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Sensory information is encoded by populations of neurons. The responses of individual neurons are inherently noisy, so the

brain must interpret this information as reliably as possible. In most situations, the optimal strategy for decoding the population

signal is to compute the likelihoods of the stimuli that are consistent with an observed neural response. But it has not been

clear how the brain can directly compute likelihoods. Here we present a simple and biologically plausible model that can realize

the likelihood function by computing a weighted sum of sensory neuron responses. The model provides the basis for an

optimal decoding of sensory information. It explains a variety of psychophysical observations on detection, discrimination and

identification, and it also directly predicts the relative contributions that different sensory neurons make to perceptual judgments.

The ability to detect, discriminate and identify sensory signals is limited
by how efficiently information in sensory representations is put to use
in the control of behavior. A stimulus activates a population of neurons
in various areas of the brain. To guide behavior, the brain must correctly
decode this population response and extract the sensory information as
reliably as possible. Two important factors make this problem a
challenging one. First, each neuron’s response is inherently variable:
repeated presentations of the same stimulus elicit different responses.
Second, sensory neurons represent moment-to-moment changes in
sensory input by rapidly changing their firing patterns. The neural
machinery that decodes these responses must compute the most reliable
solution for the relevant perceptual behavior, and it must do so quickly
in order to faithfully reflect the changing patterns of sensory inputs.

For the problem of sensory identification, the standard theoretical
framework holds that the brain reads the activity of a population of
neurons and collapses it down to a single value to represent the ‘best
estimate’ of the stimulus. Several decoding strategies have provided
more or less optimal solutions for this problem1. Examples include the
‘‘winner-takes-all’’ and ‘‘population vector’’ models2, which are sub-
optimal under most conditions of interest. Recently a neural network
model with recurrent architecture has been proposed that under certain
conditions can compute the most likely estimate from a population
sensory response3, providing an account of perceptual identification
tasks. But extracting a single best estimate is often a questionable
strategy. Many perceptual tasks are better viewed as statistical inference
problems, for which the brain needs to compute and represent the
probability of all of the different stimuli that are consistent with the
sensory response. The optimal decoding strategy that generalizes across
all these conditions is to compute the likelihood function, which
represents the likelihood of the different stimuli that could have
given rise to the observed sensory population response.

If the full likelihood function is available, there are natural solutions
for most perceptual problems. For identification, the most likely
stimulus is the best estimate; for discrimination, the alternative with
the highest likelihood must be chosen, and for detection the likelihood
of the most likely stimulus is compared to a criterion. When asked to
estimate a stimulus from multiple cues, humans are able optimally to
combine likelihoods, and not merely separate estimates derived from
individual cues4,5. Similarly, Bayesian theories propose combining
sensory data with prior beliefs about the stimulus6, which requires
the brain to work with the likelihood function. In these cases and
others, representing sensory likelihoods is the optimal way for the brain
to guide perceptual decisions.

Although the importance of representing likelihood is well under-
stood in theory, it has not been clear in practice how neurons can
compute and combine sensory likelihoods. We have developed a simple
and neurally plausible model that computes the full likelihood function
quickly and continuously. Our design is similar to the population
vector model7 in that it pools the activity of sensory neurons in a simple
additive feedforward architecture. However, the model differs from the
population vector model and many other models of readout in two
important ways: first, it computes not just a single estimate of the
stimulus but the full likelihood function, and second, the contribution
of each neuron is determined by its own tuning properties and firing
statistics. The computation of likelihood thus derives directly and
naturally from the properties of the relevant sensory neurons.

We first develop the model for an abstract population of sensory
neurons, and then take the specific example of decoding information
about motion from the population activity of neurons in area MT/V5
of the visual cortex. We show that this model predicts performance on a
wide variety of perceptual tasks that involve judgments of motion.
Finally, we use the model to make testable predictions of the way in
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which individual sensory neurons contribute to perceptual judgments
in these tasks.

RESULTS

Computing the likelihood function with neurons

Imagine a sensory stimulus activating a population of neurons in a
cortical sensory area. These neurons are often broadly tuned, and the
response of each one is noisy. As a result, every stimulus evokes a noisy
population response at the level of the sensory neurons; the task is to
infer the stimulus from this response. To solve this problem, we ask
how likely it is that each possible stimulus elicited the observed
response. To determine how likely a given stimulus is, one strategy is
to ask each neuron the likelihood that its response was elicited by that
stimulus, and then combine the likelihoods to determine the overall
likelihood of that stimulus. By repeating the same procedure for all
stimuli, one can compute the likelihood of every stimulus for the
particular observed population response. This is what the likelihood
function represents.

Consider a stimulus, denoted y0, causing a neuron tuned to stimulus
yi to fire ni spikes in any given time window. If this neuron’s firing
statistics are described by a Poisson process, then ni is Poisson-
distributed and has a mean of fi(y0), where fi(y) represents this neuron’s
tuning function. The likelihood of the stimulus y0, denoted Li(y0),
is simply the probability that this neuron would fire ni spikes in
response to that stimulus; that is, p(ni|y0). Without loss of generality,
we can compute this likelihood in the log space. The log likelihood
of y0 becomes:

log Liðy0Þ ¼ log pðnijy0Þ ¼ log
fiðy0Þni
ni!

e�fiðy0Þ

¼ ni log fiðy0Þ � fiðy0Þ � logðni!Þ ð1Þ

While this formulation is familiar from previous work7, we now put it
to novel use. The likelihood of every stimulus y can be computed in the
same fashion for each neuron. To compute the overall log likelihood, log
L(y), from the population of neurons tuned to different yi’s, we sum the

individual log Li(y)’s (the summation is a consequence of working in log
space). The overall log likelihood of any stimulus y is then:

log LðyÞ ¼
XN

i ¼ 1

log LiðyÞ

¼
XN

i ¼ 1

ni log fiðyÞ �
XN

i¼ 1

fiðyÞ �
XN

i¼ 1

logðni!Þ ð2Þ

The last two terms in equation (2) can be safely ignored. The last term
is clearly independent of y, and for a homogenous representation, the
population response to any stimulus of a given strength sums to a
constant and makes the second term also independent of y. Therefore,
the log likelihood of a stimulus at any y can be computed as a simple
weighted sum of the responses of the neurons, where the activity of each
neuron is weighted by the log of its own tuning function:

log LðyÞ ¼
XN

i¼ 1

log LiðyÞ ¼
XN

i¼ 1

ni log fiðyÞ ð3Þ

Each neuron’s contribution to the measurement of the log likelihood
of stimulus y is thus determined by the product of its firing rate and the
logarithm of its tuning curve at y (log fi(y)). The overall log L(y) is
simply the sum of the contributions of individual neurons. This
computation can be carried out in a single feedforward step: the
model receives the sensory responses at its input and, after weighting
each neuron’s response by the log of its own tuning function, pools these
responses into an ensemble of output neurons, where each output
neuron gives a measure of the likelihood of a particular stimulus
(Fig. 1). The recoded profile of activity across the output neurons
represents the full log likelihood function.

Our model is quite general and relies only on a few reasonable
assumptions. First, we do not assume any specific form for individual
tuning curves, so the model can compute the likelihood function from
the activity of neurons with widely varying tuning properties as long as
the weights take the heterogeneity of tuning functions into account
(that is, each neuron is weighted by the log of its own tuning function).
The computation is applicable to a variety of sensory parameters with
the constraint that the tuning curves for different stimulus conditions
(for example, different orientations or directions) should sum to a
constant when the stimulus has constant intensity. This assumption is
plausible but needs experimental verification; in Supplementary
Methods online, we discuss the variety of biologically realistic tuning
functions that permit the model to be optimal.

Second, while equation (3) presents the case of neurons with Poisson
firing statistics for which the feedforward weights are the logs of the
tuning functions, we can easily deal with other firing statistics. Poisson
variability reasonably describes the firing statistics of cortical neu-
rons8,9, but it is not the only candidate and it is not required by the
model: many other distributions that approximate the firing rate
statistics of cortical neurons are also compatible with linear pooling.

Stimulus

log L (θ)

nNn2n1

Neuron 1 Neuron 2 Neuron NSensory
representation

Sensory
response

Weights

log likelihood
for each neuron

Pooling

log likelihood function

log[fi ] log log log

Σ Σ

Figure 1 Computing the log likelihood function in a feedforward network. At

its input (bottom), a stimulus, elicits n1, n2, y , nN spikes in the sensory

representation. The response of each neuron multiplied by the logarithm of

its own tuning curve, log[fi], gives the contribution of that neuron to the log

likelihood function. Adding the contribution of individual neurons (shown

for two example stimulus values in orange and green) gives the overall log

likelihood function, log L(y) for all values of y that could have elicited this

pattern of responses. Here, the orange point at the peak of the log likelihood
function indicates the most likely stimulus.
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In Supplementary Methods, we detail how log L can be computed in a
feedforward architecture for a large family of exponential distributions;
variations in the firing statistics of neurons simply call for changes in
the feedforward weights.

Third, we assume that the encoding neurons are statistically inde-
pendent, which is usually not correct. Interneuronal correlations can
impoverish the quality of pooled signals9–11, and so one might want to
include information about these correlations in the decoding network.
But is it reasonable to try to deal with the input correlation structure?
We believe not. Interneuronal correlations are not fixed, and they vary
from stimulus to stimulus12; for a decoder model that does not ‘‘sneak a
peek’’ at the stimulus, it is implausible to take such correlations into
account13. Moreover, the approximately constant variability of neuro-
nal firing across multiple stages of cortical processing may reflect the
propagation and not the removal of the correlated noise9. We will
return to the issue of interneuronal correlations and how they affect the
optimality of the model’s behavior when we consider the specific case of
direction of motion; as we will see, the deviations from optimality that
result are consistent with experimental observation.

As we discussed above, representing likelihoods has a number of well-
recognized benefits for sensory decoding, and because it computes the
full likelihood function our model inherits those benefits. But
because our model provides a recipe for computing likelihoods
from sensory neurons, it makes specific and testable predictions
about how the activity and the tuning properties of each sensory
neuron determine its influence on the outcome of perceptual decisions.
To illustrate this, we next examine how the properties of neurons in area
MT control their contribution to perceptual judgments about the
direction of motion.

The likelihood function for the direction of motion

Consider the example of direction of motion in a field of moving dots14.
Judgments about the direction of motion in such stimuli seem to
depend on neural activity in area MT/V5, where most cells are tuned for
the direction of motion14–17. Neurons in area MT have bell-shaped
tuning functions, which can be approximated with the circular
Gaussian (the von Mises function18,19; k in equation (4) determines
the tuning bandwidth). The tuning function does not change
shape with motion strength (coherence)20; cells increase their firing
rate for favored directions roughly in proportion to coherence,

and their firing statistics are approximately Poisson21. Rewriting
equation (3) for this case, log L becomes a cosinusoidally weighted
sum of a neuron’s responses:

log LðyÞ ¼ k
XN

i¼ 1

ni cosðy� yiÞ ð4Þ

Neurons most effectively increase the likelihood of the direction for
which they are tuned; neurons with more remote preferences make
smaller contributions; neurons that prefer opposite directions are
pooled with negative weights and decrease the likelihood (Fig. 2a).
The model can therefore be seen as a generalized motion-opponent
mechanism of the kind proposed previously22. As a consequence of the
unequal weighting, neurons tuned optimally to a particular direction,
which have a better signal-to-noise ratio (SNR), have more influence
than those with a lower SNR that are farther away from the center of the
pool. The full likelihood function is represented by an array of output
neurons in which each neuron measures the likelihood of a particular
direction by pooling the MT responses with a cosinusoidal weighting
profile centered at that direction (Fig. 2b).

Detecting, identifying and discriminating motion

The properties of incoming sensory stimuli determine the responses of
sensory neurons. Our model pools these responses to compute the
likelihood function, which in turn determines the performance of the
model in perceptual tasks. Let us follow the flow of information in the
model from the stimulus to the behavioral performance for the
example case of motion in a field of moving dots. After the onset of
the stimulus, the number of spikes each MT neuron fires is determined
by its tuning function and is subject to Poisson variability. Every spike
from every neuron changes the likelihood function. A spike from a
neuron tuned to, say, leftward, increases the likelihood of leftward
motion, decreases the likelihood of rightward motion and has no
influence on the likelihood of upward or downward motion. Accord-
ingly, the variability of MT responses introduces variability into the
computed likelihood function and limits the model’s performance. We
can use the well-documented responses of MT neurons to random-dot
stimuli to examine the performance of our model as a function of
stimulus characteristics in the classic psychophysical tasks of detection,
discrimination and identification.

In a detection task, the subject views a field of randomly moving dots
and has to judge whether a given, known direction of motion is present.
The optimal strategy is to compare the likelihood for that motion to a
criterion; the usual formulation for this problem is in terms of signal
detection theory, which uses the receiver operating characteristic
(ROC) to distinguish the influence of the choice of criterion from
sensitivity (d¢). We used our model to make predictions for the hit and
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Figure 2 Computing likelihood for the direction of motion. (a) A random-dot

stimulus (bottom) activates a set of directionally tuned neurons in area MT.

The smooth curves represent neuronal tuning curves, and small circles show

the noise-perturbed population response on a particular trial. To represent

likelihood, we recoded the sensory signals by weighting the inputs from the

population of tuned ‘encoding’ neurons. For the example shown, the correct

weighting function has a cosinusoidal form, and the weighted signals

converge to an output neuron representing log likelihood for a leftward
direction. (b) Same as a, except here the output layer consists of an

ensemble of neurons. The weighted signals converge to this output layer

where the neurons represent the log likelihood for all possible directions, the

likelihood function. Here, at the output, the average likelihood profile is

shown; the colored points represent the average likelihoods of four example

directions. The peak of the average likelihood function—the expected

maximum-likelihood estimate of the stimulus direction—is shown as orange.
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false alarm rate in a yes–no motion detection task for a range of motion
strengths and the associated values of d¢ (Fig. 3a).

In an identification task, the subject views a field of dots and,
without knowing in advance which direction is to be presented, must
identify the true direction. The optimal strategy is now to find the most
likely direction, which is done in our model by applying a simple
winner-takes-all rule to the likelihood function (that is, by finding the
output neuron with the greatest activity). This strategy predicts how
the model becomes more precise at identifying the direction of stronger
motion signals (Fig. 3b).

When discriminating between two known alternative directions of
motion in a random-dot stimulus, the optimal strategy is to choose the
alternative with the larger likelihood. Functionally, this is done by
comparing the likelihoods of the two alternatives, for which we use the
likelihood ratio, or equivalently the difference of log likelihoods.
Because the output of our model represents the likelihoods of all
stimuli, it easily handles the case of optimal discrimination, which
becomes a special case in which we need only compute the likelihood of
the two alternatives. Again, each alternative’s likelihood is computed by
pooling the MT population activity weighted by a cosinusoidal profile
centered at that alternative; the difference between the two log like-
lihoods, log LR, is now the key quantity that optimally discriminates
the two alternatives. Our model provides quantitative predictions for
how the discrimination threshold would rise as the two alternative
directions of motion become closer (Fig. 3c).

The importance of having access to the full likelihood function
becomes more apparent when one considers cases where more than two
alternatives are to be discriminated. Optimal discrimination among
multiple alternatives requires the brain to compute and compare several
sensory likelihoods. Imagine a case in which a subject is asked to
discriminate among N known alternative directions of motion, where
the number and the directions of the alternatives change from trial to
trial. For optimal discrimination, the subject needs to compute a
different set of N sensory likelihoods and compare them on each
trial. Such flexibility can be achieved parsimoniously by having access
to the full likelihood function. Our model predicts how the coherence
threshold would rise with increasing number of alternatives (Fig. 3d).

These results (Fig. 3) present specific and testable predictions for
monkey performance on a range of standard psychophysical tasks,
based on the known properties of MT cells and our specific imple-
mentation of the likelihood model. By extension, these predictions
should also be valid for human observers, and we are now making
detailed psychophysical measurements to examine these predictions.
While any likelihood-based model can in principle offer a theoretical
solution for detection, discrimination and identification of stimuli, our
model also provides a plausible neural computation to calculate the
likelihood function, and thereby makes a direct link between the
activity of sensory neurons and behavioral performance in those tasks.

Neuronal contributions to perceptual judgments of motion

The specific architecture of our model explicitly captures the way that
individual sensory neurons contribute to various forms of perceptual
behavior. Each neuron’s input to the log likelihood is determined by the
product of its activity and the log of its tuning curve (equation (3)). An
immediate consequence of this computation is that neurons, depend-
ing on their level of activity and tuning characteristics, differentially
influence any given perceptual behavior. Here, using a simplified
homogeneous population of MT neurons, we show how our model
reveals the contribution of individual neurons with different direction
preferences to motion detection and discrimination tasks.

In a detection task, the log likelihood for the presence of a particular
direction of motion is compared to a criterion. The log likelihood is a
weighted sum of neuronal responses, where the weight of each neuron is
determined by the log of its own tuning function; for the case of
motion, this is a cosinusoidal profile (equation (4)). Therefore, the
activity of MT neurons tuned to the expected direction should covary
positively with the subject’s responses; the contribution of neurons
tuned away from that direction decreases cosinusoidally, approaches
zero for neurons tuned to directions orthogonal to the expected
direction, and changes sign for neurons preferring the opposite direc-
tions (Fig. 2a). These predictions are based on the simplifying assump-
tion that neurons, except for their direction preference, have similar
tuning functions. However, in an experimental setting where the tuning
bandwidth and firing rates of a neuron under study are readily available,
the model makes a specific prediction for how the activity of that
particular neuron should covary with the detection behavior.

The problem of decoding neural responses for the discrimination of
opposite directions of motion has been well studied. This was first
formulated as an opponent process, in which the two directions could
be discriminated by subtracting the activity of a neuron tuned to one
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Figure 3 Predictions of the model for behavioral performance in

psychophysical tasks. (a) The receiver operating characteristic (ROC) for a

motion-detection task. The detectability (d ¢) of the stimulus and the area

under the ROC curve (that is, percent correct) increase with motion signal

strength (coherence). High (low) criterion values correspond to the lower-left

(upper-right) part of each curve where both the hit and false alarm rates are

low (high). (b) The precision of the model’s estimate in a direction-of-motion

identification task as a function of coherence. The ordinate shows the relative
increase of circular standard deviation of the estimate compared to the

highest motion strength (coherence ¼ 1). (c) Coherence threshold of the

model in two-alternative motion discrimination tasks differing in the angular

difference between the two discriminanda. The ordinate shows the relative

change in coherence threshold as a function of the angular difference

between the two alternatives, compared to the easiest condition when the

alternatives are 1801 apart. (d) Coherence threshold of the model in various

multiple-alternative motion discrimination tasks with equidistant alternatives

(1801 for two alternatives, 901 for four alternatives, and so on). The ordinate

shows the relative increase in coherence threshold with increasing number of

alternatives compared to the easiest condition with only two alternatives.
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direction from its ‘‘anti-neuron’’ tuned to the opposite direction14. This
strategy would be optimal if the brain had access to these two neurons
only, but it is clearly suboptimal in that it ignores information from
neurons that are tuned to directions other than the two alternatives. A
later population-decoding model considered the possibility of includ-
ing such neurons by widening the range of neuronal preferred direc-
tions contributing to the decision23. But how wide should the range be?
Simply adding neurons tuned away from the two alternatives increases
both signal and noise, which might either help or harm performance.
Our model specifies an exact and optimal form of the pooling profile
that would compute the log likelihoods, and it specifies how each
neuron contributes to the log likelihood ratio.

To demonstrate this point, we use equation (4) to compute the log
likelihood ratio for two alternatives, say y1 and y2. The log likelihood
ratio is simply the difference between the two log likelihoods and can
be written:

log LR ¼ log Lðy1Þ � log Lðy2Þ

¼ k
XN

i¼ 1

ni½cosðy1 � yiÞ � cosðy2 � yiÞ� ð5Þ

This formulation shows that the contribution of each neuron to the
log likelihood ratio is determined by its activity ni and its preferred
direction yi relative to the two alternatives. Neurons with similar
weights in each of the log likelihoods cancel and do not contribute
strongly to the discrimination, whereas neurons with more dissimilar
weights in the two log likelihoods have a stronger influence on the
model’s discrimination behavior.

We implemented this operation in our model for three cases where
the two alternative directions are 1801, 901 and 121 apart (Fig. 4a–c).
Importantly, the readout rule is the same regardless of the two
directions that are to be discriminated: for each alternative, the
population activity is weighted by a cosine profile centered at that
alternative and the difference between the two log likelihoods, log LR,
is computed.

When discriminating opposite directions, since the two weighting
profiles are opposite cosines (Fig. 4a), the MT neurons tuned to the
two alternatives that are maximally activated would also have the most
dissimilar weights, and would therefore maximally contribute to the
measurement of the log LR. This contribution decreases for neurons
away from the two alternatives and is zero for neurons tuned to the
direction orthogonal to the two alternatives.

In contrast, when computing the log LR for two alternative direc-
tions that are 121 apart, the overall contribution of neurons tuned to
the two alternatives, despite their high firing rates (Fig. 4c, bottom
row), would be weakened because they have similar weights (Fig. 4c,
third row) and will cancel (Fig. 4c, top row). More generally, the
similarity between the two weighting profiles reduces the contribution
of neurons with preferences near the two alternatives and enhances
the contribution of neurons tuned away from the two alternatives
(Fig. 4b,c, top row). In other words, although for any two alternatives
the readout rule remains unchanged, for finer discriminations, our
model predicts that log LR should be more strongly determined by the
activity of neurons tuned to the flanking regions of the two alternatives.
This behavior is consistent with the widely assumed role of these ‘‘off-
optimal’’ neurons in fine discrimination24,25, but differs from earlier
ideas in making clear that the important influence of these flanking
neurons is an automatic consequence of how log likelihoods are
computed with neurons.

We show three example cases in which the two alternative directions
are 1801, 901 and 121 apart. More generally, as the two alternatives get
closer, the contribution of neurons tuned to the alternatives weakens
and neurons farther in the flanks become more and more important in
the computation of the likelihood ratio. Furthermore, the overall
magnitude of the log likelihood ratio is largest for opposite directions
where discrimination is easiest (Fig. 4a) and becomes progressively
smaller as the two alternatives get closer and discriminating between
them is more difficult (Fig. 4b,c). This change in the magnitude of the
log likelihood ratio directly determines the model’s performance for the
different conditions (Fig. 3c).

We have focused here on the model’s behavior for the case of
direction of motion, and we have presented its predictions for various
psychophysical and neurophysiological studies of motion perception.
As with the psychophysical predictions in the preceding section, our
model makes specific experimental predictions that can be tested
against data. In this case, the predicted relationship between neuronal
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Figure 4 Contributions of MT signals to two-choice motion discrimination.

The lower panels show example profiles of activity in area MT in response

to a strong motion stimulus, in one of the two directions that are being

discriminated. The dashed black line marks the neuron most responsive

to this stimulus. The alternatives are 1801, 901 and 121 apart in a, b

and c, respectively. The second panels from bottom (‘‘Weights’’) show the

cosinusoidal weighting profiles called for by the model. The contribution of

each neuron to the two log likelihoods is computed by multiplying the activity
of that neuron by its own weight. Panels in the third row from bottom show

the average contribution of each neuron to each of the two log likelihoods

(that is, neuron’s average firing rate multiplied by its own weight). The top

panels show the average contribution of each neuron to the log likelihood

ratio. For each neuron, this is computed as the difference between the

contribution of that neuron to the two log likelihoods, that is, the difference

between the blue and red curves in the third row from bottom. For all three

conditions, neurons preferring directions halfway between the two alternatives

have similar weights and therefore do not on average contribute to the log

LR. For finer discriminations, the overall log likelihood ratio is smaller and,

because of the overlap between the weighting profiles, the log likelihood ratio

is more strongly determined by neurons with preferences that are shifted

away from the two alternatives.
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activity and perceptual performance can be measured by assessing how
the response of individual MT neurons covaries with the perceptual
judgments23,26,27 under suitable experimental conditions.

DISCUSSION

Perceptual decision making requires that neural responses in cortical
sensory representations be transformed into decision-related variables
that can optimally guide behavior. It has been appreciated for some time
that sensory likelihoods provide an optimal currency for making
perceptual decisions1, but it has remained controversial whether and
how the brain can compute likelihoods from sensory signals7,28,29. Our
work shows that a linear transformation of sensory cortical responses
can compute the needed likelihoods. The computation follows a simple
recipe: the likelihood function is computed as the sum of each neuron’s
response multiplied by the logarithm of its own tuning curve. The model
has two important features: it can compute the likelihood for a variety of
sensory inputs, and it can account for a variety of perceptual behaviors.

We developed the model for the example case when the sensory
signals come from a homogeneous MT population with tuning curves
of a particular shape. But the universe of inputs that the model can
handle does not depend on the homogeneity or the exact shape of the
tuning functions. As discussed in the Supplementary Methods, the
model can compute sensory likelihoods for different sensory para-
meters and for a variety of tuning functions. The architecture of the
model is such that it combines the overall likelihoods by simple
addition of signals from single neurons. Although we have not
extended our model beyond the case of a single sensory representation,
a particular virtue of the additive computation of likelihood is that the
model can combine input from more than one sensory area and
compute the likelihood function when multiple cues are present. It
does so by simply adding the likelihoods from neurons in more than
one sensory representation. It therefore generalizes naturally to a
likelihood-based model of cue combination that is called for by
human psychophysical data4,5. In all cases, the full likelihood function
is computed as a weighted sum of neural responses where the weights
are directly derived from the firing statistics of neural responses.

The model also provides a single simple neural readout strategy that
can support a wide variety of perceptual judgments, including detec-
tion, discrimination and identification. In contrast, previous models of
sensory decoding were for the most part designed to account for a
particular task. For example, in the analysis of motion, one model
accounts for discrimination of opposite directions of motion23,26,
another for discrimination of nearby directions27 and yet others for
identification of the direction of motion30–32. None of these straight-
forwardly generalizes to other situations, such as discrimination of
multiple alternative directions. The generality of our model, on the
other hand, derives directly from the fact that, at its output, it computes
the full likelihood function; that is, the likelihood of all stimuli that
could have given rise to a given sensory response.

The model solves a sensory detection task by comparing the like-
lihood of the expected sensory parameter (specified by one output
neuron in our model) to a criterion. We show the performance of the
model for the case of detecting motion (Fig. 3a). In addition, since the
model specifies the contribution of each neuron to likelihood, it
predicts the relation between the responses of individual neurons in
sensory representations to detection behavior. For instance, to detect
motion in a given direction, neurons tuned to the expected direction
have the highest positive weight25,33; the contribution of neurons
tuned away from that direction progressively decreases and changes
sign for neurons preferring the opposite directions. These predictions
are in agreement with data from area MT of monkeys engaged in a

motion detection task (W.H. Bosking and J.H.R. Maunsell, Soc.
Neurosci. Abstr. 935.7, 2004).

For sensory discrimination tasks, our model computes and com-
pares the likelihoods of the expected alternatives. For the case of
motion, it predicts how performance changes with stimulus parameters
and task design (Fig. 3c,d). More distinctively, it also predicts the
contribution of individual sensory neurons in different perceptual
situations. When discriminating opposite directions, monkeys seem
to rely most on neurons that are tuned to the two alternatives26. A
recent neurophysiological study of motion discrimination with awake
monkeys suggests that for fine direction discrimination, neurons
within area MT are pooled with unequal weights27 so that neurons
with preferred directions that are quite remote from the two alter-
natives have a larger weight in the monkey’s choice than ones tuned to
the two alternatives. Similarly humans are known to read more
effectively the activity of the off-optimal neurons when engaged in a
fine sensory discrimination24,25. These results suggest that the readout
strategy must be adaptable—for discrimination of opposite directions
the pooled signals must be centered at the two alternatives23, but when
discriminating nearby directions, the readout mechanism should
automatically give the neurons with flanking preferences the highest
weight. This is exactly what our model does (Fig. 4). When computing
the log likelihood ratio for the discrimination of opposite directions,
the neurons tuned to the alternatives have the largest weight, whereas
for two nearby alternatives, the effective weighting profile has maxima
far out on the flanks of the population activity.

We have concentrated on the problem of optimally pooling sensory
inputs, but it is also of interest to consider the properties of the neurons
that do the pooling. For example, how would one recognize a neuron
representing likelihood, such as those at the output of our model? The
first issue concerns dynamic range. Because likelihoods can be both in-
creased and decreased by sensory evidence, the pooled signals can
assume both positive and negative values. The output neurons should
therefore have a baseline firing rate and should operate in an approxi-
mately linear manner. The second issue concerns timing. One of the
attractive features of our model is that it is purely feedforward, so it can,
in principle, represent moment-to-moment changes in likelihood, limi-
ted only by the temporal precision of its output neurons. But there is
also good reason to believe that neurons involved in perceptual judg-
ment should be able to accumulate information across time when that is
desirable34,35. This accumulation can either be accomplished by feeding
the pooled sensory signals of our model into an integrator network36,37

or by deferring the integration stage until after the computation of the
instantaneous likelihoods by a network like the one we propose.

Given the properties required of these output neurons, we can
speculate about where they might be found. Examining the connec-
tional architecture of cortex does not reveal an area in which sensory
likelihood might be represented separately from the planning of specific
movements: signals from areas thought to have predominantly sensory
functions, like area MT, project directly to areas with clear motor
planning functions, like the lateral intraparietal area (LIP). The absence
of a candidate ‘decision area’ suggests that the computation of likelihood
might actually take place in areas we think of as sensory. For example,
with respect to the computation of motion direction, existing models
and recent experimental evidence suggest that a population of neurons
in area MT, ‘‘pattern direction selective cells’’38 might obtain their
properties by pooling directionally selective inputs using an architecture
similar to the one in our model39 (N.C. Rust, E.P. Simoncelli, & J.A.
Movshon, Soc. Neurosci. Abstr. 591.11, 2005). Alternatively, the instan-
taneous likelihoods might be computed by suitably combining sensory
signals directly in association areas such as area LIP40 or the parietal
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reach region (PRR)41, implying that likelihoods might be calculated
separately for behaviors that engage different motor systems.

Whether or not the likelihood calculation is performed in sensory
areas, by the time signals reach areas such LIP or PRR, we expect them
to reflect the integrated sensory likelihoods. For instance, while
discriminating opposite directions of motion, presentation of one of
the alternatives should increase the activity of the output neuron that
measures the likelihood of the presented alternative while the neuron
representing the likelihood of the opposite direction should decrease its
activity. This prediction is in agreement with data from area LIP of
awake, behaving monkeys35,40,42. Moreover, when discriminating two
or more equiprobable alternatives, before the presentation of the
stimulus the likelihood of all alternatives is the same and depends on
the number of alternatives. For two alternatives, the likelihoods are
50% each, whereas for eight alternatives, the likelihoods are 12.5%. This
characteristic behavior of the likelihood function makes a clear pre-
diction: before the onset of the stimulus, the baseline firing rate of the
output neurons should decrease with the increasing number of alter-
natives. This effect has recently been observed in the activity of
individual LIP neurons in monkeys engaged in a motion discrimina-
tion task (A.K. Churchland, M. Tam, J. Palmer, R. Kiani and M.N.
Shadlen, Soc. Neurosci. Abstr. 16.8, 2005).

Finally, we draw attention to how the properties of sensory neurons
relate to the architecture of our model. Why are sensory neurons broadly
tuned? Why do they have Poisson-like variability? What is the functional
significance of tuning functions that are independent of stimulus
intensity? Notably, the simplicity and the flexibility of our model follow
directly from these characteristic properties of sensory neurons. Is it a
coincidence that these properties are just the ones that allow a simple
feedforward architecture to recode the activity of sensory neurons to
sensory likelihoods? As a final speculation, we suggest the value of
likelihood-based decision making, long recognized in psychophysics,
means that sensory representations should be organized to allow a
biologically feasible transformation of sensory responses to sensory
likelihoods. This is exactly what we think the cerebral cortex does.

Note: Supplementary information is available on the Nature Neuroscience website.
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