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As the visual cortex matures, developmental modifications
change the visually evoked firing patterns of single neurons. To
explore the relationship between these developmental changes
and the fidelity with which neurons transmit information, we
measured the reliability of neuronal responses during postnatal
development. Infant neurons have lower variability and higher
dependence of transmitted information on firing rate than adult
cells. Fewer spikes are needed by the infant cortex to convey

the same amount of information. The increase in firing rates that
occurs during development is largely offset, therefore, by a
decrease in the reliability of responses. We propose that these
changes are a consequence of the increasing ability of cortical
cells to encode rapid changes in the visual environment.
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The spatial vision of infant primates is poor; in particular, infant
monkeys and humans are 5–10 times less sensitive to contrast than
adults (Banks and Salapatek, 1981; Boothe et al., 1988). The
visually evoked responses of cortical neurons in infant monkeys are
relatively weak, and during development firing rates increase, re-
ceptive fields become smaller, and temporal resolution improves
(Wiesel and Hubel, 1974; Blakemore, 1990; Chino et al., 1997). It
is believed that the postnatal increase in visual sensitivity reflects
postnatal maturation of visual cortical response properties.

However, it is not only the absolute firing rate that determines
how accurately a neuron can signal the presence or character of a
particular stimulus. Information in a neuronal response is limited
not only by firing rate but also by variability. Presented with the
same stimulus on repeated trials, a neuron responds with a
variable number of spikes. If there were a constant relationship
between variability and firing rate throughout development, the
low firing rates of infant neurons would imply that the informa-
tion they can transmit increases with age. However, if the vari-
ability of responses in infant neurons were lower, this might
compensate for their lower spike rates and permit them to trans-
mit more information than their sluggish responses might suggest.

We wanted to determine whether the changes in firing rate and
tuning properties observed during development are associated
with an increase in the information content of the visual signals
carried by cortical neurons. To quantify the efficiency with which
neurons signaled information during different stages of develop-
ment, we calculated two measures: a ratio of the variance-to-
mean spike count and an information theory-based measure that
relates the amount of information in a response to the number of

spikes used to convey that information. Both measures suggested
that the responses of infant neurons were more reliable than those
of adult neurons, and that the increase in responsiveness during
development is paralleled by a decrease in reliability. Therefore,
the information that infant cortical neurons transmit need not
limit, by itself, the contrast sensitivity of infant vision.

MATERIALS AND METHODS
We made single-unit recordings from the primary visual cortex of 11
anesthetized, paralyzed pigtail macaques (Macaca nemestrina) between 1
and 99 weeks of age, using conventional methods described previously
(Carandini et al., 1997). All experiments were performed in compliance
with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and with guidelines of the New York University
Animal Welfare Committee.

After isolating each recorded neuron, we tested the more effective eye
and optimized the orientation, spatial frequency, temporal frequency,
and area of drifting achromatic sinusoidal gratings of 0.5 contrast pre-
sented on a gray background. The time- and space-average luminance of
the display was 33 cd/m 2. We then measured the response of each neuron
to gratings at six contrasts ranging from 0 to 0.5. Stimuli drifted across the
screen at a rate chosen so that an integer (1–8) number of cycles
occurred in a 640 msec period (1.6–12.5 Hz). For the neurons reported
here, �10 640 msec trials were collected for each contrast; stimuli were
interleaved and presented in pseudorandom order. The f1/f0 ratio of the
response to drifting gratings was used to classify cells as simple or
complex (Skottun et al., 1991). A few simple cells with a high spontane-
ous rate were excluded from the analysis because spike-count-based
techniques do not capture correctly the information that these neurons
transmit.

A direct method was used to calculate the information about contrast (for
review, see Cover and Thomas, 1991) as the difference between the total
entropy across all contrasts and the mean noise entropy at each contrast:

I � � �
r

P�r�log2 P�r� � �
s

P�s� �
r

P�r � s�log2 P�r � s�,

where r is the number of spikes in a 640 msec trial and s is the contrast
level of the grating. This equation was used to calculate both the full
mutual information (approximately six contrast levels) and pairwise
information (approximately two contrast levels). To compensate for
overestimation of information caused by the limited number of available
trials (mean n � 28.5 cycles), we applied an analytical correction. When
the number of trials was less than four times the peak spike count, the
responses were quantized into R bins (Panzeri and Treves, 1996) with R

Received Aug. 22, 2002; revised Oct. 7, 2002; accepted Oct. 8, 2002.
This work was supported by National Institutes of Health (NIH) Grants EY02017

(J.A.M.) and EY05864 (Lynne Kiorpes). N.C.R. was supported by a training grant
from the NIH. We thank Stefano Panzeri for help with the analysis and Michael
Hawken for his comments on a previous version of this manuscript. Lynne Kiorpes,
James Cavanaugh, and Michael Hawken participated in the physiological experi-
ments.

Correspondence should be addressed to J. Anthony Movshon, Center for Neural
Science, New York University, 4 Washington Place, Room 809, New York, NY
10003. E-mail: movshon@nyu.edu.
Copyright © 2002 Society for Neuroscience 0270-6474/02/2210519-05$15.00/0

The Journal of Neuroscience, December 15, 2002, 22(24):10519–10523



chosen such that convergence to the large-N asymptote was observed
over the entire data set (this resulted in r � 0.4N in the case of contrast
pairs). The effect of this strategy is to exchange a small degree of
underestimation caused by quantization loss for overestimation caused
by sampling bias to obtain the most accurate results over the entire data
set. The analysis also was performed with fixed bin size, and qualitatively
identical results were obtained.

We devised a novel metric to compute reliability by relating the
pairwise information available in stimulus-evoked responses to differ-
ences in spike rates; we will refer to this metric as information density.
To calculate information density, mutual information was calculated
about all possible pairs of contrasts (six contrasts, 15 pairs) from spike
counts in 640 msec bins. Because information was calculated about pairs
of contrasts, information could be plotted against the difference in firing
rates, which should be related to information, rather than a potentially
less correlated measure such as the mean rate. The relationship between
mutual information and the difference in spike count was fit with the
following curve:

I � �1 � �1 � ����n��
�log2 S,

where I is the mutual information, �n is the difference in spike count, S
is the number of stimuli (two), and � and � are free parameters. This
curve asymptotes at the theoretical limit of I � 1 bit for large values of
�n. For � � 1, the curve corresponds to an exponential saturation model
in which the information provided by each spike has a random overlap
with that provided by any other; in this case, � measures the extent of
that overlap (Gawne and Richmond, 1993; Rolls et al., 1997b). For � �
2, the curve corresponds to the rate at which information grows as the
firing rate distributions for two stimuli are separated if those distribu-
tions were Gaussian. Allowing � to vary allows the function to account
for a variety of firing rate distributions; the value of � for our sample
varied between 1 and 4. The maximum slope of this function represents
the peak rate of information growth with difference in spike count; we
call this quantity information density to distinguish it from other mea-
sures of information. The values of information density obtained by
fitting other empirically chosen functions were very similar to those
obtained using Equation 2. Neurons were excluded from this and other
analyses if the correlation between pairwise mutual information and
spike count did not achieve significance on an F test ( p � 0.05). The
number of neurons so excluded was small (1 week, 1 of 48 neurons; 4
weeks, 7 of 60 neurons; 16 weeks, 2 of 68 neurons; adults, 6 of 72
neurons).

We wanted to know whether the choice of test contrasts had an effect
on the full (all stimuli) mutual information values that we computed. In
particular, if contrast values were placed too high or too low, most
responses would be either small or large, skewing the distribution of
responses and reducing the amount of information transmitted. We
calculated full mutual information for a Poisson neuron with a conven-
tional contrast–response function and deliberately skewed the chosen
contrast values. The full mutual information measure proved quite
insensitive to this skewing within the range of skews in our data set, and
we used the simulations to estimate the amount by which our full mutual
information calculations would have been in error for real neurons. The
effect of skewing was modest (�10% underestimate of information for
almost all cases), and there was no difference in our estimated errors
across the four age groups.

We also measured responses to high contrast gratings of optimal
orientation and spatial frequency drifting at frequencies between 0.4 and
25 Hz, and we fit the data with a suitable descriptive function; we took
temporal resolution as the frequency at which the response fell to 1/10 of
maximum (Foster et al., 1985; Saul and Humphrey, 1992). Response
latency also provides a measure of integration time (Maunsell and
Gibson, 1992; Gonzalez et al., 2001). We measured response latency by
plotting response histograms (in 5 msec bins) over multiple data sets and
estimating latency as the first bin in which the response was greater than
the mean spontaneous rate measured in response to a gray screen. For
simple cells, a latency was recorded only if cycle-triggered averages
indicated that at least one stimulus started in the excitatory phase of the
cell. For a few cells (19 of 232), we could not determine latency reliably,
and those cells were omitted from the latency analysis.

RESULTS
Consider the two cells for which data are shown in Figure 1.
Figure 1, a and b, shows the mean responses of an infant and an

adult neuron, respectively, to an otherwise optimal grating stim-
ulus at six different contrasts; error bars indicate the SD of the
firing rate distributions. As is typical of visual cortical neurons,
firing rate grew with contrast and saturated at high contrasts for
both cells. To discriminate two stimuli perfectly, a neuron with
high trial-to-trial variability like the adult cell must signal two
different stimuli with very different mean firing rates. Conversely,
a neuron with low variability like the infant cell can convey the
same amount of information with a smaller dynamic range.

We used Shannon’s mutual information to measure how accu-
rately different stimuli can be distinguished based on the number
of spikes elicited from a neuron during repeated stimulus presen-

Figure 1. Calculation of information density and variance-to-mean ratio
for two cells. a, b, Mean � SD of the responses of a neuron from a
4-week-old infant (a) and from an adult ( b) to an optimized, drifting
sinusoidal grating stimulus at six different contrasts evenly spaced be-
tween 0 and 0.5. The mutual information about selected contrast pairs is
indicated. c, d, Mutual information about every possible pair of the six
contrasts (15 pairs) in a and b is plotted against the difference in the mean
firing rate between each pair of contrasts. These data are fit with a
function, the maximal slope of which is a measure of information density
(see Materials and Methods). Information density has units of bits per
spike, and the computed information densities for each cell are indicated.
This measure, unlike total mutual information, does not depend on the
specific contrasts tested, which differed somewhat from cell to cell. e, f,
Spike count variance at each contrast is plotted against mean spike count
for the example cells in a and b. The variance-to-mean ratio (VMR) is
taken from the best fitting line with slope � 1; horizontal ticks mark the
ratios for each cell. The counting window was 640 msec and contained an
integer number of temporal cycles of the drifting stimulus.
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tations (Werner and Mountcastle, 1965; Tolhurst, 1989; Rolls et
al., 1997a). The information is related to the distance between the
two firing rate distributions and is similar to the d	 measure used
in signal detection theory (Parker and Newsome, 1998). To illus-
trate the relationship between the firing rate and information,
Figure 1, a and b, also shows the information transmitted by each
neuron about selected pairs of contrasts. Note that both the infant
and the adult neuron were capable of perfectly discriminating a
zero-contrast stimulus (mean gray background) from the highest
stimulus contrast, yielding one bit of information. However, the
infant neuron signaled this information with fewer spikes.

To quantify the relationship between information and the
number of spikes needed to convey that information, we plotted
the information conveyed by a neuron about each of the 15
different contrast pairs against the mean firing rate difference
between the members of each pair (Fig. 1c,d). Information about
a contrast pair cannot exceed one bit, representing perfect dis-
crimination, and therefore we fit these points with a curve, the
form of which accounts for this saturation. The maximum slope of
this function captures the shape of the relationship between
information and spikes; we call the maximum slope of this curve
the information density (see Materials and Methods), with units
of bits per spike. This measure differs from the more usual full
mutual information in that it depends only on pair comparisons
and not on the total number of stimuli used (Tolhurst, 1989; Rolls
et al., 1997a). Neurons with larger values of information density
use fewer spikes to convey information (Fig. 1c). Neurons with
smaller values require a larger dynamic range to discriminate
contrast pairs (Fig. 1d).

Another way to capture the change in firing patterns is to
analyze the relationship between response mean and variance for
the example cells. The variance of cortical neuron spike counts
increases in proportion to their mean (Tolhurst et al., 1981, 1983),
and the ratio of the two is inversely related to the amount of
information transmitted by cortical cells (de Ruyter van
Steveninck et al., 1997). Figure 1, e and f, shows the relationship

between response variance and mean for the two example cells.
As indicated by the reference lines at a spike count of 1, the infant
cell had a lower variance-to-mean ratio than the adult cell, as
would be expected from its higher information density.

We calculated information density for populations of V1 cells
recorded from macaques in four age groups: 1 week, 4 weeks, 16
weeks, and adults (31–99 weeks). Surprisingly, we found that V1
neurons in the youngest animals had the highest information
density: mean information density decreased twofold during de-
velopment (Fig. 2a). We also calculated the variance-to-mean
ratio for the same populations; as expected from the information
density calculation, the variance-to-mean ratio of cortical cells
increased during development (Fig. 2b). Adult cells tended to
have higher variance-to-mean ratios than infant cells even when
cells with similar dynamic range were selected, implying that this
developmental difference cannot be attributed to the subpopula-
tion of adult cells with high firing rates (data not shown). It is also
interesting to note that simple cells had higher information den-
sities for each age group (mean information densities for simple
cells from the 1 week, 4 week, 16 week, and adult animals were
0.33, 0.25, 0.20, and 0.12, respectively; for complex cells, the
values were 0.19, 0.15, 0.11, and 0.09, respectively); simple cells
had correspondingly lower variance-to-mean ratios than complex
cells. A multiple linear regression analysis suggests that these
differences cannot be accounted for by differences in spontaneous
rate or dynamic range.

Together, these two measures suggest that the coding proper-
ties of neurons change during development. However, how are
they related? Figure 2c shows that information density and the
variance-to-mean ratio were inversely but imperfectly correlated.
This is because the variance-to-mean ratio measures the average
variability of the response to a single stimulus, whereas the
mutual information quantifies the fraction of the total variability
that is attributable to the difference between responses. These
two measures are comparable in that each indicates the reliability
of neuronal firing, and the regular relationship shown in Figure 2c

Figure 2. Changes in information density and the variance-to-mean ratio during development. a, Distributions of information density for neurons from
monkeys in the four age groups (see Materials and Methods for calculation). Arrows indicate the means. b, Distributions of the variance-to-mean ratio
for each age group (see Materials and Methods for calculation). Arrows indicate the geometric means. c, Scatter plot of the data displayed in a and b
for 232 neurons from animals in the four age groups: 1 week (47), 4 weeks (53), 16 weeks (66), and adults (66).
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suggests that during development there was a decrease in the
reliability of visual signaling by cortical neurons.

Despite the decrease in reliability during development, total
information transmission could be maintained if the range be-
tween the lowest and highest firing rates (the dynamic range) also
increased. The mean dynamic range did increase twofold during
development, and a plot of the mean information density- versus
the geometric mean-evoked firing rate for each age reveals the
reciprocal relationship between these two measures (Fig. 3a). In
the youngest infants, information density was high and firing rate
was low, whereas in the adults information density was low and
firing rate was high.

The mutual information about all of the six contrasts presented
in an experiment (which we term full mutual information to avoid
confusion with the pairwise measure) quantifies the ability of
these neurons to distinguish stimuli and depends on both infor-
mation density and dynamic range. However, unlike information
density, full mutual information depends on both the number and
the distribution of the contrasts tested. We did not use the same
test contrasts every time because we tried to place the contrasts so
that they spanned the response range of each cell; however, we
verified that the chosen contrasts did not have an important effect
on the full mutual information measure for our population (see
Materials and Methods). Mean full information values for the
four age groups are given next to each point in Figure 3a. The
modest and inconsistent change in the full mutual information
values is attributable to the opposing effects of increasing firing
rate and decreasing information density as development
progresses. In other words, infant neurons may fire few spikes, but
each infant spike carries more information. As a result, 1 week
infant neurons can transmit 80% of the total information that
adult neurons transmit.

DISCUSSION
Our results suggest that lower firing rates in infant neurons are
compensated for partially by lower variability and that infant
neurons, therefore, are more efficient at transmitting information
about contrast than adult neurons. This leads to an interesting
puzzle. If infant neurons can signal 80% of the information that
adult neurons signal, why is it that contrast sensitivity in infant
primates is 5- to 10-fold lower than in adults (Boothe et al.,
1988)? One possibility is that infant neurons have higher contrast
thresholds than adult neurons (compare responses in Fig. 1a,b).
Our results might have been different had we tested infant neu-
rons with very low contrast targets, but we did not explore
systematically the contrast range below 0.1. A second possibility is
that the limits to infant contrast sensitivity are not set by V1
neurons and, instead, lie in downstream structures (Kiorpes and
Movshon, 2003). The low spike rates of infant neurons might
contribute to this by driving downstream neurons less effectively,
even if their responses are reliable.

How might the reciprocal relationship between information
density and firing rate arise? Many aspects of the visual system
change during development, including improvements in the optics
of the eye (Williams and Boothe, 1981; Jacobs and Blakemore,
1988), migration of cones in the fovea (Packer et al., 1990),
increases in spatial resolution, and decreases in receptive field
size (Blakemore, 1990; Movshon and Kiorpes, 1993; Wilson,
1993; Chino et al., 1997; Movshon et al., 2000). Our first thought
was that developmental decreases in receptive field size might
underlie our observations, but we have shown that these changes
are attributable almost entirely to changes in retinal optical
magnification and cone distribution (Wilson, 1993; Movshon et
al., 2000) and do not reflect neural changes in receptive field
organization. However, there are marked changes in the temporal
fidelity of responses during development that may drive the
change in information density. Figure 3b plots mean information
densities for the neurons from each of the four age groups against
two temporal measures: the latency of response after stimulus
onset and the highest temporal frequency of drift that elicited a
response (temporal resolution). A relationship between informa-
tion density and each of these temporal parameters is clear. The
decrease in latency and increase in temporal resolution with age
suggest that infant neurons integrate their inputs over longer

Figure 3. The relationship among information density, dynamic range,
and temporal parameters during development. a, Mean information den-
sity and geometric mean dynamic range are plotted for each age group.
Dynamic range is taken as the largest mean response to a grating target
minus the mean baseline response. The mean transmitted full mutual
information for all six contrasts is indicated beside each point. b, Mean
information density, geometric mean temporal resolution ( filled squares),
and geometric mean latency (open circles) are plotted for each age group.
For each cell, temporal resolution was taken as the drift rate at which the
response of the cell fell to 1⁄10 of its peak. Latency was taken as the time
after stimulus onset at which the firing rate first deviated from baseline.
SE are plotted for all axes.

10522 J. Neurosci., December 15, 2002, 22(24):10519–10523 Rust et al. • Reliability of Responses in Developing Visual Cortex



times than adult neurons. A neuron with a longer integration time
would average over more synaptic input events and therefore
reduce variability associated with rapid fluctuations in those in-
puts; such a neuron would carry more information with each spike
by sacrificing temporal bandwidth. To improve their resolution of
fine temporal structure, developing V1 neurons decrease their
integration times, which would increase the variability of spiking.
Such an increase would increase variance-to-mean ratios and
have a deleterious effect on information transmission, but these
effects could be overcome by increasing dynamic range (Fig. 3a).

Developmental changes in temporal integration might arise
from changes in either neuronal properties or synaptic properties.
Interestingly, in the gerbil lateral superior olive and rat cortex,
EPSPs are of longer duration in infant neurons than in adult
neurons (Burgard and Hablitz, 1993; Sanes, 1993); this change
may be attributable to changes in patterns of glutamate receptor
expression (Krukowski and Miller, 2001). Whatever the biological
basis, a shift in coding strategy from high information density, low
bandwidth, and low firing rate to low information density, high
bandwidth, and high firing rate would ensure that information
transmission is not sacrificed as temporal resolution grows to
adult levels.
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