
Supplementary Information
for A functional and perceptual signature of the second 
visual area in primates

Jeremy Freeman, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli, 
& J. Anthony Movshon

Contents

Supplementary Figure 1

Original texture photographs, synthetic naturalistic textures, and spectrally-matched 
noise images, for the 15 texture families used in our primary experiments (Figs. 2-5).

Supplementary Figure 2

Rank ordering of texture families based on the modulation they evoked, averaged 
across neurons separately in V1 and V2.

Supplementary Figure 3

Differential responses in V1 and V2 to naturalistic and noise stimuli, using firing rate 
rather than modulation index.

Supplementary Modeling

Fitting details for the mixture model used to analyze psychophysical data obtained 
from the Mechanical Turk. 

Nature Neuroscience: doi:10.1038/nn.3402



Original
texture

photograph
Naturalistic

texture

Spectrally-
matched

noise

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Supplementary Figure 1. Original texture photographs, 
synthetic naturalistic textures, and spectrally-matched noise 
images, for the 15 texture families used in our primary 
experiments (Figs. 2-5). Classes are sorted by the differential 
neuronal response they evoked in V2 (as in Fig. 2e).
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Supplementary Figure 2. Average texture family ranking by modulation. For each 
cell, the 15 texture families were ranked and sorted according to modulation index. 
The sorted modulation indices were then averaged across all cells in V1 (green, 
panel a) and V2 (blue, panel b). A null distribution was obtained for both areas by 
permuting the naturalistic and noise labels and iterating 1000 times. Gray areas in 
both panels indicate the 2.5th and 97.5th percentiles of the null distribution. On 
average, any differences between naturalistic and noise stimuli exhibited by V1 
cells, either positive or negative, were not distinguishable from those expected by 
chance, but this was not the case for V2 cells.
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Supplementary Figure 3. Difference between V1 and V2 in terms of firing rate. 
Responses to naturalistic and spectrally-matched noise images in V1 (green, panel a) 
and V2 (blue, panel b).  Diagonal dashed line is the line of equality. The difference 
between naturalistic and noise was statistically significant in V2 but not in V1 (paired 
t-tests), and the difference of differences between the two areas was statistically 
significant (P < 0.0001, unpaired t-test). Neurons with comparable responsiveness 
(~5-10 ips) show a differential response to naturalistic images in V2 but not in V1.

P = 0.46 P < 0.0001
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Supplementary Modeling

For each texture family, we fit data from all Turkers simultaneously with a mixture model. 
The model consists of a psychometric function common to all Turkers, parameterized 
with a slope and threshold, and a parameter that controls the quality of each Turker. 
Specifically, for each texture family, we assume that N Turkers performed the 

psychophysical task. The task contained C conditions (the different levels of 

naturalness), and there were T trials for each condition. On every trial, the Turker 

provided a response xnct that was either correct ( xnct = 1 ) or incorrect ( xnct = 0 ). The 

probability of a response being correct is governed by an Turker-independent function 
pc = F(c,θ )  which relates the conditions to a probability of correct response via the 

parameters θ of a cumulative Wiebull function. The probability of correct response is 

also determined by an Turker-dependent lapse parameter λn which gives the probability 

that an observer will lapse on any trial, that is, respond randomly rather than according 
to pc . Let Θ  represent all parameters (those governing the psychometric function, and 

the lapse rates for all observers). We introduce the latent variable znct  to represent 

whether or not an observer lapsed on a particular condition/trial combination. We make 
use of the indicator variable znctk : if znct = 1 , then znct1 = 1and znct0 = 0 ; if znct = 0 , then 

znct1 = 0 and znct 0 = 1 . 

Consider a particular Turker, trial, and condition. If the Turker lapses, she will respond 
correctly at chance, so the distribution of her response is given by a Bernoulli random 
variable

P(xnct | znct = 1,θ ) = γ
xnct (1−γ )1−xnct ,

where γ  is 1/ 3 for the 3AFC task. And if she does not lapse, her response will be 

governed by the psychometric function 
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P(xnct | znct = 0,θ ) = pc
xnct 1− pc( )1−xnct .

We can use the indicator variables to write the joint distribution over the data and the 
latent variables as

P(xnct , znct |θ ,λn ) = γ xnct (1−γ )1−xnct( )λn⎡⎣ ⎤⎦
znct1 pc

xnct 1− pc( )1−xnct( )(1− λn )⎡
⎣

⎤
⎦
znct 0

.! Eq. 1

Note the dependence on the marginal probability of a lapse, λn . Whenznct = 1 , the above 

reduces to the first term alone, which is 

P xnct | znct = 1( )P znct = 1( ) ,

and likewise for the second term. Thus, the expression for the joint uses the indicator 
variable to capture what is essentially a piecewise combination of Bernoulli distributions.

The complete log likelihood of the data under this model is

lnP(X |Θ) = ln P(xnct |θ ,λn )( )
nct
∏ = ln P

z
∑ (xnct , znct |θ ,λn )

⎛
⎝⎜

⎞
⎠⎟nct

∏  .

Directly maximizing this function with respect to θ  and λn  would be difficult. However, 

note that if the true values of the latent variables were known, maximizing the log 
likelihood of the data would become linear in the parameters (by taking the log of Eq. 1). 
Thus, this problem is naturally suited to the EM (expectation-maximization) algorithm. 

Given a current setting of the parameters λn
(t )  andθ (t ) , we can write the expected log 

likelihood of the data with respect to the conditional distribution of the latent variables,

 Q(Θ |Θ
(t ) ) = E

Z |X ,Θ( t )
lnP(X,Z |Θ)[ ] .! Eq. 2

We alternate between computing this expected value, and then estimating the 
parameters that maximize Eq. 2. By the linearity of expectation, it will suffice to compute 
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a point estimate of the expected value of each znct . To compute that expected value, we 

need the probability of the latent variables given a known set of parameter values, 
which we obtain using Bayes’ rule,

P(Z | X,Θ(t ) ) = P(X | Z,Θ(t ) )P(Z |Θ(t ) )
P

′Z
∑ (X | ′Z ,Θ(t ) )P( ′Z |Θ(t ) )

.

Because  znct = E(znct | xnct ,Θ(t ) ) = P(znct = 1| xnct ,Θ
(t ) ) , we need only compute

P(znct = 1| xnct ,Θ
(t ) ) = (γ xnct (1−γ )1−xnct )λn

pc
xnct 1− pc( )1−xnct( )(1− λn )+ (γ

xnct (1−γ )1−xnct )λn

,! Eq. 3

where pc  and λn  depend on Θ(t ) . We now consider the quantity to be maximized,

  

E
Z|X,Θ(t )[lnP(X,Z |Θ)]= znct

nct
∑ [xnct ln(γ )+ (1− xnct )ln(1−γ )+ ln(λn)]

           + (1− znct )[xnct ln(pc)+ (1− xnct )+ ln(1− pc)+ ln(1−λn)]

where we have used the linearity of expectation to replace znct  with  znct  from Eq. 3. 

Differentiating with respect to the parameters of interest yields maximum likelihood 
estimates. In practice, we want to differentiate with respect to the parameters θ  that 

control pc , or find maximum likelihood estimates through numerical optimization if the 

derivatives are non-trivial. But for simplicity and intuition, here we differentiate with 
respect to pc  directly to obtain an estimate of the fraction of correct responses:

 

p̂c =
(1− znct )

nt
∑ xnct

(1− znct )
nt
∑ ! Eq. 4
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λ̂n =

znct
ct
∑
CT

.! Eq. 5

The expression for p̂c  is simply the fraction of correct responses weighted by the lapse 

occurrence; if there were no lapses, the denominator would contain only 1s, and Eq. 4 
would reduce to the number of correct responses divided by the total number of trials. 

The expression for λ̂n  (Eq. 5) is similarly intuitive: the number of lapse trials divided by 

the total number of trials (across all conditions). Having obtained these estimates on the 
M step, they are used on the E step to compute the expectation in Eq. 3.

We confirmed that the parameter estimates obtained from this algorithm reliably 
converged from multiple random initializations. As expected, the analysis estimated high 
lapse rates for Turkers with outlier behavior (e.g. near chance performance in all 
conditions), and the analysis ensured that these Turkers contributed minimally to 
estimates of slope and threshold. 
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