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Abstract

Neurons in primary visual cortex are commonly characterized using linear models, or simple
extensions of linear models. Speci4cally, V1 simple cell responses are often characterized using
a recti4ed linear receptive 4eld, and complex cell responses are often described as the sum of
squared responses of two linear subunits. We examined this class of model directly by applying
spike-triggered covariance analysis to responses of monkey V1 neurons under binary white noise
stimulation. The analysis extracts a low-dimensional subspace of the full stimulus space that
is primarily responsible for generation of the neural response, including both excitatory and
suppressive components. We found no fewer than two excitatory dimensions in simple cells,
and as many as seven dimensions in complex cells. For all cells, we also found suppressive
dimensions that were at least equal in number to the excitatory dimensions. These results suggest
that extensions to standard models are required to fully describe the response properties of
cells in V1.
c© 2004 Published by Elsevier B.V.
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0. Introduction

Primary visual cortex (V1) is the 4rst visual area to contain neurons selective for
the orientation and direction of a moving stimulus. It is also the 4rst site where
phase-invariant complex cells are found. Although much emphasis has been placed upon
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examining the details of these computations, the mechanisms underlying them are not
fully characterized. Potential mechanisms can be constrained by models that accurately
characterize the response properties of each cell type found in V1.
Using appropriate stochastic stimuli, one can recover a model of a neuron consisting

of a spatiotemporal linear 4lter (the spike triggered average, STA), a nonlinear func-
tion that relates the output of this 4lter to 4ring rate, and Poisson spike generation;
such a model is commonly referred to as “LNP” [5,10]. This approach is appropriate
when a neuron is well described by a single linear 4lter and asymmetric nonlinearity
(e.g. recti4cation) but provides an incomplete description when either condition fails.
An extension to this 4rst-order technique has been introduced, spike-triggered covari-
ance (STC) [8]. Because STC considers all axes that inIuence the variance of 4ring
rate statistics, this technique recovers a set of linear 4lters in the presence of both
asymmetric and symmetric (e.g. squaring) nonlinearities. STC has been shown to be
capable of mapping the subunits of phase-insensitive complex cells [11] as well as
both suppressive and excitatory stimulus attributes [9,10]. In this paper, we describe
the details of the application of this technique to data obtained from V1 neurons and
the LNP response models that result.

1. Recovery of the linear subspace using spike-triggered covariance (STC)

We applied a spike triggered covariance analysis (STC) to data collected from
isolated directionally tuned simple cells and complex cells within primary visual cor-
tex (V1) of anesthetized, paralyzed macaque monkeys (experimental preparation details
described by [4]). Stimuli were extended temporal sequences in which each frame con-
tained a set of parallel non-overlapping dark and bright bars with randomly assigned
intensity. The orientation of the bars was aligned with the cell’s preferred orientation
and con4ned to the classical receptive 4eld. The number of bars (8–32) was chosen
to match cell’s preferred spatial frequency such that 4–8 bars fell within each spatial
period and the whole array spanned the classical receptive 4eld. Each frame had a
duration of 10 ms.
We denote the set of stimuli that were presented over some 4xed time interval

preceding the nth spike as Sn(x; t). In the conventional procedure of reverse correlation,
one averages these stimuli to obtain the spike-triggered average (STA):

STA(x; t) =
1
N

∑
n

Sn(x; t);

where N indicates the number of spikes. If one assumes that the neural response is
generated by projection onto a single linear kernel, followed by a static nonlinearity and
Poisson spike generation, the STA provides an unbiased estimate of this kernel [5,7].
But if the neural response depends on more than a single axis within the stimu-

lus space, the STA will provide an insuLcient and possibly misleading description.
A number of authors have suggested the natural extension of examining higher-order
statistical properties (and in particular, the covariance) of the spike-triggered ensemble
of stimuli [2,3,8,9,11]. The idea is simple and intuitive: if the neural response is deter-
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mined by a projection onto a low-dimensional subspace (within the space of all stimuli),
an analysis of the spike-triggered covariance might allow us to recover this subspace.
In particular, consider 4rst a stimulus direction to which the neuron is insensitive.

Since the strength of the stimulus in that direction has no eMect on the spiking be-
havior of the neuron, one expects the mean and variance (or any other statistic) of
the spike-triggered stimulus ensemble along that direction to be essentially unchanged
relative to that of the raw stimulus ensemble. Next consider a stimulus direction along
which the cell’s response grows monotonically. Here the mean of the spike-triggered
stimulus ensemble will shift, relative to that of the raw ensemble. If the cell’s response
along this axis were symmetric (e.g., recti4ed, or squared), then one would expect the
variance of the spike-triggered stimulus ensemble to increase. On the other hand, if the
presence of a stimulus component along the direction is symmetric but suppressive,
one expects the variance of the spike-triggered stimulus ensemble to decrease.
In our analysis, we 4rst compute the STA and project it out of the stimulus ensemble.

Speci4cally, we compute the normalized (unit vector) STA, the nSTA, and de4ne

S ′
n(x; t) = Sn(x; t)−

[∑
x; t

Sn(x; t)nSTA(x; t)

]
nSTA(x; t):

This ensures that the axes obtained in the STC analysis will be orthogonal to the STA,
and helps to avoid unwanted interactions between the STA and STC. We then compute
the spike-triggered covariance

COV(x1; x2; t1; t2) =
1

Ns − 1

∑
n

S ′
n(x1; t1)S

′
n(x2; t2):

If one interprets this as a matrix, with the parameter pairs {x1; t1} and {x2; t2} labeling
the rows and columns, respectively, then this matrix captures the variance of a collec-
tion of samples in all possible directions within the space of stimuli. The surface swept
out by a vector whose length is equal to the variance in its own direction is a hyper-
ellipsoid. The set of orthogonal eigenvectors of the STC matrix, obtained by a principal
components analysis (PCA), correspond to the fundamental axes of this ellipsoid, and
the eigenvalues give the variances along these axes.
The relevant excitatory and suppressive dimensions are identi4ed with eigenvalues

that deviate signi4cantly from the variance expected for a randomly chosen set of stim-
ulus blocks by nested bootstrap hypothesis testing. These high- and low-variance axes,
together with the STA, constitute a coordinate system for those aspects of the stimulus
that are relevant to the neuron. The range of eigenvalues one expects when randomly
selecting N samples of d-dimensional noise vectors is proportional (asymptotically) to√
(d=N ). The implication for these experiments is that mildly excitatory or suppressive

axes will only be revealed when d=N is small enough. As a rough rule of thumb, we
aim to gather at least N = 100 ∗d spikes.
Analysis results for a representative cell are shown in Fig. 1A. This cell, classi4ed as

complex due to its lack of response modulation to grating stimuli, had a relatively Iat
STA. STC revealed 6 signi4cant excitatory and 6 signi4cant suppressive eigenvectors
or 4lters (E), each with apparent space–time oriented structure. The excitatory 4lters
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Fig. 1. Reconstruction of a multi-dimensional LNP response model for an example V1 complex cell. (A)
Spike-triggered covariance analysis. The spike-triggered average (STA) is plotted in spatial (X -axis), and
temporal (Y -axis) coordinates where time increases relative to the events preceding a spike. The eigenvalues
resulting from a PCA applied to the spike-weighted stimulus ensemble covariance matrix are plotted in rank
order. Eigenvalues with gray centers correspond to axes along which the spike-triggered stimulus ensemble
variance is signi4cantly diMerent than expected by chance as assessed by nested bootstrap hypothesis testing.
The eigenvectors corresponding to signi4cant eigenvalues are shown. Eigenvectors that have a signi4cantly
larger variance are considered excitatory; eigenvectors with a signi4cantly smaller variance are considered
suppressive. The contrast of each 4lter is scaled according its weight; the weight of each 4lter is indicated
(see Section 2 for details on weight 4tting). Excitatory and suppressive 4lters are independently normalized
with the strongest 4lter weight set to a value of one. (B) The left three plots illustrate 4ring rate as a
function of the projection along diMerent pairs of axes. Pixel intensity is set proportional to 4ring rate with
contours of constant 4ring rate indicated to demonstrate their elliptical nature. The rightmost plot displays
4ring rate as a function of the output of the excitatory and suppressive pools where each pool is comprised
of a weighted sum of squared responses of the 4lters in panel A (with the STA half-squared).
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exhibited the same space–time orientation, indicating a similar direction preference
for moving stimuli. Suppressive 4lters were tilted to the opposite orientation of the
excitation, indicating a preference for motion in the opposite direction. Examination of
the structure of the eigenvectors suggests that 4lters with similar structure were revealed
in pairs that were phase-shifted relative to one another (E1–E2, E3–E4, E5–E6). In
each case, the 4rst pair appeared to have spatial structure centered approximately in
the middle of the receptive 4eld whereas the structure of subsequent pairs was reduced
in the middle and was pushed toward the edges. The recovered weights for each 4lter
(see Section 2 for details of 4t) also suggested a paired arrangement.
The energy model of a complex cell proposes that the response arises from the

summed squared response of the stimulus projection onto a quaderature pair of 4lters
[1]. Due to the symmetry of the squaring operation, a zero-valued STA is predicted by
this model and is realized in our results. However, STC applied to an energy model
would resolve only two linear 4lters as relevant dimensions. As suggested by our cho-
sen example cell, we consistently observed more than 2 excitatory 4lters in these cells
in addition to multiple suppressive 4lters. Similarly, traditional models of simple cells
include a single linear 4lter followed by a rectifying nonlinearity, however, we con-
sistently observed multiple excitatory and suppressive 4lters in these cells (data not
shown). These results suggest that extensions of these traditional models are needed
to fully capture the response properties of these neurons.
Regarding these 4lters, it is important to note a few cautionary details concerning

this analysis. Most importantly, the kernels (eigenvectors) should not be taken literally
as physiologically instantiated mechanisms, since the analysis forces them to be orthog-
onal. One should think of them as a representation of a set (subspace) of stimuli that
govern the response of a cell. More speci4cally, the labeling of any particular axis as
“excitatory” or “suppressive” is based on whether the spike-triggered ensemble has a
smaller or larger variance than the raw stimulus ensemble along that axis. If excitation
and suppression coincide within a neuron along a common axis, the analysis might
produce an axis of either label, or might even produce two orthogonal excitatory and
suppressive axes. These concerns may be ameliorated by careful examination of the
spike-triggered ensemble as projected on the axes obtained in the analysis. We show
examples of this in the next section.

2. Recovery of the nonlinear combination function

A full model of a neuron includes not only the N 4lters revealed by the STC analysis
but also the N -dimensional nonlinear function that describes the rule by which their
responses are combined to generate spikes. Unfortunately, we simply cannot collect
enough data to reconstruct this function, given that N is typically in the range of 6–
10. However, the 4ring rate as a function of the projection onto any single dimension
can be collapsed across all others and reconstructed as the quotient of the histogram
of the number of spikes and the number of stimuli at each projection value. Likewise,
the 4ring rate as a function of the joint projection onto 2 dimensions can be recovered
in a analogous manner.
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Upon examining these joint 2-D 4ring rate functions along diMerent pairs of axes
within the excitatory or suppressive pool, we observed that they took on a character-
istic form: contours of constant 4ring rate along these pairs traced out ellipses and
circles, implying that the 4ring rate is based on the sum of squares of the 4lter re-
sponses (Fig. 1B). As such, we assumed a model in which responses of excitatory and
suppressive 4lters were each pooled using a weighted sum of squares (an L2 norm)
where the weights determine the elongation of the axes of the hyper-ellipse. The STA
was included in the excitatory pool, but was half-wave recti4ed before being squared
and combined with other responses.
We obtained the weights for each dimension by maximizing the mutual information

between the weighted sum-squared output of the joint excitatory and suppressive pools
and the spikes. This approach makes no assumptions regarding the form of the inter-
action between excitation and suppression, but instead allows for the reconstruction of
this function. The weights for each 4lter recovered from the example cell are provided
in Fig. 1A.
The 4ring rate as a function of the joint output of the excitatory and suppressive

pool was reconstructed as the quotient of 2-D histograms of the number of spikes and
the number of total stimuli in each bin (Fig. 1B, right). This function reveals the nature
of the interaction between excitation and suppression in V1 and thus constrains mech-
anistic descriptions of these neurons. If the excitatory and suppressive pools interacted
in a purely subtractive manner, contours of constant 4ring rate would result in parallel
lines. If the response could be described as the ratio of the excitatory and suppressive
pools, contours of constant 4ring rate would emanate from the origin. For the example
cell, these contours appear to take on an intermediate behavior: the contours change
in slope but fail to pass through the origin. This could be due to a combination of
divisive and subtractive mechanisms or could be explained by a divisive mechanism
that acts with a constant in its denominator; such equations have been used to describe
contrast gain control in V1 [6].

3. Discussion

We have outlined a method for constructing a spatio-temporal model of a V1 neuron
that describes the transformation of a time-varying stimulus into 4ring rate. In the
resulting model, the predicted response to a stimulus is obtained by convolving the
stimulus with each of the recovered linear 4lters (Fig. 1A), and combining the outputs
of the excitatory and suppressive 4lters into separate pools via weighted sum of squares.
The instantaneous 4ring rate corresponds to the appropriate bin in the reconstructed 2-D
lookup table that describes the interaction between the excitatory and suppressive pools
(Fig. 1B, right).
Surprisingly, application of this approach to V1 neurons revealed more linear 4lters

than are suggested by traditional models. Although one must be cautious when relating
the results of STC to mechanistic descriptions, characterization of V1 neurons in this
way can potentially discriminate between models that produce similar responses to
traditional stimuli. Furthermore, once the subspace that the neuron cares about is
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determined by STC analysis, these results can be used to construct new stimuli opti-
mized to discriminate between classes of models.
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