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What to Do, or How to Do It?
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In this issue of Neuron, Ajemian et al. present a computational model of the activity of neurons in primary
motor cortex (M1) during isometric movements in different postures. By modeling the output of M1 neurons
in terms of their influence on muscles, they find each M1 neuron maps its output into a particular pattern of
muscle actions.

Controlling complex movements is a
profoundly challenging problem for the
nervous system, and working out how
neurons in the motor system solve this
problem is an equally challenging problem
for neuroscience. The difficulty is that
even such apparently simple acts as
reaching to a nearby object involve the co-
ordinated action of the muscles control-
ling the position of several joints. This
poses a question: does the activity of neu-
rons represent low-level dynamic aspects
of movement such as movement forces
and muscle activations, or does it reflect
high-level kinematic parameters such as
the direction and velocity of hand move-
ments? Signals in spinal motoneurons,
plainly, correspond to single-muscle ac-
tions; neurons in premotor areas seem to
specify movement goals rather than de-
tails (Pesaran et al., 2006). But at the level
of primarymotor cortex (M1), the question
of ‘‘muscles ormovements’’ remains open
and is the subject of active study.
In the 1960s, Evarts recorded the activ-

ity of M1 neurons while monkeys per-
formed single-joint movements and
found a close relationship between firing

rate and muscle force (Evarts, 1968).
But subsequent studies of both single-
and multijoint reaching movements sug-
gested that M1 neurons encoded such
higher-level movement features as the
velocity and particularly the direction of
movement of the hand, and not the par-
ticular muscle activations involved (Geor-
gopoulos et al., 1982, 1986; Crutcher and
Alexander, 1990; Moran and Schwartz,
1999). During reaching, the activity of
M1 neurons is maximal for movements
in a particular preferred direction and falls
with the cosine of the angle between this
direction and the movement direction,
suggesting an explicit representation
of movement trajectory (Georgopoulos
et al., 1982). A number of subsequent
studies have, however, shown that the
activity of M1 neurons during a particular
reaching movement depends both on
arm posture and on external load, sug-
gesting that these neurons also carry
lower-level information about muscle ac-
tivation (Kalaska et al., 1989; Scott and
Kalaska, 1997).
It is difficult to analyzeM1 coding during

an actual reach to a target. Not only doM1

neurons receive input from joint and mus-
cle proprioceptors that changes in the
course of the movement, but the forces
exerted by each muscle also change con-
tinuously throughout the trajectory. The
situation can be made more tractable by
training animals to exert reach-like forces
against a static object under isometric
conditions, so that the muscle actions
are not confounded with changes in joint
position. This strategywas used by Sergio
andKalaska (2003) andSergio et al. (2005)
to study M1 activity during otherwise
similar reaching and isometric tasks.

The muscle activity needed to produce
aparticular armaction dependson the po-
sition of the arm because of the different
angles of the joints and the different stiff-
ness of the limb in different postures (Fig-
ure 1). Sergio and Kalaska (2003) trained
monkeys to produce an isometric force
in one of eight directions with the hand in
nine different positions. The responses
of M1 neurons were influenced by pos-
ture—the directional tuning of single cells
was rotated and their response ampli-
tudeswere changed, in an apparently law-
ful but complicated pattern. In this issue of
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Neuron, Ajemian et al. (2008)
present a model for this data
that is based on analysis of the
pattern of muscle activations as-
sociated with isometric force
generation in different directions
at different postures. This model
represents a significant advance,
because it is strikingly successful
in accounting for the way that the
responses of individual M1 neu-
rons vary with posture and force
direction.

In isometric experiments,
force at the hand is generated in
two dimensions. It is conven-
tional to think of force generation
at the hand in Cartesian co-
ordinates, in which neurons are
known to be direction selective
(Georgopoulos et al., 1992).
The data of Sergio and Kalaska
(2003) show that this direction
selectivity is not invariant, be-
cause it changes with posture.
The basis for Ajemian et al.’s
model is the geometry of the
whole arm. They argue that that
M1 cells do have an invariant di-
rection selectivity, not in Carte-
sian coordinates at the hand but
in the space of joint torques of
the whole arm.

To generate forces at the hand in this
task requires controlling the action of the
muscles around two joints (shoulder,
elbow); because the shoulder joint can
rotate, this calls for four-dimensional con-
trol of the torque. Ajemian et al. (2008)
transform this four-dimensional space of
joint torques into the two dimensions of
generated force at the hand. This transfor-
mation cannot be specified uniquely, be-
cause many different patterns of muscle
activation can give rise to the same force
at the hand. Ajemian et al. (2008) adopt
the reasonable simplifying assumption
that the joint torques are generated with
minimal coactivation of antagonist mus-
cles, which solves the problem of degen-
eracy. In the isometric situation, there is
then a direct correspondence between
joint torques and muscle activation. It is
therefore straightforward to convert the
preferred direction of each neuron at the
central position from Cartesian coordi-
nates at the hand to the underlying joint
torques and therefore muscle activations.

Because the selectivity in the space of
joint torques is fixed, the model predicts
the observed changes in direction selec-
tivity across postures. The model’s pre-
dictions both for the changes in preferred
direction and for changes in response
magnitude account for a satisfyingly large
fraction of the variation in neuronal re-
sponse observed across postures. In
other words, a single tuning curve for
each neuron, expressed in the right
space, accounts for the full pattern of
neuronal responses.
The success of this model is possible in

large part because of the relative simplic-
ity of the isometric situation with static
forces. This simplicity raises the question
of whether Ajemian et al.’s approach will
work for actual movements, with all their
attendant complexity. A valuable next
step would be to study isometric force
generation in the presence of time varying
loads. Extending the model to this case—
and further to the case of real move-
ment—will not be trivial but will probably

be necessary to secure its ac-
ceptance as a comprehensive
account of the role of M1 neu-
rons in programming reaching
movements.
The results of Ajemian et al.’s

analysis provide strong evidence
that it is useful to think of the out-
put of M1 neurons in terms of
their influence on muscles. Their
model, in effect, defines a ‘‘pro-
jection field’’ for each M1 neuron
that maps its output into a partic-
ular pattern of muscle actions.
This is a natural way to think
about M1 neurons, especially in
the arm region, many of which
have strong and direct projec-
tions to spinal motoneurons
(Lemon, 2008). The simplest in-
terpretation is one that might
have been offered by Evarts: M1
neurons control muscle actions.
But to say that M1 neurons con-
trol muscles is not to say that
they do not control movements.
The projections of M1 neurons
are not confined to small groups
of muscles controlling single
joints—rather, their output or-
chestrates a complex pattern of
motoneuron activity that leads
to coordinated actions affecting

multiple joints. This pattern clearly has
the purpose of programming complex
movements.
To capture our understanding, is it bet-

ter to emphasize the purpose of a neuron
or its basis in neural computation? It may
help here to consider a different example,
the simple cell of the primary visual cortex
(Hubel and Wiesel, 1962). Simple cells re-
spond selectively to oriented contours in
the visual image and are often casually
but reasonably described as ‘‘edge de-
tectors.’’ This is a statement of purpose.
A more precise statement of how simple
cellswork is that they compute aweighted
sum of the visual image over space and
time and then modify the result with at
least two specific nonlinearities (Lennie
and Movshon, 2005). This is a statement
of how the purpose is achieved and
does not conflict in any way with the
statement of purpose that the cell is an
edge detector. So perhaps we should
set aside the somewhat artificial dichot-
omy between muscles and movements,

Figure 1. A Schematic of the Task Analyzed by Ajemian et al.
(2008) (See Also Sergio and Kalaska, 2003)
Amonkey faces a video screen and grasps a fixedmanipulandum con-
nected to a force transducer. A trial is initiated when the monkey uses
force on the transducer to bring a cursor near the center of a target
(green circle). The target jumps in one of eight directions, and themon-
key then changes the force delivered to the manipulandum to move
the cursor to the new target location and hold it there for 2 s. The
task is done on different trials with the arm in nine different postures
(pink); two are shown at the bottom, one offset to the right of the
midline, one on the midline. The net force exerted by the monkey
for each movement is the same in all postures, and if M1 neurons
encoded only force commands at the hand, their responses would
not depend on posture. The muscle actions around each joint, how-
ever, depend on posture. Ajemian et al.’s model accurately predicts
the change in individual M1 neuron responses in different postures.
Adapted with permission from the Journal of Neurophysiology (Sergio
and Kalaska, 2003).
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between the purpose and its functional
basis, and recognize that the activation
pattern of motor cortex neurons does
two things—it specifies for the peripheral
motor system both what to do and how
to do it.
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Finding Gamma
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Neuronal gamma-band synchronization is central for cognition. Respective studies in human subjects fo-
cused on a visually induced transient enhancement of broadband EEG power. In this issue of Neuron,
Yuval-Greenberg et al. demonstrate that this EEG response is an artifact of microsaccades, raising the ques-
tion of whether gamma-band synchronization can be assessed with EEG.

When networks of neurons are activated,
they engage in synchronous rhythmic
activity in the gamma-frequency range
(30–100 Hz) (Gray et al., 1989). This
gamma-band synchronization affects
neuronal interactions (Womelsdorf et al.,
2007) and thereby subserves several cen-
tral cognitive functions, including percep-
tual binding (Gray et al., 1989), attentional
selection (Fries et al., 2001), and working
memory maintenance (Pesaran et al.,
2002). These functions of gamma-band
synchronization have been revealed in
numerous experiments in animals, using
microelectrodes that record single neu-
rons, small groups of neurons, or the local
field potential (LFP, a sort of EEG re-
corded inside the neuropil). The LFP is
due to intra- and extracellular current
flows that can also be measured noninva-
sively as magnetoencephalogram (MEG)
or electroencephalogram (EEG).

The EEG has been used extensively in
human cognitive neuroscience, because
it is relatively cheap and easy, but
nevertheless delivers noninvasive mea-
surements of human brain activity with
millisecond temporal precision. This pre-
cision has been exploited predominantly
to study brain responses with a strict tem-
poral relation to either a sensory stimulus,
a motor response, or any other externally
accessible event. The respective event is
used to trigger the averaging of EEG
epochs to obtain the event-related poten-
tial (ERP). The underlying rationale is that
any brain response related to the event
is phase locked to it and survives averag-
ing, while anything else is noise and is re-
moved through the averaging. However,
the absence of phase locking is precisely
a characteristic feature of the neuronal
gamma-band synchronization that had
been observed in animals. The microelec-

trode recordings in animals revealed
consistently that, for example, visual stim-
uli induced synchronized rhythms that oc-
curred in each trial with a different phase
relation to stimulus onset. The variable
phase relation makes those components
disappear in ERPs, and they can only be
revealed if the spectral (frequency-wise)
power of neuronal activity is estimated
separately per trial and only then aver-
aged.

Such a power analysis in turn retains
not only the interesting gamma-band
rhythm, but also power from, for example,
small muscle artifacts. These muscle
artifacts contain power actually predomi-
nantly in the gamma band, and it is
precisely this reason why most re-
searchers prefer to low-pass filter EEG
signals around 30 Hz, eliminating many
potential artifacts but also any potential
gamma-band activity. Thus, both the
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