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Kumbhani RD, El-Shamayleh Y, Movshon JA. Temporal and
spatial limits of pattern motion sensitivity in macaque MT neurons. J
Neurophysiol 113: 1977–1988, 2015. First published December 24,
2014; doi:10.1152/jn.00597.2014.—Many neurons in visual cortical
area MT signal the direction of motion of complex visual patterns,
such as plaids composed of two superimposed drifting gratings. To
compute the direction of pattern motion, MT neurons combine com-
ponent motion signals over time and space. To determine the spatial
and temporal limits of signal integration, we measured the responses
of single MT neurons to a novel set of “pseudoplaid” stimuli in which
the component gratings were alternated in time or space. As the
temporal or spatial separation of the component gratings increased,
neuronal selectivity for the direction of pattern motion decreased.
Using descriptive models of signal integration, we inferred the tem-
poral and spatial structure of the mechanisms that compute pattern
direction selectivity. The median time constant for integration was
roughly 10 ms, a timescale characteristic of integration by single
cortical pyramidal neurons. The median spatial integration field was
roughly one-third of the MT receptive field diameter, suggesting that
the spatial limits are set by stages of processing in earlier areas of
visual cortex where receptive fields are smaller than in MT. Interest-
ingly, pattern direction-selective neurons had shorter temporal inte-
gration times than component direction-selective neurons but similar
spatial integration windows. We conclude that pattern motion can only be
signaled by MT neurons when the component motion signals co-occur
within relatively narrow spatial and temporal limits. We interpret these
results in the framework of recent hierarchical models of MT.

extrastriate visual cortex; macaques; visual motion processing; neural
dynamics; receptive fields

TO DETERMINE THE MOTION of complex visual patterns, the visual
system processes moving stimuli in two stages. In early visual
cortical areas, neurons extract signals related to the simple,
oriented motion components of a moving pattern. Further
downstream, these component signals are selectively inte-
grated to compute the direction of pattern motion, that is, the
overall direction of a moving pattern, not that of its individual
components. Some neurons in primary visual cortex (V1)
encode the attributes of simple motion, direction, and speed
(Hubel and Wiesel 1968). When presented with complex
patterned motion stimuli, such as plaids composed of two
superimposed drifting gratings, these neurons respond selec-
tively to the motion of the underlying component gratings
rather than the overall pattern motion (Movshon et al. 1985);
these neurons are designated “component direction selective”
(CDS), and essentially all V1 neurons are CDS. V1 sends
direction-selective information to extrastriate cortical area
MT/V5 (Maunsell and Van Essen 1987; Movshon and New-

some 1996; Zeki 1974, 1978), where pattern motion is explic-
itly represented in neuronal responses (Born and Bradley 2005;
Movshon et al. 1985). Although many MT neurons are CDS, a
notable subset of them (�33%) signals the direction of pattern
motion; these neurons are designated “pattern direction selec-
tive” (PDS).

Because of their key role in the representation and percep-
tion of visual motion, PDS neurons are the cornerstone of
many models of pattern motion integration (Adelson and
Movshon 1982; Grzywacz and Yuille 1990; Movshon et al.
1985; Rust et al. 2006; Simoncelli and Heeger 1998; Wilson et
al. 1992). A common motif in these “hierarchical” models is an
integration stage in which the weighted combination of direc-
tional V1-like signals gives rise to pattern direction selectivity
in MT. To date, these models have only considered the time-
averaged, steady-state responses of MT neurons, in large part
due to our limited understanding of how pattern motion is
dynamically computed for continuously changing stimuli. Re-
cent studies have suggested that the integration properties of
MT neurons, both temporal and spatial, may carry useful
information about the mechanisms that compute pattern motion
(Clark and Bradley 2008; Majaj et al. 2007; Pack and Born
2001; Smith et al. 2005; Solomon et al. 2011). In the present
study, we measured the temporal and spatial limits on the
pattern motion computation using a novel set of stimuli, plaids
with component gratings that alternate in time or space, herein
referred to as “pseudoplaids.” We found that the limits of both
spatial and temporal integration for pattern motion signaling by
MT neurons were quite stringent, suggesting that the compu-
tation of pattern motion within the large receptive fields of MT
neurons depends critically on mechanisms that are tightly
localized in both time and space.

MATERIALS AND METHODS

Surgical procedures. Fifteen adult male macaque monkeys
(Macaca nemestrina and M. fascicularis) were prepared for single-
unit recording, as described in detail elsewhere (Cavanaugh et al.
2002). The animals were maintained under anesthesia and paralysis
with continuous intravenous infusion of sufentanil citrate (6 �g·
kg�1·h�1, initial dose) and vecuronium bromide (Norcuron, 100
�g·kg�1·h�1) in 5% dextrose/Normosol-R solution. Vital signs were
monitored (heart rate, blood pressure, lung pressure, EEG, ECG, body
temperature, urine flow and specific gravity, and end-tidal PCO2) and
maintained within appropriate physiological limits. The pupils were
dilated with topical atropine sulfate, and the corneas were protected
with oxygen-permeable hard �2D contact lenses. Supplementary
lenses, chosen via direct ophthalmoscopy, were used to make the
retinas conjugate with the experimental display. Experiments typically
lasted 4–5 days. All experimental procedures were conducted in
compliance with the NIH “Guide for the Care and Use of Laboratory
Animals” [DHEW Publication No. (NIH) 85-23, Revised 1996, Office
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of Science and Health Reports, DRR/NIH, Bethesda, MD 20205] and
were reviewed and approved by the New York University Animal
Welfare Committee.

Neurophysiology. A craniotomy and durotomy were centered
roughly 6 mm posterior to the lunate sulcus and 16.5 mm lateral to the
midline. Electrode penetrations were confined to a parasagittal plane
and directed downward at an angle of 20° from horizontal, passing
through the lunate sulcus and entering the posterior/ventral bank of
the superior temporal sulcus. We recorded well-isolated, single-unit
activity extracellularly using quartz-platinum-tungsten microelec-
trodes (Thomas Recording, Giessen, Germany). We defined single
units qualitatively, using a dual window discriminator; their voltage
traces were distinct from background multiunit activity in both shape
and amplitude. We identified area MT physiologically from the onset
of brisk direction-selective responses in single- and multiunit activity,
with receptive field diameters roughly equal to eccentricity (typically
5° to 15°). Signals were amplified, bandpass filtered (300 Hz to 10
kHz), fed into a time-amplitude discriminator, and time-stamped with
100-�s resolution. Electrolytic lesions were made at the end of each
recording track for histological confirmation of MT recording sites.

Visual stimuli. We presented visual stimuli on the screen of a
gamma-corrected CRT monitor (Eizo T966) located 80 cm from the
eyes. The monitor was refreshed at 120 Hz and had a resolution of
1,280 � 960 pixels and a mean luminance of 33 cd/m2, which
remained constant throughout all stimulus presentations. Stimuli were
generated using Expo software on an Apple Mac Pro computer
(http://corevision.cns.nyu.edu/expo). For each neuron recorded, we
initially mapped the receptive fields through each eye; subsequent
tests were run monocularly through the dominant eye. We determined
the optimal direction, spatial frequency, drift rate, and position of the
neuron’s receptive field using full-contrast, sinusoidal gratings. The
optimal receptive field size was estimated on the basis of a spatial
summation tuning curve. For each neuron, we presented gratings at
nine sizes, covering four octaves centered around a qualitative esti-
mate of the receptive field diameter. The mean firing rates to each size
were fit with a well-established descriptive model, the integral-
difference-of-Gaussians (Cavanaugh et al. 2002), and the peak of the
fit was used as a measure of the optimal receptive field size. Stimuli
were vignetted with a soft-edged, circular aperture and presented
against a background at the mean luminance.

To test the temporal and spatial scales that limit the pattern motion
computation, we presented sinusoidal gratings and plaids and two
types of pseudoplaids: temporal and spatial. Individual gratings were
presented at 50% contrast and at the optimal spatial frequency and
drift rate. Plaids were generated by superimposing two drifting grat-
ings separated in direction by 120°. Pseudoplaids had the same
component gratings as true plaids, but they were separated in time or
space (see below). We also presented appropriate “half-pseudoplaid”
controls: single component gratings temporally or spatially modulated
with the same structure as the corresponding pseudoplaid. Responses
to half-pseudoplaids were used to construct the pattern and component
response predictions for pseudoplaid stimuli. Specifically, this al-
lowed us to generate predictions that incorporated our experimental
manipulations of the temporal and spatial structure of component
motion signals. Each pattern was presented in 12 motion directions
(30° steps). Stimuli were presented randomly interleaved in a contin-
uous stream (Smith et al. 2005), with at least 20 repeats per condition;
this also included the presentation of full field mean luminance to
measure baseline firing rate. Each stimulus was presented for 267 ms
in the temporal pseudoplaid experiment and for 500 ms in the spatial
pseudoplaid experiment. For every stimulus condition we report the
number of impulses per stimulus duration.

Temporal pseudoplaids were created by presenting each of the
component gratings of a plaid in a temporally alternating fashion,
every 1, 2, 3, 4, 8, or 16 video frames (corresponding to full-cycle
alternation periods from 17 to 267 ms). Figure 1, A–C, shows a
schematic of the presentation sequence of component gratings for

temporal pseudoplaids of three different periods (0, 33, and 267 ms).
If both components are presented on each video frame (Fig. 1A), the
result is a true plaid, which we treat as a temporal pseudoplaid with an
alternation period of 0 ms. Note that for all temporal pseudoplaids,
both component gratings had a fixed total presentation time (50%
of the frames in each stimulus epoch); what varied was the time
between the sets of frames containing each component grating. The
phase of the component gratings during each alternation period was
consistent with continuous motion (i.e., only the opacity of each
component grating was alternated).

Spatial pseudoplaids were created by presenting each of the com-
ponent gratings of a plaid within separate circular patches that tiled
the receptive field; patches containing component 1 were spatially
alternated with those containing component 2 in a regular lattice. We
used circular patches to minimize motion biases due to terminator
cues and the regular lattice to ensure that equal proportions of each
component grating were presented. To reduce edge artifacts, each
component patch was vignetted with a Gaussian profile contrast
envelope that faded gradually to zero over the outermost 25% of the
patch radius. Figure 1, D–F, shows examples of spatial pseudoplaids
with different numbers of patches. As the number of patches was
decreased, the patch size was increased to maintain the same total area
covered by each component grating; what varied was the spatial
distribution of component-specific stimulus energy, not the total

0 33 67 100 133 167 200 233 267
Time (ms)

267 ms alternation periodC

33 ms alternation periodB

off

on
0 ms period (true plaid)A

4 patchesF

16 patchesE

True plaidD

Temporal
pseudoplaids

Spatial
pseudoplaids

Fig. 1. Stimulus construction. A–C: temporal pseudoplaids were composed of
2 superimposed drifting gratings separated by 120° and temporally interleaved.
Stimulus schematics show the onset and duration of each component grating
(light and dark gray) for temporal pseudoplaids with different alternation
periods: 0 ms (equivalent to a true plaid), 33 ms, and 267 ms. D–F: spatial
pseudoplaids were composed of 2 drifting gratings presented within patches
that tessellated the receptive field (dashed line); patches containing each of the
2 components were spatially interleaved. Spatial pseudoplaids with different
patch numbers are shown: an infinite number of patches (equivalent to a true
plaid), 16 patches, and 4 patches. White arrows indicate the drift direction of
component gratings.
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amount. For example, a 4-patch pseudoplaid would have patch diam-
eters equal to one-half the receptive field size, whereas a 16-patch
pseudoplaid would have patch diameters equal to one-quarter of the
receptive field size. We treat a true plaid whose components are
physically added as a spatial pseudoplaid with an infinite number of
patches. To prevent asymmetries or inequalities in the locations or
numbers of component grating patches, only 4n2 numbers of patches
were used (for n � 1, 2, 3, 4, ...). Typically 4, 16, 36, and 64 patches were
tested. For each neuron, the maximum number of patches presented was
limited by its optimal spatial period; we only used stimuli that contained
at least one grating cycle in each patch.

Separating the component gratings of plaid stimuli in time or space
introduces spectral energy at frequencies not present in the true plaid,
but we do not expect this additional spectral content to influence the
response of MT neurons. First, the spectral spread was confined to
either the temporal or spatial frequency dimension, never both. This
ensured that we did not introduce cues consistent with any particular
velocity of motion. Second, in the case of spatial pseudoplaids, we
restricted the extent of additional spatial spectral energies by selecting
patch sizes containing at least one cycle of the component grating at
the optimal spatial frequency. This prevented the introduction of
spectral power in the pattern motion direction. Last, our half-pseudo-
plaid controls empirically measured the influence of this additional
spectral content on the direction selectivity of MT neurons; we found
no evidence for such modulation in our data set.

Pattern index. We computed an index of pattern direction selec-
tivity from the responses to drifting plaids and gratings, after correct-
ing for response latency as described in Smith et al. (2005). First, we
generated two predicted-direction tuning curves for the complex
visual patterns (plaids/pseudoplaids): a pattern prediction (a tuning
profile that matches the tuning for gratings/half-pseudoplaids) and a
component prediction (a tuning profile that matches the linear com-
bination of responses to each component grating/half-pseudoplaid).
We then computed the partial correlations between the observed
responses and each prediction, and transformed these correlations into
normal deviates using Fisher’s r-to-Z transform. Our measure of
pattern direction selectivity, the pattern index (PI), is the difference
between the Z-transformed pattern correlation (ZP) and the component
correlation (ZC). Using the pattern index, we classified neurons as
pattern or component direction selective (PDS and CDS, respec-
tively). To be classified as PDS, PI must be positive; to be classified
as CDS, PI must be negative. Furthermore, the absolute value of this
index had to exceed a criterion value of 1.28 standard deviations
(equivalent to P � 0.1); otherwise, neurons were considered
intermediate.

Bootstrap statistics. For every neuron, we resampled the original
trial-by-trial data with replacement, keeping the total number of trials
unchanged. From these resampled data, we computed the pattern
indexes for plaid and pseudoplaid conditions, as well as relevant
model fit parameters (described in the text). This procedure was
repeated 10,000 times, and we took the limits of the inner 95% of the
distributions of bootstrap estimates as confidence bounds.

RESULTS

To determine the temporal and spatial limits over which MT
neurons integrate their input signals to compute visual pattern
motion, we studied neuronal responses to a novel family of
patterned stimuli in which the two component gratings were
separated in time or in space: pseudoplaids. These stimuli
allowed us to manipulate the temporal and spatial structure of
the component motion signals and to infer the way MT neurons
integrate these signals. We report results from 139 neurons in
total, recorded in 15 macaque monkeys.

Temporal limits on pattern direction selectivity. Previous
work investigating the temporal dynamics of MT responses

suggests that the computation of pattern motion is not derived
instantaneously from afferent inputs but evolves over time
(Pack and Born 2001; Smith et al. 2005; Solomon et al. 2011).
These studies, however, only explored the case where both
component motion signals were simultaneously presented. In
this study, we took a related but different approach and deter-
mined the limits of pattern motion integration for component
motion signals that were temporally interleaved. We presented
temporal pseudoplaids to 112 neurons in MT. We used tem-
poral pseudoplaids in which the component gratings alternated
at different rates (as in Fig. 1, A–C; see MATERIALS AND METH-
ODS). As controls, we presented standard sinusoidal gratings, as
well as half-pseudoplaids in which a single component grating
was alternated with frames of mean luminance. Figure 2A

Gratings                                       Plaids

Half-pseudoplaids                           Pseudoplaids

Observed response
Pattern prediction
Component prediction

0 12060
Response (imp/s)

C

267 ms
period

B

33 ms
period

A

0 ms
period

Fig. 2. Responses of an example MT neuron to temporal pseudoplaids and
controls. A: direction tuning curves to gratings (left) and plaids (right) for an
example pattern direction-selective (PDS) neuron. Overlaid on plaid responses
are the pattern (red) and component (blue) predictions; baseline firing is also
plotted [green; �0 impulses/s (imp/s)]. B and C: direction tuning curves to
half-pseudoplaids (left), composed of 1 component grating alternating in time
with mean luminance, and temporal pseudoplaids (right) are shown at 2
alternation periods: 33 ms (B) and 267 ms (C). Direction selectivity was
similar across all control stimuli (gratings and half-pseudoplaids). Selec-
tivity for pattern motion gradually decreased as the temporal separation
between component motion signals increased. At an alternation period of 0
ms, the response profile matched the pattern prediction; at 33 ms it
resembled a mixture of the pattern and component predictions; at 267 ms
it matched the component prediction, indicating a complete breakdown of
selectivity to the direction of pattern motion.
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shows polar direction tuning curves (black) for a typical MT
neuron tested with single gratings (left) and plaids (right); the
pattern (red) and component (blue) predictions are overlaid for
comparison. This neuron showed strong direction selectivity
for motion down and to the left. It was strongly pattern
direction selective, as indicated by the similarity of the mea-
sured plaid tuning curve and the pattern prediction (right).
Figure 2, B and C, show the neuron’s responses to half-
pseudoplaids of different alternation periods (left) and to tem-
poral pseudoplaids with different alternation periods (right);
the pattern (red) and component (blue) predictions are again
overlaid for comparison. When the alternation period was brief
(33 ms), responses to the half-pseudoplaid (left) were similar to
grating responses, even though half of the video frames in the
half-pseudoplaid control were of mean luminance; when the
alternation period was long (267 ms), responses were appre-
ciably weaker. At an alternation period of 33 ms, the tuning
curve for plaids (right) was intermediate between the pattern
and component predictions. At a period of 267 ms, the tuning
curve matched the component prediction, and the response
magnitude was commensurate with the weaker half-pseudo-
plaid response.

We wondered how the observed shift in the time-averaged
direction tuning curve was represented on a finer timescale.
When component gratings are presented synchronously, as in a
true plaid, we expect an elevated but unmodulated response
throughout the stimulus duration for different directions of
motion. In contrast, when component gratings are alternated
slowly, as in a pseudoplaid of 267-ms alteration period, we
expect a strongly modulated response with a characteristic
“high/low” profile: responses would be higher in epochs con-
taining the preferred component grating and lower in epochs
containing the nonpreferred component grating. Since the com-
ponent gratings were separated by 120°, the response magni-
tude in each epoch should depend on the neuron’s direction
tuning bandwidth to gratings (see Fig. 3A, top), and it is
unlikely that both components would strongly drive responses.
Moreover, the shortest alternation period at which responses
become modulated may indicate the limit of temporal integra-
tion of the two component motion signals, beyond which the
neuron responds to each component grating separately. Figure
3 shows peristimulus time histograms (PSTHs) for the example
neuron from Fig. 2 to gratings, plaids, and temporal pseudo-
plaids. For gratings and plaids (Fig. 3A), we observed an
elevated but unmodulated response for all directions that drove
the neuron. For temporal pseudoplaids (Fig. 3B), we show
cycle PSTHs where responses were wrapped based on the
alternation period; each half of the PSTH shows the response
to one of the two component gratings, as indicated schemati-
cally by dark and light gray bars. At the shortest alternation
period (17 ms), pseudoplaid responses were qualitatively sim-
ilar to true plaid responses and there was no discernible
modulation synchronized with the component alternation.
PSTHs corresponding to the true direction of pattern motion
(red band) showed the strongest responses, indicating that the
neuron continued to signal pattern motion. As the alternation
period increased, responses became more modulated, indicat-
ing that the neuron responded during one of the component
epochs, but not the other. At long alternation periods (�67
ms), responses to the true direction of pattern motion were
weaker than those to the two directions of component motion

(blue bands), suggesting a selective weakening of the pattern
motion response.

The pattern of modulation changes shown in Fig. 3 was
consistent across the population of neurons recorded. When
neurons integrated the component gratings to compute pattern
motion, cycle histograms were weakly modulated; when re-
sponses became dominated by component signals, cycle histo-
grams showed more modulation. We quantified this modula-
tion with an F1/F0 index, where F1 is the amplitude of the
cyclical PSTH at the alternation frequency, and F0 is the
average spike rate. This index ranges from 0 to 2, with higher
values indicating stronger response modulation. We compared
the modulation indexes computed from the responses to pseu-
doplaids containing a component grating drifting in the pre-
ferred direction (blue band) at short and long alternation
periods (17 and 267 ms, respectively). This allowed us to
examine changes in response modulation for all MT neurons
regardless of pattern index. The median modulation index
increased from 0.16 at short periods to 1.11 at long periods
(paired Wilcoxon signed rank sum test, P � 0.001).
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Fig. 3. Response peristimulus time histograms (PSTHs) to temporal pseudo-
plaids. Responses of the same example neuron (as in Fig. 2) are shown. A:
PSTHs of the responses to gratings (top) and true plaids (bottom) drifting in
different directions. Each PSTH lasts 267 ms and contains 32 bins. B: cyclical
PSTHs of the responses to temporal pseudoplaids drifting in different direc-
tions (columns) and at different alternation periods (rows). Each cyclical PSTH
is wrapped at the alternation period of the stimulus. The directions of each
component grating (dark and light gray bars) are indicated separately on the
abscissa. PSTHs corresponding to the optimal pattern direction (from A) are
highlighted by a red band. PSTHs corresponding to plaids containing a
component grating drifting in the optimal direction are highlighted by a blue
band. Selectivity for the direction of pattern motion decreased as the alterna-
tion period increased. At the fastest alternation period (17 ms), the neuron
showed strong, unmodulated responses at the true direction of pattern motion
(red). At longer alternation periods (�67 ms), responses at that same direction
were weak. Instead, strong, modulated responses appeared at plaid directions
in which the component gratings were drifting in the optimal direction (blue),
suggesting the neuron was independently signaling each of the component
gratings.
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To quantify the change in direction tuning curves across the
population of neurons recorded, for each alternation period, we
correlated each observed pseudoplaid response with its asso-
ciated pattern and component predictions (see MATERIALS AND

METHODS). Figure 4. A–C, shows scatter plots of the partial
correlations to the pattern and component predictions for al-
ternation periods of 0, 33, and 267 ms. Dashed lines separate
neurons into three categories (see MATERIALS AND METHODS):
PDS (red), CDS (blue), and intermediate (gray). Data are
color-coded according to their responses to true plaids (0-ms
alternation period); results for the example neuron shown in
Figs. 2 and 3 are shown in black. In this condition, we observed
a continuous distribution of PDS, CDS, and intermediate neu-
rons (Movshon et al. 1985; Smith et al. 2005), showing
approximately equal proportions of each type. Because we
were particularly interested in determining the spatiotemporal
limits of pattern motion integration, we sampled more PDS
neurons than other classes. As the alternation period increased,
all neurons showed a gradual reduction in their pattern corre-
lation and a paralleled increase in their component correlation,
reflecting systematic shifts in their direction tuning curves.
This is evidenced by the movement of data points down and to
the right for all types of neurons. Thus even neurons that were
intermediate or CDS showed some signature of a pattern
motion response, and this signature was weakened for increas-
ingly longer alternation periods in the same manner as it was
for PDS neurons. This is consistent with evidence that MT
neurons lie along a continuum from pure PDS to pure CDS,
with most showing signs of both kinds of behavior (Rust et al.
2006).

Although the observed changes in pattern direction selectiv-
ity could have resulted from changes in the responses to control
stimuli (i.e., gratings/half-pseudoplaids) that were used to de-
rive predictions, we found this not to be the case. Any distor-
tions in the tuning curves for control stimuli (due to higher
response variability, additional peaks, etc.) would result in a
reduction in both the pattern and component correlations. In
contrast, as shown in Fig. 4, we found a reduction in pattern
correlation concomitant with an increase in component
correlation.

The difference between the pattern and component partial
correlations, known as the pattern index, quantifies the strength
of pattern direction selectivity (see MATERIALS AND METHODS).
Figure 5 shows how the pattern index varied with alternation
period for 10 representative example neurons. The example
neuron (in Fig. 2) is highlighted (black); solid lines are fits of
a descriptive model described below. When component grat-
ings were alternated at high rates (e.g., alternation period of 17
ms, or every other video frame), MT neurons responded as if
a true plaid was presented. As the alternation period increased,
there was a smooth and rapid decrease in the pattern index. The
decay in pattern direction selectivity reached a plateau at
alternation periods greater than 133 ms. At the longest alter-
nation period (267 ms), all neurons, regardless of their classi-
fication in response to true plaids, responded to the individual
component gratings, providing an upper limit measure of
maximum component direction selectivity. This breakdown in
pattern direction selectivity suggests that the computation of
pattern motion depends on mechanisms with a very limited
temporal integration window.
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Fig. 4. Selectivity for pattern motion across temporal alternation period.
A–C: scatter plots of the Z-transformed correlations between the observed
responses to temporal pseudoplaids and each of the component (abscissa)
and pattern predictions (ordinate). Each panel shows data at 1 of 3
alternation periods (0, 33, and 267 ms) and for all neurons tested (n � 112).
Significance bounds (dotted lines) classify neurons in this correlation space
into 3 types: PDS (red, n � 46) in the top left zone, component direction
selective (CDS; blue, n � 27) in the bottom right zone, and intermediate
neurons (gray, n � 39) in the middle zone. Data for the example neuron
(from Fig. 2) are highlighted (black). Data in B and C are color-coded based
on the classification of responses to true plaids (as in A). As the alternation
period increased, all neurons showed a gradual reduction in their pattern
correlation (ZP) and an increase in their component correlation (ZC),
reflecting changes in their direction tuning curves.
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Modeling temporal limits of integration. We modeled the
changes in pattern index we observed by assuming that com-
ponent motion signals are temporally low-pass filtered before
being combined. Intuitively, our model (Fig. 6) proposes that
the pattern index is proportional to the degree to which the two
filtered component signals overlap in time and are thus simul-
taneously available for the pattern motion computation; in
addition, each neuron has a characteristic maximum pattern
index. This model is mechanistically agnostic and serves only
to provide a simplified functional description of the temporal
characteristics of the pattern motion computation. Figure 6A
shows a schematic of the presentation times of the two com-
ponent gratings (shown as pulse trains) for a rapidly alternating
pseudoplaid; at any given time, only one grating is present. In
the model, each pulse train is blurred in time; operationally, it
is convolved with an exponential decay function (Fig. 6C), as
follows:

b�t� � s�t� � e�t⁄�, (1)

where s(t) is the component stimulus pulse train, � is a time
constant, and b(t) is the resulting blurred stimulus. After
blurring, the resulting signals (Fig. 6D, light and dark gray)
have some overlap (red). During this temporal overlap, both
component signals are available and can therefore be used to
compute pattern motion. We make the simple assumption that
the pattern index is proportional to this overlap, as follows:

PI �
b1�t� · b2�t�

�b1�t�� � b2�t��
, (2)

where b1(t) and b2(t) are the two temporally blurred stimuli and
PI is the pattern index; this computation is performed at each

alternation period. When pulse trains with slower alternation
periods (Fig. 6B) are convolved with the same exponential
decay function, the resulting window of overlap is smaller (Fig.
6E). In general, for any given �, as the alternation period
increases, there is a smooth and rapid decay in the overlapped
signals. The extent of temporal blur, as parameterized by the
value of �, also affects the reduction in the overlap window.
When the same pulse trains (Fig. 6, F and G) are convolved
with a slower exponential (Fig. 6H), the resulting window of
overlap is larger (Fig. 6, I and J), predicting a slower decay in
the pattern index.

To quantify the temporal integration behavior for each
neuron, we found the value of � that best accounted for the
decay in pattern index (fits shown in Fig. 5), minimizing the �2

error between the observed pattern indexes and those predicted
by the model. The model successfully captured the decay in
pattern index across increasing alternation periods (median
R2 � 0.84, median P � 0.004). Figure 7 shows the derived
time constants plotted against the pattern indexes computed
from responses to true plaids, across the population (n � 112).
Gray bands are the bootstrapped 95% confidence limits for
each estimate of pattern index and �. The distribution of time
constants was unimodal with a median of 10.3 ms; the time
constant for the example neuron was similar (black; 11.2 ms).
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The time constants were significantly correlated with the pat-
tern index (Spearman’s r: �0.47, P � 0.001): neurons with
higher pattern indexes had smaller time constants. For a few
neurons (5/112), we observed no systematic changes in pattern
index at different alternation periods. For these data (2 PDS, 2
CDS, and 1 intermediate neuron), the model could not fit the
data and we therefore report their time constant as “undefined”
(right); these neurons typically had low, inconsistent firing
rates during the stimulus presentation.

When separating the components of a plaid in time (or in
space, see below), we expect them to act independently to elicit
responses and therefore expect the pattern index to drop toward
a low value. For true plaids, the pattern index for component
cells is already low, meaning that any manipulation of the plaid
that reduces the pattern index has less range over which to
operate and the resulting estimate might therefore be more
vulnerable to noise contamination. If this had a systematic
effect on the estimate of time constant, CDS neurons would
have artifactually longer time constants. To check this possible
source of bias, we simulated the relationship between neuronal
variability and the time constants of the pattern computation.
First, we computed the lower bounds for the pattern index
based on the observed neuronal variability of the recorded
responses to gratings and half-pseudoplaids. We compared the
differences between the observed pattern indexes derived from
true plaid responses and the simulated lower bounds (i.e., the
maximal distance to the lower bound) and found no indication
that these distances were systematically related (data not
shown; Spearman’s r � �0.2, P � 0.09). Second, we simu-

lated the effect of introducing additional noise on the time
constants by parametrically adjusting the variability of our
neuronal responses (scaled from 1/5 to 5-fold, bootstrapped,
n � 2,000 iterations). We found an increase in the variability
of the estimated time constants as more noise was introduced
but no reliable increase in median value. These simulations
show that the relationship between our measured time con-
stants and the pattern selectivity of MT neurons was not only
a consequence of CDS neurons having weaker pattern direction
selectivity.

Spatial limits on pattern direction selectivity. We also mea-
sured the spatial limits on the pattern motion computation
using analogous methods. We presented spatial pseudoplaids
to 87 neurons in MT, where a spatial pseudoplaid consists of
component gratings presented in spatially alternating patches
that tessellate the neuron’s receptive field (as in Fig. 1, D–F;
see MATERIALS AND METHODS). As controls, we also presented
full receptive field sinusoidal gratings and half-pseudoplaids,
in which patches of a single component grating were spatially
alternated with patches of mean luminance. Figure 8A shows
polar direction tuning curves (black) for a typical MT neuron
tested with single gratings (left) and plaids (right); the pattern
(red) and component (blue) predictions are overlaid for com-
parison. The neuron showed strong direction selectivity for
motion up and to the left. It was strongly pattern direction
selective, as indicated by the similarity of the measured plaid
tuning curve and the pattern prediction (right). Figure 8, B and
C, shows the responses of this neuron to half-pseudoplaids
with different numbers of patches (left) and to the correspond-
ing spatial pseudoplaids (right); the pattern (red) and compo-
nent (blue) predictions are again overlaid for comparison.
Responses to the half-pseudoplaids (left) were similar to grat-
ing responses in shape, but weaker, presumably because the
stimulus area was halved. When there were 16 patches (Fig.
8B), the tuning curve for plaids (right) was intermediate in
shape and reduced in amplitude. When the number of patches
was reduced to four (Fig. 8C), the tuning curve matched the
component prediction, and the response magnitude was com-
mensurate with the weaker half-pseudoplaid response. Note
that spatial pseudoplaid stimuli elicit weaker responses than
true plaids due to the sparser coverage of the receptive field; the
spatial configuration and shape of the patches were chosen to
minimize biases in visual drive.

To quantify the change in direction tuning curves across the
population, we again correlated the pseudoplaid responses with
each of the pattern and component predictions. Figure 9, A–C,
shows scatter plots of the partial correlations to the pattern and
component predictions for spatial pseudoplaids with an infinite
number of patches (true plaid) and for 16, and 4 patches. As
with temporal pseudoplaids (Fig. 4), neurons were classified
and color-coded based on the pattern index computed from
their responses to true plaids and gratings; the example neuron
is highlighted (black). As the number of patches decreased, all
neurons showed a strong reduction in pattern correlation and a
moderate increase in component correlation, reflecting system-
atic shifts in their direction tuning curves. As with temporal
pseudoplaids, this same trend was evident for PDS, CDS, and
intermediate neurons.

We computed the pattern index for each neuron and for each
number of patches tested. Figure 10 shows the pattern index for
different numbers of patches for 10 representative neurons.
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The example neuron (Fig. 8) is highlighted (black); solid lines
are the fits of a descriptive model described below. The pattern
index fell smoothly and completely as the number of patches
decreased. This breakdown in pattern selectivity suggests that
pattern motion is computed by mechanisms that integrate over
a small area.

Modeling spatial limits of integration. We modeled the
decrease in pattern index with decreasing patch number by
assuming that the component grating signals were spatially
blurred before being combined in MT (Fig. 11). As with the
temporal integration model, we assume the pattern index to be
proportional to the overlap in the spatially filtered component
motion signals, up to a maximum value characteristic of each
neuron. The component gratings were not physically superim-
posed, and we assume that the pattern computation is based on

spatially blurred component signals; we quantified the blur
needed to explain the observed decrease in pattern index. We
first generated spatial maps of the two component signals; Fig.
11, A and B, indicates the locations of each of the two
component gratings (schematically represented as light and
dark gray) for pseudoplaids of 16 and 4 patches. These maps
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Fig. 8. Responses of an example MT neuron to spatial pseudoplaids and
controls. A: direction tuning curves to gratings (left) and plaids (right) for an
example PDS neuron. B and C: direction tuning curves for half-pseudoplaids
(left), composed of 1 component grating alternating in space with mean
luminance, and spatial pseudoplaids (right) are shown at 2 scales of spatial
separation: 16 and 4 patches. Direction selectivity was similar across all
control stimuli. Selectivity for pattern motion gradually decreased as the spatial
separation between the component motion signals increased, and fewer patches
were presented. For an infinite number of patches (true plaid), the response
profile matched the pattern prediction; for an intermediate number of patches
(16), it resembled a mixture of the pattern and component predictions; for even
fewer patches (4), it matched the component prediction, indicating a complete
breakdown of selectivity to the direction of pattern motion. Plotting conven-
tions are as described in Fig. 2.
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conventions are as described in Fig. 4.
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were vignetted (see MATERIALS AND METHODS) and convolved
with a two-dimensional Gaussian profile, as follows:

b�x, y� � s�x, y� � e��x2�y2�⁄2�2
, (3)

where s(x,y) is the vignetted spatial map for each grating
location, � is the space constant of the Gaussian, and b(x,y) is
the resulting blurred map. These blurred maps contain regions
where signals from the component gratings overlap. We as-
sume that in these regions, the component signals could be
used to compute pattern motion (see Eq. 2). We formalize this
as follows:

PI �
b1�x, y� · b2�x, y�

�b1�x, y�� � b2�x, y��
, (4)

where b1(x,y) and b2(x,y) are the blurred locations for each
grating across space and PI is the pattern index. Figure 11, D
and E, shows the location and relative strength of the overlap
areas for pseudoplaids of 16 and 4 patches, respectively; for a
given space constant, the area of overlap decreases as the
number of patches decreases (compare Fig. 11, D and E). If the
same spatial pseudoplaids (Fig. 11, F and G) are convolved
with a Gaussian with a wider space constant (Fig. 11H), the
resulting area of overlap is more extensive (Fig. 11, I and J),
yielding a higher pattern index.

To quantify the spatial limit on pattern integration, we
computed the value of � that best accounted for the observed
decay in pattern index for each neuron; fits were well matched
to the data (median R2 � 0.997, P � 0.05). We constrained
patches to contain at least one cycle of grating at the optimal
spatial frequency, so most neurons (66/87) could not be tested
with spatial pseudoplaids containing more than 16 patches. As

a result, if for a given neuron the pattern index for pseudoplaids
of 16 and 4 patches were similar (16/87), the model became
degenerate and fit the data with an asymptotically small space
constant (close to 0). These neurons effectively exhibited an
“all-or-none” phenomenon for spatial integration (Majaj et al.
2007); any separation of the component gratings resulted in a
complete breakdown of pattern direction selectivity.

Figure 12 shows the space constants plotted against the
pattern indexes, computed from responses to true plaids, across
the population. The median space constant was 9.4% of the
receptive field (data from all-or-none neurons were excluded).
Gray bands indicate the 95% confidence limits for the pattern
index and �, showing that our fits were not biased and that we
were not overfitting the data. Most space constants fell between
3% and 20% of the receptive field diameter, with no particular
relationship to the pattern index. The fitted space constants
were somewhat larger than the classical receptive fields of V1
neurons at the eccentricities tested but comparable to the size
of their suppressive surrounds (Angelucci et al. 2002; Ca-
vanaugh et al. 2002).

We wondered if the time and space constants of individual
MT neurons were correlated. Figure 13 shows a scatter plot of
these derived metrics for 61 neurons that were tested with both
temporal and spatial pseudoplaids; of these, 2 had undefined
time constants and 10 had near-zero space constants (i.e.,
exhibiting an all-or-none behavior). We found no correlation
between these measures and conclude that the limits of tem-
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poral and spatial integration are unrelated (Spearman’s r:
�0.14, P � 0.35).

DISCUSSION

Neurons in extrastriate area MT signal the direction of
moving visual patterns, and their responses have been directly
linked to the perception of visual motion (Britten et al. 1992;
Movshon et al. 1985; Newsome and Pare 1988; Salzman et al.
1990). For pattern motion to be computed accurately, MT
neurons must integrate component motion signals across time
and space. We examined the temporal and spatial integration
limits that govern this pattern motion computation with pseu-
doplaids in which the component gratings alternate in time or
space (Fig. 1). These stimuli allowed us to vary the temporal
and spatial structure of the component motion signals system-
atically. Neuronal selectivity for pattern motion broke down
rapidly when the component gratings were temporally or spa-
tially separated. This loss of pattern direction selectivity was
captured by simple descriptive models (Figs. 6 and 11) in
which the component motion signals were first low-pass fil-
tered (blurred) before being combined. The inferred character-
istics of these blurring operations are of interest because they
suggest the temporal and spatial structure of the mechanisms
that compute pattern motion.

Temporal and spatial limits to motion integration. For tem-
poral pseudoplaids, all MT neurons, regardless of their sensi-
tivity to pattern motion in true plaids, showed reduced sensi-
tivity to pattern motion as the alternation period of the two
component gratings increased (Fig. 4). The loss of pattern
direction selectivity at the longest alternation periods was

expected because the stimulus had long epochs in which the
component gratings were presented alone. Of interest, how-
ever, is the rate at which pattern direction selectivity fell with
alternation period. In our model, this is well described by a
single time constant, capturing the temporal integration prop-
erties of the entire network involved in the pattern motion
computation. Our observation that this is about 10 ms (Fig. 7)
suggests that the integration of motion signals takes place with
a relatively short timescale, comparable to the timescale with
which individual pyramidal cells operate (Cardin et al. 2007;
Connors et al. 1982; McCormick et al. 1985; Nowak et al.
2003) and similar to the timescale with which MT neurons
signal simple, one-dimensional motion (Bair and Movshon
2004). This would appear to rule out a computation with a
recurrent architecture, which, because of the extra synaptic
delays in a multineuronal circuit, is necessarily slower in its
temporal resolution than the neurons of which it is composed.

Similarly, for spatial pseudoplaids, as the spatial separation
of the component gratings increased and fewer patches were
presented, all MT neurons showed a reduction in pattern
direction selectivity (Fig. 9). The decay in the pattern index
was gradual (Fig. 10) and was well captured by a model with
a single stage of Gaussian spatial low-pass filtering (blur). The
scale of this blur is small compared with an MT receptive field
(about one-third of the receptive field size). This agrees with
previous work showing that pattern motion seems to be com-
puted locally in MT (Majaj et al. 2007). Our finding that the
spatial integration of component signals is on the order of
one-third of the MT receptive field size suggests that compo-
nent signals presented outside this spatial window have little
effect on a neuron’s selectivity for the direction of pattern
motion.

Our data show that MT neurons have different temporal
integration limits depending on their pattern direction selectiv-
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ity (Fig. 7). PDS neurons have relatively shorter time constants
and are therefore less tolerant to temporal separations of
component motion signals than CDS neurons. Consistent with
this, PDS neurons may pool over afferents with faster normal-
ization dynamics than CDS neurons. In contrast to our tempo-
ral integration finding, our data show that PDS and CDS
neurons have similar spatial integration limits (Fig. 12). The
most parsimonious explanation would be that these limits are
set before the convergence of component signals in MT and
reflect the properties of afferent mechanisms responsible for
shaping the direction tuning of MT neurons.

Implications for models of pattern motion selectivity. Many
models seek to explain how MT neurons compute the motion
of complex moving patterns (Bowns 2002; Grzywacz and
Yuille 1990; Movshon et al. 1985; Nowlan and Sejnowski
1995; Simoncelli and Heeger 1998). The question is how to
interpret our measured stringent spatial and temporal integra-
tion requirements for pattern motion in the context of these
models.

The temporal requirements of the pattern motion computa-
tion seem to be consistent with a feedforward architecture in
which afferent signals subserving the pattern computation are
summed in a single neuronal layer. If the interaction between
the component motion signals is elaborate, recurrent, or spread
over multiple stages, it would be difficult to imagine how it
could preserve the temporal fidelity of a single neuron, char-
acteristic of the �10-ms time constants we inferred. Moreover,
other studies have suggested that MT is driven by feedforward
networks with high temporal precision (Bair and Movshon
2004; Buracas et al. 1998; Perge et al. 2005). Although our
data do not rule out the role of recurrent networks in the pattern
motion computation, they can be parsimoniously explained
using a feedforward mechanism.

It is not entirely obvious how to best interpret our measure-
ments of the spatial requirements for pattern motion integra-
tion. Recent attention has been focused on models of MT
motion integration that are largely feedforward in their archi-
tecture (Nishimoto and Gallant 2011; Rust et al. 2006), but
these do not deal directly with the spatial structure of MT
inputs, and the classical view of MT receptive fields is that they
integrate signals across their entire receptive field, although
many of these results simply show that signals combined more
or less additively across the MT receptive field. In addition, the
results of Majaj et al. (2007) and Hedges et al. (2011) imply
that signals arising from different locations in the MT receptive
field are largely independently processed, which is consistent
with our findings.

The model by Rust et al. (2006) provides a framework with
which we can understand our results. In this model, the activity
of MT neurons is the result of a cascade of signal transforma-
tions occurring both in area MT and in its afferents (from V1
and perhaps other cortical areas). The activity of the afferent
neurons is modified by two forms of gain control. The “un-
tuned” form corresponds to the classical contrast gain control
in V1 (Carandini et al. 1997; Geisler and Albrecht 1992;
Heeger 1992), whereas the “tuned” form is related instead to
the documented properties of surround suppression in V1,
where responses are suppressed by stimuli near but outside the
receptive field that are similar in orientation and direction to
those driving the classical receptive field center (Angelucci et
al. 2002; Cavanaugh et al. 2002; Sceniak et al. 2001). This

model assigns a particularly important and specific role to this
tuned gain control mechanism in the computation of pattern
motion.

The spatial limits on pattern motion integration are too large
in extent to correspond in a simple way to the classical
receptive fields of individual V1 neurons, typically 10–20%
the diameter of receptive field sizes of MT neurons at the same
eccentricity (Cavanaugh et al. 2002; Desimone and Unger-
leider 1986; Freeman and Simoncelli 2011; Gattass et al.
1981). Moreover, neither V1 nor V2 neurons show significant
sensitivity to pattern motion (Gegenfurtner et al. 1996;
Movshon et al. 1985). However, the extent of the limits on
pattern motion integration correspond quite well to a larger
area corresponding to the extent of the surround of the recep-
tive field of V1 neurons, typically three times larger than the
receptive field center (Angelucci et al. 2002; Cavanaugh et al.
2002; Tsui et al. 2010). This means that the falloff in pattern
motion sensitivity for pseudoplaid stimuli corresponds to the
spatial extent of the surround; when pseudoplaids place grat-
ings of different orientations in the surround, tuned normaliza-
tion is weakened or abolished, and in the model of Rust et al.
(2006), this would in turn weaken pattern motion sensitivity.

Relationship to perception. In this study we have determined
the temporal and spatial limits on pattern motion selectivity
under opiate anesthesia, and from these we have inferred
something of the bottom-up structure of the neural computa-
tions that set these limits. When motion is presented in the
natural world, it is often complex, consisting of multiple
component motions; components that are not always necessar-
ily present at all times and in all regions of space, and not
always associated with single objects. Previous psychophysical
studies have explored how the spatial integration of nonover-
lapping component motions influence the perception of pattern
motion (Alais et al. 1998; Amano et al. 2009, 2012; Dobkins et
al. 2004; Lorenceau 1998; Lorenceau and Zago 1999; Mingolla
et al. 1992; Rubin and Hochstein 1993). However, it is difficult
to relate these results to our findings quantitatively because
these studies often used component signals with sizes and
spatial frequencies incommensurate with eccentricity. Qualita-
tively, our results are in agreement: the higher the density of
component signals, the stronger the pattern motion sensitivity.
Furthermore, psychophysical studies have shown that the in-
tegration of motion signals over space is strongly influenced by
perceptual context and scene organization (McDermott et al.
2001; see Nishida 2011), factors that played no role in our
experiments. Further investigations of the influence of these
top-down signals can now be framed by the basic computa-
tional structures that we have uncovered.
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