential amplifier. Simulated thresholds should fall and choice prob- 
abilities should approach chance as expected for independent 
neural signals (Fig. 3, solid cuwes), creating an unbridgeable gap 
between simulated and experimental results. Thus, the model 
strongly predicts that correlations between cortical columns with 
opposed preferred directions will be substantially lower than 
correlations between columns with similar direction preferences. 
Pair recordings with multiple electrodes will be necessary to test 
this prediction. 

Pooling algebra 
We represented the pooled response as a simple average spike 
count. Clearly, this is an oversimplification; the pooled signal 
could be any scalar quantity that varies monotonically with the 
likelihood of one discriminandum relative to the other (Thur- 
stone, 1927, 1959; Green and Swets, 1966). Rather than pursuing 
a variety of calculations, we chose to develop a set of heuristics 
based on a simple model. 

Pooling arithmetic more complicated than averaging could lead 
to less efficient noise reduction. If, for example, we computed the 
harmonic mean or the geometric mean of the inputs, larger pool 
sizes might be required to reach asymptotic performance levels. 
The actual asymptotic values for threshold and choice probability 
are stable for a wide variety of calculations (for more examples, 
see Britten et al., 1992). Intuitively, these values reflect the com- 
mon noise in the pool, and this noise remains after all of the 
uncorrelated noise is “averaged out” (see Appendices 2 and 3). 
Some computations, however, fail to achieve the same amount of 
noise reduction, even asymptotically. For example, the pooled 
average might be normalized by some other pooled quantity 
(Heeger, 1992). Such a computation would increase the variance 
of the pooled signal, thus reducing the need for pooling noise to 
reconcile experimental and simulated choice probabilities. In fact, 
we believe that this is a sound biological interpretation of the 
pooling noise in our model. The computations performed by any 
cortical circuit are likely to be more complex than a simple 
average, and the computed quantity is therefore likely to incor- 
porate additional variance. Pooling noise in the model simply 
captures this additional variance (see Appendix 3). 

Alternative models 
The model architecture illustrated in Figure 2 is fairly general. A 
variety of implementations boils down to a pooling of MT signals 
followed by a comparison. Different assumptions about the infor- 
mation encoded in the spike train, the appropriate duration for 
the analysis, pooling algebra, and the parametric description of 
noise will lead to quantitative differences with the conclusions 
drawn here, but we would not anticipate substantial qualitative 
departures. We have considered, however, two alternatives in 
some detail: pooling models with small numbers of neurons and 
criterion-based models. 

Most simulations in this paper incorporated asymptotically 
large pools of input neurons. The exquisite sensitivity of MT 
neurons led us, however, to explore models using small numbers 
of input neurons. We can produce a small-numbers pooling model 
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that reconciles our experimental observations, but the parameters 
incorporated in the model make little biological sense. Approxi- 
mately 10 neurons must be pooled to achieve the correct choice 
probabilities (Fig. 3C), but suboptimally driven neurons must be 
included in the pool to offset the gain in sensitivity that accrues 
from pooling among only 10 neurons (Fig. 3B); this is true even in 
the presence of pooling noise. Inclusion of such insensitive neu- 
rons in a small-numbers model seems dubious: the primary mo- 
tivation for exploring small-numbers models is the extraordinary 
sensitivity of MT neurons, yet the pools must be degraded with 
insensitive neurons to make the model work. We believe that a 
small-numbers pooling model cannot work given plausible com- 
binations of neural signals like those we recorded in MT. 

Criterion-based models offer a more radical departure from the 
framework we have proposed. Here one assumes that a neuron 
signals the presence of motion toward a labeled direction when its 
response exceeds some criterion value. We have explored classes 
of models along these lines, varying parameters like criterion, pool 
size, and the method of conflict resolution when competing neu- 
rons exceed criterion. These efforts were largely unrewarding. 
Although we cannot exclude such models altogether, they gener- 
ally predict erroneous values for choice probability or erroneous 
shapes of the psychometric function. 

The best criterion-based model we identified is a small-numbers 
scheme suggested to us by H. Barlow. In this example, a pool of 
5-6 neurons tuned for upward motion produces a perceptually 
effective signal when any two members of the pool yield responses 
1 SD above their background firing rates. For our 2-alternative 
forced-choice discrimination, a complementary pool of neurons 
must be incorporated that signals downward. This model works 
surprisingly well in some respects, but shares the general failures 
of this class of models, particularly in predicting the slopes of 
psychometric functions. For the interested reader, we present our 
implementation of this model in Appendix 4. 

The read-out problem: single neurons and populations 
In a sense, our modeling exercise is enveloped in irony. Our point 
of departure was our discovery that single MT neurons have 
sensitivity approximately equal to psychophysical sensitivity. After 
pooling the output of many such neurons, obtaining far superior 
sensitivity in the process, we then invoke two mechanisms to 
degrade this pooled signal to match psychophysical sensitivity. 
Why would the cortex pool neuronal signals only to discard the 
sensitivity gained? Why can signals from single MT neurons not 
guide performance? 

This view is misleading simply because it is incomplete. A major 
goal of our simulations was to account for experimentally ob- 
served choice probabilities as well as perceptual thresholds. The 
need to reconcile both experimental results obliged us to accept 
large pool sizes, as is apparent from Figure 3. At a deeper level, 
however, we suspect that the signaling power of single neurons is 
compromised by lack of a sensitive mechanism to “read out” their 
signals. Impressive measurements of single-neuron sensitivity can 
be obtained by comparing precise spike counts using computers, 
but the critical issue is what counting and comparison operations 
can be accomplished with real cortical neurons. Imagine, for 
example, that the input pools in Figure 2 are populated with a 
single neuron each. These signals could be compared directly by a 
“decision neuron” that receives excitatory input from one sensory 
neuron and inhibitory input from the other. To effect this com- 
parison with the reliability of our computer, however, connections 
from the signaling neurons to the comparison neuron would need 

to be highly privileged. Synaptic activity from other sources would 
have to be excluded lest the critical sensory signals become hope- 
lessly confounded, leading to psychophysical performance sub- 
stantially worse than that expected from computer calculations. 

With few exceptions, privileged connections of this nature have 
not been documented in the cortex (Abeles, 1982; Stevens, 1994), 
and the brute facts of cortical microcircuitry render such notions 
questionable if not incredible (e.g., the typical cortical neuron 
receives several thousand synapses from a nearly equal number of 
neurons; see Peters, 1987; Braitenberg and Schuz, 1991; Douglas 
and Martin, 1991; Peters and Sethares, 1991; Shadlen and New- 
some, 1994; Stevens, 1994; Douglas et al., 1995). Thus, the im- 
pressive signaling capabilities of single neurons appear ineffectual 
in the absence of a mechanism to evaluate and communicate these 
signals to subsequent processing stages. Our pooling model cir- 
cumvents these difficulties through a redundant coding scheme. 
Because signals from multiple neurons are pooled at each stage of 
the pathway, noise is substantially reduced through averaging. The 
noise finally evident in behavior reflects limitations in noise re- 
duction imposed by correlation. 

This redundancy also offers important advantages for repre- 
senting stimuli that fluctuate in time. If  a temporally fluctuating 
motion pattern (like one of our stochastic dot displays) is coded by 
the spike rate of a single neuron having near-Poisson firing char- 
acteristics, a period equivalent to several interspike intervals is 
necessary to estimate the spike rate and, by extension, the amount 
of motion in the stimulus. If  multiple neurons code the same 
stimulus, however, the mean spike rate can be estimated accu- 
rately in only one interspike interval, dramatically increasing the 
temporal resolution of the motion representation (Shadlen and 
Newsome, 1994). 

The redundant coding scheme in our model is a specific exam- 
ple of a population code (Georgopoulos et al., 1986; Paradiso, 
1988; Vogels and Orban, 1990; Zohary, 1992; Seung and Sompo- 
linsy, 1993; Abbott, 1994), but as Barlow (1995) has pointed out, 
important distinctions must be made between classes of popula- 
tion codes. In any population code, different stimuli are repre- 
sented by activity levels in distributed sets of neurons. The key 
issue is whether the set of active neurons is arbitrary, or whether 
each active neuron signals the presence of an important element 
in the input space. In the former scheme, exemplified by the 
ASCII code for alphanumeric characters, the state of any specific 
representational element gives very little information about the 
identity of the input. In the ASCII code, for example, a single bit 
is singularly uninformative concerning the identity of the repre- 
sented character. In the alternative scheme, which Barlow terms a 
“direct representation,” the activity of each representational ele- 
ment provides important information about the input. For exam- 
ple, each letter in the sequence S-T-I-M-U-L-U-S conveys infor- 
mation about the pronunciation of the word. Barlow argues that 
there are considerable advantages of direct representations in 
associative learning and in tolerance for errors. 

The coding scheme embodied in our model is such a direct 
representation, allowing each neuron to influence psychophysical 
choices in accordance with its directional tuning. In this sense, our 
population code, like the vector averaging schemes of Georgo- 
poulos and others, conforms to Barlow’s essential insight that the 
response properties of an individual neuron provide critical infor- 
mation about its role in representing stimulus input or forming 
motor output. The precise size of the signaling pools seems less 
important than the principle that key features of the representa- 
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tional code can be ascertained directly from the response of 
neurons sampled one at a time (Barlow, 1995). 

Concluding remarks 
Neurophysiologists studying sensory systems typically concentrate 
on maps and single-unit response properties as indicators of the 
representation of information in sensory structures. From our 
point of view, one of the most beneficial aspects of this modeling 
exercise is that we have been forced to think quantitatively about 
the impact on performance of such processes as correlated re- 
sponsiveness, pooling, central noise, and decision mechanisms. 
These processes, although not often considered in detail by sen- 
sory physiologists, shape the output of a perceptual system just as 
profoundly as the initial stages of stimulus encoding. 

APPENDIX 1 

Monte Carlo methods 
On each trial, we simulated a psychophysical decision by compar- 
ing responses from two pools of neurons. The neural response is 
represented as a random value, reflecting the number of action 
potentials discharged in the 2 set viewing period for a visual 
stimulus of given strength and direction. An overview of the 
model is provided in Figure 2 and sections describing our meth- 
ods. Here we supply additional details of the algorithm we used to 
simulate responses from neurons like those we recorded in area 
MT. We place particular emphasis on techniques for simulating 
weakly correlated responses from pools of neurons. 

Expected neural response 
The expected value for the response of the neuron was taken from 
our data set, but could be altered to simulate less sensitive 
neurons than those we encountered in our recordings. Thus, at the 
beginning of a simulation we picked N neurons from our data set, 
randomly with replacement. Our model bases decisions on an 
opponent scheme involving two pools of neurons, with opposite 
preferred directions, and each neuron from the data set therefore 
played the role of two in the model. The measured response of the 
neuron to motion in its preferred direction provided the expected 
responses for a simulated cell in the “preferred” (up) pool, 
whereas the measured responses to motion in the null direction 
supplied the expected responses for a simulated unit in the “null” 
(down) pool. We used the same neurons in the two pools to 
guarantee that the expected response to 0% coherent dot motion 
was identical for the two pools, ensuring that simulated decisions 
were not biased in favor of either direction. 

To model inclusion of suboptimally activated neurons, we as- 
sociated a scaling factor, bi, with each neuron selected for the two 
pools. The factor was chosen randomly from a range of values 
between 0 and 1 and used to scale the expected response of the 
neuron to motion of any given strength. The procedure had no 
effect on the response distribution to the 0% coherent dot display 
(random noise) but attenuated any gain or decrement in spike 
discharge associated with an increase in stimulus motion strength. 
If  pi is the mean of the response of the ith neuron to motion of 
strength, c, then the expected response of the model neuron is: 

m,(c) = PLO) + b,Mc) - i-40)1. (Al.l) 

The expected response resembles the measured neural response 
when b is near 1. For small values of b, the simulated response was 
the same for all motion strengths, tending to the measured re- 
sponse to the 0% coherent motion display. Note that the simu- 

lated response to the 0% motion stimulus is unaffected by the 
scaling factor. 

Scaling factors were chosen randomly from a beta distribution 
(Mood et al., 1963). The parameters of this distribution may be set 
so that b is distributed uniformly on [0, 11, or concentrated near 1, 
0, or any intermediate value. Using different parameters, we 
simulated pools of neurons of varying mixtures of sensitivity. We 
adopted this approach for its flexibility, but later learned that the 
shape of the distribution mattered little. As indicated in the text, 
the behavior of the model was essentially identical for all cases in 
which the average sensitivity of the neurons comprising the pools 
was the same, regardless of their distribution. It is perhaps worth 
noting, however, that the range of sensitivities derived from the 
successful model (Fig. 6, Table 1) was achieved using a uniform 
distribution of response scaling factors. 

Covariance 
We simulated a random response from each neuron in the pool 
for each of 500 trials for any one stimulus strength. The response 
was a random value generated as a normal deviate with mean: 

and variance: 

Gil = mi(c), (A1.2) 

f f ;  = 1.5(x,) = 1.5m,(c). (A1.3) 

The angle brackets connote expectations of a random variable, 
which might be estimated by the mean of many trials. The choice 
of a Gaussian distribution is not critical to the model, but is 
convenient computationally. We chose the proportion of 1.5 after 
comparing our data with other estimates in the literature and 
attempting to discount long-term fluctuations in neural respon- 
siveness, as discussed in the methods sections. Our goal was to 
generate random response values conforming to a desired set of 
expectations, and this variance rule, but to do so for N neurons at 
a time in a manner ensuring correlation of desired magnitude. 
The method for generating these random responses is quite 
practical, and we believe it is more general than the one we have 
used previously (Britten et al., 1992). It represents a slight mod- 
ification of a technique described by Foldiak (1989). 

For each trial, the responses from a pool of N neurons can be 
represented as a vector, x. We wish to generate these picks in a 
manner that realizes weak correlation between the elements of x. 
That is, given k trials, the correlation coefficient, rii, between the 
ordered pairs xik and xjk should approximate some desired value: 

(r,j) = 
COV[XL, x,1 Gsc,) - k,(x,) 

,IVar[xil Var[x,l = ,RxT)F-cX,,“, ((xf) - (x,)‘)’ 
(A1.4) 

For a pool of N neurons, each neuron has some correlation with 
every other neuron in the pool. Thus, there are N(N - 1) pairwise 
correlations that comprise a correlation matrix. In most instances, 
we have chosen these pairwise correlations to be random, small, 
positive values, uniformly distributed on some interval (e.g., 
o-0.4). This task is tricky because many combinations of corre- 
lations are unrealizable. For example, if neurons X, and X, 
happen to be strongly correlated, then the correlation between Xi 
and a third neuron, X,, constrains the possible correlations be- 
tween X, and X,. This means that we cannot generate correlation 
matrices by placing random values in a symmetric matrix. 

Instead, we generate a random correlation matrix by approxi- 
mating its matrix square root, Q. The matrix, Q, transforms a 
vector of independent normal deviates with zero mean and unit 
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variance into a new vector of partially correlated values. The 
expected correlation matrix for these deviates is: 

C = QQ’ (A1.5) 

The transformed deviates may be scaled and augmented to sim- 
ulate the mean and variance associated with the response of any 
neuron. 

This begs the question of how to generate Q, the matrix square 
root of the random correlation matrix. Were the desired correla- 
tion values a constant, then the correlation matrix would appear 
as: 

(A1.6) 

and the elements of Q would be: 

I 
“=q5 d ;+~-~-;J(lbr)(l -r+rAq 

!  
1+ J(l-r)(l -r+rhq 

1 

1 

“=T N J 
z+r-s-id/l-r)(l-r+rN) (A1.7) 

where N is the number of elements. To generate the square root 
of a random correlation matrix, we use the mean correlation 
coefficient, Yij, to calculate the diagonal terms, and random picks 
for pairwise correlations coefficients (r, = r,J to calculate the 
off-diagonal terms. Because this is just an approximation, it can be 
improved by forming QQ’, and setting its diagonal terms to unity. 
The matrix square root of this adjusted correlation matrix must be 
computed and used to transform the independent normal devi- 
ates. In practice, the approximation works well, and we do not 
need to perform these last steps. 

To form partially correlated responses from N neurons, we 
generate a vector of independent, unit variance, zero mean, nor- 
mal deviates, z, and multiply by the matrix square root of the 
desired correlation matrix: 

Y = Qz 

Then the expected covariance of y  is: 

(A1.8) 

(YY’) = (Qz(Qz)‘) = (Qzz’Q’) = (QQ’) = (‘3 

since (zz’) = I. (A1.9) 

Each of the deviates in y  are then scaled according to a desired 
variance and augmented by their means. Because the variance is 
-1.5 times the mean, the responses from N neurons for a single 
trial are: 

{x;} = {m; + a,y;} = {m, + JmYiyjq} (A1.lO) 

where {mi> is the vector of expected response values from each of 
the N neurons, and {ci} is their corresponding SD. 

The operations defined by Equations Al.8 and Al.10 are re- 
peated to simulate many trials to the same visual stimulus. Instead 
of a column vector of normal deviates, we begin with an N by M 
matrix, where M is the number of trials. This yields a matrix of 
partially correlated deviates: 

Y = QZ (Al.ll) 

the rows of which are scaled and offset to achieve the desired set 
of expectations and variance (as in Eq. A1.lO). The resulting 
matrix, X, contains M column vectors representing the responses 
from N neurons on each of M trials. The pooled responses are just 
the average of each of these column vectors. In principle, any 
function can be applied to the column to produce a pooled 
quantity. This quantity is compared with the pooled response 
from a competing set of neurons to simulate a decision. 

Applying these steps, the responses from each neuron conform 
to a normal distribution. The method can be modified, however, 
to produce distributions of arbitrary shape, at the cost of com- 
puter processing time. We found no disadvantage to using normal 
deviates compared to more realistic distributions (e.g., scaled 
Poisson or lognormal). In general, it is reasonable to truncate 
deviates to positive response values. In our simulations, this had 
negligible impact because of the high background firing rate of 
most MT neurons. The actual set of correlations achieved in this 
manner approximates the desired values but is quite variable. We 
therefore calculated the actual correlation matrix from the simu- 
lated responses and averaged the off-diagonal terms. These are 
the values for correlation coefficients reported in the text. 

In most of our simulations, we aimed to produce a random 
matrix of correlations, with desired mean. Because these pairwise 
correlations loosely reflect the connectivity between neurons in 
the pool, the model reflects many possible network architectures 
and is therefore quite general. In the end, however, it is the 
average correlation coefficient that determines the predicted sen- 
sitivity of the model. To predict the monkey’s threshold, a random 
correlation matrix or a highly structured pattern of correlations 
produce the same predictions so long as they share the same mean 
r; this is not so for choice probability. 

We discovered that a random set of correlations is unable to 
account for a systematic relationship between unit sensitivity and 
the magnitude of the choice probability in our data. To achieve 
this, we were forced to impose a relationship between unit sensi- 
tivity and its correlation strengths with other members of the pool. 
The correlation of each neuron with all of the other members of 
the pool is described by its multiple correlation coefficient: 

(A1.12) 

where correlation matrix C has been partitioned as (Anderson, 
1984): 

(A1.13) 

Almost equivalently, and perhaps more intuitively, we can use the 
average of the desired correlation coefficients: 

(A1.14) 

Ri or 7, reflects the degree to which the ith neuron is connected to 
the rest of the pool. A key insight is that this measure of corre- 
lation establishes the magnitude of the choice probability, because 
it reflects the degree to which the response of a single neuron 
covaries with the other members of the pool and, hence, the pool 
mean (see Appendix 2) (see also Zohary et al., 1994). 

This strategy has certain limitations. Because we chose each 
pairwise correlation at random, the mean of each column of 
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coefficients approaches the population mean of correlation coeffi- 
cients for the matrix, iii. Thus, each neuron tends to a common value 
for choice probability. This is important because it justifies our use of 
the mean choice probability to depict the performance of the model. 
Every neuron in the pool, regardless of its sensitivity, exhibits roughly 
the same choice probability. Unfortunately, this also implies that the 
model cannot account for the systematic variations we observed in 
choice probability for different neurons. To achieve different values 
of choice probability, we must impose different amounts of average 
correlation among the different neurons. 

An example of such a correlation matrix was used to produce the 
results shown in Figure 11. For this set of connections, we generated 
a set of pairwise connections to the most sensitive neuron: 

i( rlj = r,,,, + N _ 1 r,, - ~,m,J (A1.15) 

and using it to pick a random value from a normal distribution 
whose mean is a, and variance is vai, where v  is the pooling noise 
parameter (see Appendix 3). A random value of this sort is 
generated for each of the two pools (up and down in Fig. 2) and 
compared in order to simulate the decision: the pool with the 
larger value wins. 

Choice probability 
The expected choice probability was calculated for each neuron 
using the k trials for the c = 0% coherence stimulus strength. To 
do this, we compared the distribution of simulated responses 
when the decision was in the preferred direction of the neuron (up 
by the convention in Fig. 2) with the distribution associated with 
the opposite decision. The choice probability is the area under a 
receiver operating characteristic (ROC) curve formed from these 
two distributions, treating responses associated with up decisions 
as signal and down-decision responses as noise. Let n be the 
number of preferred choices and m be the number of null choices 
(n + m = k). Then, denoting 8 as the list of responses associated 
with preferred choices, and denoting 4 as the sorted list of null 
choice responses, the ROC curve is just the locus of points: 

In our simulation, these correlation coefficients ranged from 0.1 to 
0.5. We allowed all of the remaining pairwise correlations to 
reflect the value expected because of common input with the best 
neuron: 

Y,,.L>l,L#, = rhrl,. (A1.16) 

The correlation matrix is just the outer product of pairwise cor- 
relations to the best neuron, with the diagonal set to unity. The 
average correlation ranges from 0.3 for the most strongly con- 
nected neuron to cO.01. As above, the square root of the corre- 
lation matrix is used to transform normal deviates, which are then 
scaled to match the statistics of the neurons. The average pairwise 
correlation is dominated by the product terms and, therefore, 
tends to be rather small. For a pool size of 128 neurons, the 
average pairwise correlation was 0.11. 

To simulate the relationship between the choice probability and 
the threshold of the individual neuron, we arranged a correspon- 
dence between particular neurons and their correlations. More 
sensitive neurons were more strongly correlated with other neu- 
rons in the pool. We calculated the thresholds for each of neuron 
in the pool, and arranged the expectations, m, so that the neurons 
with the lowest thresholds would end up with the largest average 
correlation. To do this, we generated a rank table for the N 
average correlations (or multiple correlations) and used this to 
sort the desired values for the neurons, m. As shown in Figure 10, 
the choice probabilities from such a model are heterogeneous and 
are indeed larger for more sensitive neurons. 

The highly structured set of correlations used to produce Figure 
10 is unrealistic. Ideally, we would construct quasirandom corre- 
lation matrices with a specified distribution of column averages or 
multiple correlation values (Q This can be achieved iteratively, 
by transforming a small set of independent deviates by the square 
root of a structured correlation matrix, calculating the correlation 
matrix and using its square root. In practice, however, we found 
these steps too time consuming to perform routinely. 

Decisions 
The matrix of responses, Z, contains N rows of response values for 
M trials of identical motion. Each column is a vector of responses 
from the same N neurons (with their associated scaling factors) to 
motion of a particular strength. The pooled signal is obtained by 
taking the column average: 

N(0 > K) N(c$ > K) 

rl ’ m  I 

where N( ) is the number of elements satisfying the condition in 
parentheses. The choice probability is the area under this ROC 
curve (Celebrini and Newsome, 1994; Britten et al., 1996). 

An estimate for choice probability was obtained for each neu- 
ron in the pool for the 0% coherent motion stimulus. We calcu- 
lated choice probabilities for nonzero motion strengths but found 
only minor effects of stimulus strength and direction. 

Psychometric function 
The simulated decisions were compiled into a standard psycho- 
metric function (PMF). The PMF represents the probability of a 
correct response as a function of stimulus strength (% coherence). 
We obtained a PMF from 500 repetitions of 11 motion strengths 
using the same set of neurons, scaling factors, correlation matrix, 
and noise parameters. We fit this function with a cumulative 
Weibull distribution (see Eq. 1) to derive an estimate of psycho- 
physical threshold and slope (a and /3 in Eq. 1). We computed 
geometric and arithmetic means for (Y and p, respectively, from 
several hundred PMFs, each time starting with a new set of 
neurons, scaling factors, and random correlation matrix. 

Neurometric function 
To characterize the sensitivity of single neurons to random dot 
motion, we determined the probability of correctly discriminating 
preferred from null direction motion based on the neuronal 
discharge. For each motion coherence, we constructed an ROC 
curve from the simulated neural response to motion in its pre- 
ferred direction (signal) and null direction (noise) for a single 
motion coherence level. The area under the ROC curve corre- 
sponds to the probability that an ideal observer would correctly 
discriminate the direction of motion solely by comparing one 
response from each of these distributions. The neurometric func- 
tion represents these derived probabilities as a function of stim- 
ulus strength. We fit this function with the cumulative Weibull 
density and derive the threshold (a). The sensitivity of a neuron is 
a -‘. For simulations using response scaling factors, we compute 
the geometric mean of the threshold for each of the neurons in 
the pool and report this value normalized to the geometric mean 
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of the same neurons, unattenuated. In some cases, the scaling 
procedure led to high thresholds that were poorly estimated by 
our fitting procedure. These scaled neurons were arbitrarily as- 
signed a “threshold” of 100% coherence; because they were 
always a small minority of the simulated neuron pool, this had 
little effect on the simulations. 

APPENDIX 2 

Signal-to-noise ratio in pools of mixed quality signals 

Here we develop a simple statistical analogy to guide intuitions 
about the properties of a pooled quantity computed from 
weakly correlated signals of varied sensitivity. We show that the 
signal-to-noise ratio (SNR) of the pooled average depends only 
on the average sensitivity of the pooled elements and their 
average pairwise correlation. The analysis suggests that, within 
limits, the exact composition of the pool affects the overall 
sensitivity relatively little. Second, this analysis provides an 
intuitive appreciation for our assertion that the choice proba- 
bility reflects the average correlation of a neuron with other 
members of the pool. 

Signal-to-noise 
For simplicity, imagine that the neurons in our sample represent 
the best the brain has. Consider one such best signal, X,,, repre- 
sented by a normally distributed random value with unity mean 
and variance. We take the signal to be a positive departure from 
zero. Hence, the SNR of this best signal is: 

(A2.1) 

In this and subsequent expressions, angle brackets denote expec- 
tation (or mean), and (T denotes SD. We choose to make the SNR 
unity for convenience. This will establish a standard by which we 
may interpret additional signals of lesser quality. 

What is the expected SNR of the average of N weakly corre- 
lated signals, X, . . X,? It is the expectation of their average 
divided by their SE: 

(A2.2) 

The denominator is just the square root of the variance of a mean; 
we must consider the sum of covariances rather than the sum of 
variances because the signals are weakly correlated. 

Suppose that each of the N signals is a normally distributed 
random value with variance of 1, but that their individual expec- 
tations range between 0 and 1. In other words, the signals repre- 
sent a mixture of qualities, with SNR between 0 and 1. Let the 
mean value for this mixture be m. If  m is 1, then we have N signals 
that are all of the same quality as our best signal. I f  m is l/2, then 
we have a mixture of signals that are, on average, half as sensitive 
as our best signal. This would arise, for example, if the expecta- 
tions were themselves drawn from a uniform distribution between 
0 and 1. 

The SNR of the average is just: 

(A2.3) 

Because the SD of each of our signals is assumed to be unity, we 
can delete the subscripts from the cr terms. The denominator is 
just the average of the values in the N by N covariance matrix 
defining the system of signals. This can be written as the sum of N 
diagonal terms for variance, all equal to 1, and N(N - 1) off- 
diagonal terms, rij. Notably, we can replace the individual pairwise 
correlations with their average, to obtain: 

\ “/N) = 
Nm 

JN + N(N - 1)r 

The approximation 
when N is 50-100. 

= ” for large N 
$ 

for large N works reasonably well even 
The approximation in Equation A2.4 is 

(A2.4) 

illuminating. It portrays the SNR of the average in units that 
are normalized to the S/N of a single, best signal. For example, 
if the average correlation coefficient were 0.2, then a mixture of 
signals with average SNR that is 45% that of the best source (m 
= 0.45) would work about as well as the best source alone. 
Interestingly, even if we were to combine signals of the best 
quality (m = l), we would achieve only a twofold improvement 
in SNR over any one source. As long as the signals are corre- 
lated, there is little to be gained from pooling the best signals 
and little to be lost in pooling signals of mixed quality. A crude 
mixture of sources that spans the range from completely insen- 
sitive to the most sensitive neuron will approximate the mixture 
that yields an SNR of the best neuron. 

Choice probability 
The analogy to choice probability is equally straightforward. 
Once again we consider a pooled quantity, like the mean of N 
weakly correlated signals, X, . . . X,. The choice probability is 
analogous to the correlation between any one signal, Xi, and 
the mean. The covariance between one signal and the mean can 
be written as: 

(A2.5) 

= FdNu’ + N(N - l)C2 

where p is the correlation analogous to the choice probability, 
a, is the SEM, and ? is the average correlation coefficient 
between any pair of signals. The left side of Equation A2.5 can 
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also be written in terms of products and their expectations: 

= &x;, + -gXIXi) - N(X)2) (A2.6) 
L=2 

= ;(d + -&ov,x,,xi,) 
1=2 

= T&T? + (N - l)r1c2) 

where Y1 is the average correlation coefficient between X, and 
each of the other signals, X, .X,. Solving for p in Equations 2.5 
and 2.6, we obtain (Zohary et al., 1994): 

1 + (N - l)?, 

’ = JN + N(N - l)Fl 

(A2.7) 

= fi for large N 

In words, the correlation between one signal and the mean to 
which it contributes depends on the average correlation of that 
signal with the other signals that comprise the mean. The quality 
of the signals does not affect this correlation unless we postulate 
a connection between correlation and sensitivity. For the simula- 
tions in Figure 4, we used random pairwise correlations averaging 
0.18. So inclusion of relatively poorly driven neurons did not affect 
the choice probability. In Figure 10, the more sensitive neurons 
were more strongly correlated with other members of the pool, 
and these neurons exhibited larger choice probabilities. 

APPENDIX 3 

Pooling noise 
To simulate pooling noise, we added variability to the two pooled 
responses before comparing them to render a decision. On each 
simulated trial, we added a zero-mean, normally distributed ran- 
dom value to each of the pooled means. The variance of the noise 
distribution was proportional to the pooled mean itself and there- 
fore differed from trial to trial and between pools. We parame- 
terized the pooling noise in our model by a constant of propor- 
tionality: variance divided by the pooled mean, or variance-to- 
mean ratio (VMR). Our simulations worked best when this ratio 
was quite small (0.2-0.4). Here we try to develop an intuition for 
this quantity. We first consider the range of values for pooling 
noise that makes sense biologically. We then develop a more 
general heuristic for thinking about pooling noise. Interestingly, 
this heuristic, based on general experimental observations, leads 
one to expect pooling noise values very similar to those derived in 
this paper from simulations of a specific set of neuronal and 
psychophysical data. 

Pooling noise represents all sources of variability that affect the 
representation of the pooled average and its transmission to 
neural processes that render a decision. At the lower end of the 

range of plausible values, psychophysical performance and neu- 
ronal choice probability might be simulated adequately without 
any addition of pooling noise. This result would imply that the 
variability in psychophysical performance can be accounted for 
completely by response variability measured in MT. Higher-order 
neurons that pool the outputs of MT would achieve the same 
degree of noise reduction as our simulations by computing the 
average of the MT responses, adding no additional noise of their 
own. An upper bound for pooling noise is less certain because 
many stages of neural processing might intervene between MT 
and formation of the psychophysical decision. Nevertheless, it 
seems reasonable to expect these processes to do better than a 
single neuron at representing the pooled quantities. The VMR for 
neurons in several cortical areas is reported to be on the order of 
1.5. A value for pooling noise exceeding 1.5 would imply that the 
brain cannot represent the pooled motion signals as well as a 
single neuron. 

A general framework for interpreting pooling noise would 
require an understanding of the actual physiological sources of 
variability in neuronal responsiveness. However, a simple heuris- 
tic lends some insight. Consider the response from a hypothetical 
neuron that computes the pooled average-one of many such 
neurons, presumably. We will show that such a neuron would 
possess the same amount of variability as other cortical neurons, 
provided we incorporate pooling noise in our estimate. 

The variance of the spike count of the pooling neuron might be 
viewed as the sum of a conditional variance and the variance of 
the quantity to be represented: 

E[Var[Y]] = E[Var[YIx,. . .xj,J]] + ~~‘ar[E[YIx1. . .x,l] 
(A3.1) 

In this expression, X1 . .X, are random variables that represent 
the responses from MT, say, the spike counts from neurons in the 
up pool. Y is the response of our hypothetical pooling neuron; it 
represents the mean of X1 . . . X,; hence, its expected value is X. 
E[ ] stands for the expectation of the quantity within the brackets, 
and Y/X, . . X, should be read, “Y, given a fixed set of inputs.” 
Equation A3.1 expresses the expected variance of the response of 
the pooling neuron as the sum of two terms. The first term of the 
sum is the conditional variance: given the same set of responses 
from MT, the pooling neuron would nevertheless generate a 
different response on each trial, and this is the expected variance. 
This term is presumably related to processes governing synaptic 
integration and spike generation-that is, the process that makes 
the interspike interval irregular (Shadlen and Newsome, 1994). 
For example, if the neuron is modeled as a Poisson point process, 
the conditional variance should equal its expectation. In other 
words, even if the pooled mean, x, were 100 spikes on every trial, 
Y would vary with (mean = variance = 100). In reality, the 
interspike interval may be more regular than a Poisson point 
process. The coefficient of variation (C,) of the interspike interval 
may be closer to 0.8 (Softky and Koch, 1993). This would imply 
that the conditional variance of the spike count is -0.64-1.0 (i.e., 
C”,) times the mean (see Smith, 1959). 

The right-hand term in Equation A3.1 is the variance of the 
expectation itself. This term reflects the variability in the quantity 
that the pooling neuron is supposed to calculate in the first place. 
Ideally, this is the pooled mean spike count from MT (i.e., X). 
Recall that pooling does not produce a zero variance signal. Weak 
correlation among MT neurons leads to an asymptotic variance 
reflecting the common noise. Were the pooling operation a simple 
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mean, the variance would be 1.5~~7, the average variance times 
the average correlation (Zohary et al., 1994). Accepting the aver- 
age correlation in MT as -0.2, we get a VMR of 0.3 for the 
computed mean. By adding the two terms on the right side of 
Equation A3.1, we are imagining that the pooling neuron com- 
putes a value that is variable (the variance of the conditional 
expectation) and then compounds this variability with its own 
spiking irregularity (the conditional variance). Thus, we would 
anticipate a total variance of 0.94-1.3 times the mean. 

There is nothing intrinsically wrong with these values. However, 
it is reasonable to expect that pooling neurons behave statistically 
like MT neurons-that is, they too should exhibit a VMR of 1.5. 
To achieve this amount of variability, we must boost the variance 
by 0.2-0.56 times the mean, a value that is remarkably consistent 
with the amount of pooling noise added to the model to satisfy 
experimentally derived constraints (Figs. 6, 7). In terms of Equa- 
tion A3.1, this is variance that belongs lumped in the right-hand 
expression (variance of the conditional expectation). Presumably, 
it corrects our oversimplifying assumption that the pooling is 
achieved as an average. 

Put another way, the requirement of the model for pooling 
noise implies a similarity between neurons at the pooling stage 
and those in area MT. The variance of the pooled mean combined 
with pooling noise and the neuron’s intrinsic variability sum to a 
VMR of -1.5. Thus, a putative pooling neuron is no more or less 
noisy than an average MT neuron, implying that noise has 
achieved a steady state by the level of MT. This is an attractive 
notion because it helps us understand how simple sensory signals 
can be propagated accurately through successive stages in a com- 
plex neural pathway. Each stage involves additional circuitry (to 
achieve novel computational capabilities, presumably) which, in 
turn, adds some noise to the signal (“pooling noise”). This noise 
added at each stage is rather precisely balanced, however, by the 
noise reduction achieved through pooling. Thus, simple signals 
can be transmitted faithfully through an indefinite number of 
higher stages before ultimately reaching decisional and premotor 
centers. 

In our original modeling exercise, pooling noise was a some- 
what arbitrary quantity needed to reconcile experimental and 
simulated data. In this more general conception, however, pooling 
noise is an inevitable concomitant of the complex circuitry needed 
for computational power, and it is finely balanced at each stage of 
processing by noise reduction achieved through averaging signals 
across a pool of neurons. Interestingly, quantitative estimates of 
pooling noise derived through the two approaches agree well. 

APPENDIX 4 

Example of an alternative model architecture 

Here we consider a criterion-based model for the monkey’s psy- 
chophysical behavior. The model we have considered thus far 
works on the principle of maximum likelihood: it chooses the most 
likely direction of motion, given the neural discharge. A criterion- 
based model works by detecting motion when some neuron or set 
of neurons exceeds a criterion response. Because this notion uses 
a fundamentally different set of assumptions, we describe it in 
detail. Moreover, it represents our most successful attempt to 
model the monkey’s behavior on the basis of a small number of 
neurons. 

Rather than pooling responses from MT and passing the result 
to a decision, this model assumes that each MT neuron signals the 
presence of a specific feature of visual motion. Consistent with the 
notion of feature detectors (Lettvin et al., 1959; Martin, 1994) and 

the “neuron doctrine” of perception (Barlow, 1972, 1995) the 
neural response leads more or less directly to the impression of 
motion. In our task, the monkey is required to choose between 
one of two directions. We must therefore construct a model that 
converts feature detection to psychophysical decisions. 

Suppose that just a few neurons are feature detectors optimally 
suited to detect motion in our display. That is, given the location 
of the random dot motion stimulus, its size, speed, and disparity, 
there are only a small number of feature detectors that the brain 
uses to support its judgment of direction. Suppose that this num- 
ber is 5: on each trial, each of 5 neurons responds to the stimulus 
motion in the manner observed in our experiments. Stronger 
motion (higher dot coherence) leads to a larger response. The 
simulated response is quite variable, so that multiple trials with 
identical stimuli lead to a distribution of responses with variance 
1.5 times the mean. If  any 2 neurons (of the 5) exceed some 
criterion, then the monkey detects motion in the direction of this 
neuron. We will qualify the word detect in a moment; it is not 
synonymous with decide. The criterion is the main free parameter 
in the model. Assume, for the moment, that it is 1 SD above the 
response to the 0% coherent motion display. For example, an 
upward-preferring neuron that discharges 40 spikes, on average, 
to the 0% coherent display detects upward motion whenever its 
response exceeds 4O+d(1.5)(40) -48 spikes. 

Of course, for every 5 neurons selective for motion in the 
upward direction, there are also neurons selective for the opposite 
direction. Again, if any 2 of 5 neurons exceed criterion, then the 
monkey is said to detect downward motion. Notice that it is 
possible to detect motion in opposite directions, simultaneously, 
particularly with weak motion strengths. It is also possible that 
neither pool of neurons achieves criterion for a detection. We 
analyzed several decision rules to handle these contingencies. The 
rule that worked best was to break ties resulting from neither side 
achieving detection with a coin toss (i.e., a guess) and to break ties 
resulting from both pools achieving detection by deciding in favor 
of the pool with the larger number of votes (~2); if this did not 
produce a winner, we resorted to a coin toss. Notice that, unlike 
the model considered elsewhere in this paper, neural signals are 
not combined to improve the SNR of the stimulus representation. 
Here they combine as independent detectors, through probability 
summation (Watson, 1979; Graham, 1989). 

The free parameters in the model are as follows: (1) the 
sensitivity of the neurons; (2) the number of neurons in each 
detecting unit; (3) any weak correlation among their responses; 
(4) the criterion response for a neuron to detect motion; and (5) 
the number of neurons exceeding criterion required for a detec- 
tion. We can simplify this by considering only neurons that were 
recorded in our data set. It makes little sense to imagine that the 
monkey bases its decision on a few neurons, but chooses relatively 
insensitive ones. In a similar vein; we assume that the few neurons 
the monkey consults respond essentially independently (weak 
correlation is much less important with small numbers of neu- 
rons). We show results for the model that requires 2 neurons to 
exceed criterion because this turned out to be the best. This leaves 
two parameters for analysis: the number of neurons and the 
criterion response. 

The results are shown in Figure 12. The effect of criterion and 
neuron number are shown for three model predictions: psycho- 
physical threshold, the slope of the PMF, and the choice proba- 
bility for the individual neurons. The plotted values are averaged 
from 200 simulations using neurons randomly sampled from mon- 
keys E and K. The model predicts psychophysical thresholds equal 
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Figure 12. These plots summarize the predictions from our most successful model using small numbers of neurons. A small group of neurons was taken 
to detect motion in its preferred direction if any two exceeded a criterion response. A second group of neurons detected motion in the opposite direction 
using the same rule as the first. Ties occurred when both groups signaled a detection, or when neither did. Ties were resolved by a coin toss. A, Predicted 
Threshold for the model is plotted as a function of group size. Solid curve, Criterion = 1 SD; Dashed curve, criterion = 1.5 SD; Dot-dash cuwe, criterion 
= 2 SD. The horizontal dotted line indicates the observed mean threshold for monkeys E and K. B, The SZope ofPMF plotted as a function of group size. 
Curves depict the same criterion values as in A. Conditions that foster ties tended to produce steep psychometric functions. The horizontul dotted line 
indicates the observed mean slope for monkeys E and K. C, Choice probability for individual neurons is plotted as a function of group size. Three curves 
represent different criteria as in A. Choice probability was computed for the 0% coherent motion stimulus. The dotted line shows the value observed in 
monkeys E and K. D, Influence of stimulus strength and direction on Choice probability. Average choice probability for the N = 5 model with criterion 
= 1 SD is ulotted as a function of stimulus strength. For the solid cuwe. motion was in the preferred direction of the neuron; for the dashed cuwe, motion 
was in the null direction of the neuron. 

to those observed in our monkeys when any 2 of 4-8 neurons 
provide the detection (Fig. 12). Threshold falls with increasing 
numbers of neurons. Not surprisingly, threshold is higher with 
more stringent detection criteria (dashed cuwes). The model pre- 
dicts a steeper PMF than we observed in our experiments (Fig. 
12B). The value for slope here is p in the best-fitting cumulative 
Weibull function (Eq. 1). In our data, the mean value was 1.22, as 
indicated by the horizontal dotted line. The criterion-based model 
tends to predict steeper slopes, especially for lower values of N 
and higher criteria. 

The model predicts a weak choice probability for 0% coherent 
motion (Fig. 12C). Although none of the curves matches the data 
perfectly, the low criterion model (solid curve) nearly approxi- 
mates the observed mean value for monkeys E and K, using 5-8 
neurons. The choice probability is small because many decisions 
result from guesses. In contrast, the model considered throughout 
the body of the paper rarely resorted to guessing; consequently, 
the choice probability was larger, especially when small numbers 
of neurons governed the decision (compare Fig. 3C). It is reason- 
able, however, to wonder whether the average choice probability 
is what a “small-numbers” model should predict. The more sen- 
sitive neurons in our data had larger choice probabilities, and it is 
presumably these neurons that would be used in such a model. A 
more serious problem arises when we consider motion strengths 
other than 0% coherence (Fig. 120). The choice probability rises 
precipitously for stronger motion in the preferred direction, be- 
cause fewer decisions result from guesses. This trend is not sup- 
ported by our data (Britten et al., 1996) nor is it predicted by the 
model described in the main text. 

This last reservation aside, the model does reasonably well at 
predicting both psychophysical performance and choice probabil- 
ity. The model is quite delicate, in that there is a rather narrow 
range of parameters that produce reasonable values for threshold 
and slope of the psychometric function. For example, the results 
shown in Figure 12 depend critically on the particular choice of 
neurons we have incorporated: 2-6 neurons chosen randomly 
from our sample. If  the monkey is to consult only 5 neurons, why 
would it choose only those of average sensitivity, or worse yet, a 
mixture of sensitivities spanning two orders of magnitude? If we 
incorporate only neurons of above average sensitivity, then we can 
no longer account for the psychophysical results, because the 

model predicts sensitivity to be too high. We cannot fix this by 
raising the detection criterion or by increasing the number of 
neurons required to exceed criterion, because these maneuvers 
also steepen the slope of the psychometric function unacceptably. 
Intuitively, the model operates in two modes, one in which there 
is a clear winner and one in which the decisions are attributed to 
guesses. Raising the criterion extends the range of stimulus 
strengths over which judgments arise through guesses, driving the 
performance toward chance for weak stimuli while negligibly 
affecting performance on stronger stimuli. This means that a 
change in threshold is accompanied by a change in the slope of the 
PMF, often to unacceptable values. 

REFERENCES 
Abbott LF (1994) Decoding neuronal firing and modelling neural net- 

works. Q Rev Biophys 27:291-331. 
Abeles M (1982) Local cortical circuits. Berlin: Springer. 
Allman JM, Kaas JH (1971) A representation of the visual field in the 

caudal third of the middle temporal gyrus of the owl monkey (Aotus 
trivirgutus). Brain Res 31:85-105. 

Anderson TW (1984) An introduction to multivariate statistical analysis. 
New York: Wiley. 

Barlow HB (1972) Single units and sensation: a neuron doctrine for 
perceptual psychology? Perception 1:371-394. 

Barlow HB (1995) The neuron doctrine in perception. In: The cognitive 
neurosciences (Gazzaniga M, ed), pp 415-435. Cambridge: MIT. 

Bradley A, Skottun BC, Ohzawa I, Sclar G, Freeman RD (1987) Visual 
orientation and spatial frequency discrimination: a comparison of single 
cells and behavior. J Neurophysiol 57:755-772. 

Braitenberg V, Schiiz A (1991) Anatomy of the cortex: statistics and 
geometry. Berlin: Springer. 

Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The anal- 
ysis of visual motion: a comparison of neuronal and psychophysical 
performance. J Neurosci 12:4745-4765. 

Brittcn KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses 
of neurons in macaque MT to stochastic motion signals. Vis Neurosci 
10:1157-1169. 

Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA 
(1996) A relationship between behavioral choice and the visual re- 
sponses of neurons in macaque MT. Vis Neurosci 13:87-100. 

Celebrini S, Newsome WT (1994) Neuronal and psychophysical sensitiv- 
ity to motion signals in extrastriate area MST of the macaque monkey. 
J Neurosci 14:4109-4124. 

Dean AF (1981) The variability of discharge of simple cells in cat striate 
cortex. Exp Brain Res 44:437-440. 

Douglas RH, Martin KAC (1991) A functional microcircuit for cat visual 
cortex. J Physiol (Lond) 440:735-769. 



1510 J. Neurosci., February 15, 1996, 76(4):1486-1510 Shadlen et al. l Neuronal and Behavioral Responses to Visual Motion 

Douglas RJ, Koch C, Mahowaid M, Martin KAC, Suarez HH (1995) 
Recurrent excitation in neocortical circuits. Science 269:981-985. 

Downing CJ, Movshon JA (1989) Spatial and temporal summation in the 
detection of motion in stochastic random dot displays. Invest Ophthal- 
mol Vis Sci 30:72. 

Dubner R, Zeki SM (1971) Response properties and receptive fields of 
cells in an anatomically defined region of the superior temporal sulcus. 
Brain Res 35:528-532. 

Efron B, Tibshirani RJ (1993) An introduction to the bootstrap (Cox D, 
Hinkley D, Reid N, Rubin D, Silverman B, eds). New York: Chapman 
& Hall. 

Foldiak P (1989) Adaptive network for optimal linear feature extraction. 
In: IEEE/INNS international joint conference on neural networks, Vol 
1, pp 401-405. Washington, D.C.: IEEE. 

Gawne TJ, Richmond BJ (1993) How independent are the messages 
carried by adjacent inferior temporal cortical neurons? J Neurosci 
13:2758-2771. 

Georgopoulos AP, Schartz AB, Kettner RE (1986) Neuronal population 
coding of movement direction. Science 233:1416-1419. 

Graham NVS (1989) Visual pattern analyzers. New York: Oxford UP. 
Green DM, Swets JA (1966) Signal detection theory and psychophysics. 

New York: Wiley. 
Heeger DJ (1992) Normalization of cell responses in cat striate cortex. 

Vis Neurosci 9:181-198. 
Johnson KO (1980a) Sensory discrimination: decision process. J Neuro- 

physiol 4311771-1792. 
Johnson KO (1980b) Sensory discrimination: neural processes preceding 

discrimination decision. J Neurophysiol 43:1793-1815. 
Johnson KO, Darian-Smith I, LaMotte C (1973) Peripheral neural de- 

terminants of temperature discrimination in man: a correlative study of 
responses to cooling skin. J Neurophysiol 36:347-370. 

Johnson KO, Darian-Smith I, LaMotte C, Johnson B. Oldfield S (1979) 
Coding of ‘incremental changes in skin temperature’by a population of 
warm fibers in the monkey: correlation with intensity discrimination 
with man. J Neurophysiol 42:1332-1353. 

Lettvin JY, Maturana HR, McCulioch WS, Pitts WH (1959) What the 
frog’s eye tells the frog’s brain. Proc Inst Rad Eng 47:1940-1951. 

Martin KAC (1994) A brief history of the “feature detector.” Cereb 
Cortex 4:1-7. 

Mood AM, Grabill FA, Boes DC (1963) Introduction to the theory of 
statistics. New York: McGraw-Hill. 

Mountcastle VB, Talbot WH, Sakata H, Hyvarinen J (1969) Cortical 
neuronal mechanisms in flutter-vibration studied in unanesthetized 
monkeys: neuronal periodicity and frequency discrimination. J Neuro- 
physiol 32:452-484. 

Mountcastle VB, LaMotte RH, Carli G (1972) Detection thresholds for 
vibratory stimuli in humans and monkeys: comparison with threshold 
events in mechanoreceptive first order afferent nerve fibers innervating 
monkey hands (Abstr). J Neurophysiol 35:122A. 

Nachmias J (1980) On the psychometric function for contrast detection. 
Vision Res 21:215-223. 

Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a 
perceptual decision. Nature 341:52-54. 

Newsome WT, Shadlen MN, Zohary E, Britten KH, Movshon JA (1995) 
Visual motion: linking neuronal activity to psychophysical performance. 
In: The cognitive neurosciences (Gazzaniga M, ed), pp 401-414. Cam- 
bridge: MIT. 

Paradiso MA (1988) A theory for the use of visual orientation informa- 
tion which exploits the columnar structure of striate cortex. Biol Cybern 
58:35-49. 

Peters A (1987) Number of neurons and synapses in primary visual 
cortex. In: Cerebral cortex. Further aspects of cortical function, includ- 
ing hippocampus, Vol 6 (Jones E, Peters A, eds), pp 267-294. New 
York: Plenum. 

Peters A, Sethares C (1991) Organization of pyramidal neurons in area 
17 of monkey visual cortex. J Comp Neural 306:1-23. 

Quick RF (1974) A vector magnitude model of contrast detection. Ky- 
bernetik 16:65-67. 

Salzman CD, Newsome WT (1994) Neural mechanisms for forming a 
perceptual decision. 264:231-237. 

Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimula- 
tion influences perceptual judgments of motion direction. Nature 
346:174-177. 

Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Micro- 
stimulation in visual area MT: effects on direction discrimination per- 
formance. J Neurosci 12:2331-2355. 

Seung HS, Sompolinsy H (1993) Simple models for reading neuronal 
population codes. Proc Nat1 Acad Sci USA 90:10749-10753. 

Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical 
organization. Curr Opin Neurobiol 4:569-579. 

Smith WL (1959) On the cumulants of renewal processes. Biometrika 
46: l-29. 

Snowden RJ, Treue S, Andersen RA (1992) The response of neurons in 
areas Vl and MT of the alert rhesus monkey to moving random dot 
patterns. Exp Brain Res 88389-400. 

Softky WR, Koch C (1993) The highly irregular firing of cortical cells is 
inconsistent with temporal integration of random EPSPs. J Neurosci 
13:334-350. 

Stevens CF (1994) What form should a cortical theory take? In: Large- 
scale neuronal theories of the brain (Koch C, Davis J, eds), pp 239-256. 
Cambridge: MIT. 

Thurstone LL (1927) A law of comparative judgement. Psycho1 Rev 
341273-286. 

Thurstone LL (1959) The measurement of values. Chicago: University of 
Chicago. 

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of 
signals in single neurons in cat and monkey visual cortex. Vision Res 
231775-785. 

Van Essen DC, Maunsell JHR, Bixby JL (1981) The middle temporal 
visual area in the macaque: myeloarchitecture, connections, functional 
properties and topographic representation. J Comp Neural 
199:293-326. 

van Kan PLE, Scobey RP, Gabor AJ (1985) Response covariance in cat 
visual cortex. Exp Brain Res 985:559-563. _ 

Vowels R. Orban GA (1990) How well do resuonse changes of striate 
&irons signal differences in orientation: a study in the zscriminating 
monkey. J Neurosci 10:3543-3558. 

Vogels R, Spileers W, Orban GA (1989) The response variability of 
striate cortical neurons in the behaving monkey. Exp Brain Res 
771432-436. 

Watson AB (1979) Probability summation over time. Vision Res 
19:515-522. 

Werner G, Mountcastle VB (1963) The variability of central neural ac- 
tivity in a sensory system, and its implications for the central reflection 
of sensory events. J Neurophysiol 26:958-977. 

Zohary E (1992) Population coding of visual stimuli by cortical neurons 
tuned to ‘more than one dimension. Biol Cybern 66:265-272. 

Zoharv E. Shadlen MN, Newsome WT (1994) Correlated neuronal dis- , 
charge rate and its implications for psychophysical performance. Nature 
370:140-143. 


