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SUMMARY AND CONCLUSIONS

/. To study the encoding of input currents into output spike
trains by regular-spiking cells, we recorded intracellularly from
slices of the guinea pig visual cortex while injecting step, sinusoi-
dal, and broadband noise currents.

2. When measured with sinusoidal currents, the frequency tun-
ing of the spike responses was markedly band-pass. The preferred
frequency was between 8 and 30 Hz, and grew with stimulus
amplitude and mean intensity.

3. Stimulation with broadband noise currents dramatically en-
hanced the gain of the spike responses at low and high frequencies,
yielding an essentially flat frequency tuning between 0.1 and
130 Hz.

4. The averaged spike responses to sinusoidal currents exhibited
two nonlinearities: rectification and spike synchronization. By con-
trast, no nonlinearity was evident in the averaged responses to
broadband noise stimuli.

5. These properties of the spike responses were not present in
the membrane potential responses. The latter were roughly linear,
and their frequency tuning was low-pass and well fit by a single-
compartment passive model of the cell membrane composed of a
resistance and a capacitance in parallel (RC circuit).

6. To account for the spike responses, we used a *‘sandwich
model’’ consisting of a low-pass linear filter (the RC circuit), a
rectification nonlinearity, and a high-pass linear filter. The model
is described by six parameters and predicts analog firing rates rather
than discrete spikes. It provided satisfactory fits to the firing rate
responses to steps, sinusoids, and broadband noise currents.

7. The properties of spike encoding are consistent with temporal
nonlinearities of the visual responses in V1, such as the dependence
of response frequency tuning and latency on stimulus contrast and
bandwidth. We speculate that one of the roles of the high-frequency
membrane potential fluctuations observed in vivo could be to am-
plify and linearize the responses to lower, stimulus-related frequen-
cies.

INTRODUCTION

Since the fundamental work of Hodgkin and Huxley
(1952), a very large body of data has become available on
the mechanisms underlying the generation of spike trains.
In cortical cells, in particular, spike train encoding was found
to be controlled by an array of voltage- and calcium-depen-
dent channels (see Gutnick and Crill 1995 for a recent re-
view ). Progress in modeling has made it possible to incorpo-
rate the physiological findings into detailed simulations of
single cells or even whole networks (Bower and Beeman
1995; Koch and Segev 1989; McCormick and Huguenard
1992).

This extended and detailed knowledge is however not
easily applied to the context of systems neuroscience, where
attention is largely concentrated on factors such as the nature
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of the inputs to a network and the connectivity of different
cell types. When modeling the responses of cells in the
primary visual cortex, for example, one would like to devote
the bulk of the model’s parameters to factors such as the
visual properties of subcortical inputs, the wiring of these
inputs onto cortical cells, and the nature of intracortical feed-
back. Adding to these a detailed spike-encoding mechanism
results in tens of additional free parameters, and in a heavy
computational burden, which make it impossible to fit the
model to actual data (see, e.g., Suarez et al. 1995). This
suggests a need for a simple and robust model of the transfor-
mation of synaptic currents into spike trains by cortical cells.

In studies of the visual cortex, this transformation has
been traditionally modeled with a simple stage that instanta-
neously converts somatic current or membrane potential into
a continuous firing rate. Perhaps the simplest of these models
is the rectification model (e.g., Movshon et al. 1978), which
postulates that the firing rate is zero for membrane potentials
below a threshold and grows linearly with the synaptic cur-
rent above that threshold. Common variations of this model
include functions with a smoother transition from rest
(Heeger 1992b) and functions that saturate to a maximal
firing rate, such as sigmoids. These models are all static (or
memoryless ) nonlinearities, i.e., ones whose output depends
only on the present value of their input and not on past
history.

Rectification and the other static models can be accurate
in describing the steady-state responses of cortical cells, but
fail to predict the time-varying responses. There is indeed a
large body of literature pointing to a linear or bilinear steady-
state relation between injected current and firing rate, once
the current is above a threshold level (see Stafstrom et al.
1984b and references therein). In the primary visual cortex,
in particular, the firing rate grows roughly linearly with in-
jected current (Jagadeesh et al. 1992). When the stimuli are
current steps, however, the firing rate of some cortical cells
displays prominent adaptation (Connors et al. 1982). Firing
rate thus depends not only on the injected current /, but also
on time ¢. In addition, when the stimuli are current ramps,
the resulting firing rate depends on the slope d//dr of the
ramp (Stafstrom et al. 1984b).

The aim of the present study is to gain a general under-
standing of the spike-encoding properties of cortical cells,
and to provide a model of these properties that lies between
the excessive simplicity of the static nonlinearity models
and the complexity of the detailed biophysical descriptions.
There are a number of models that could in principle capture
the spike-encoding properties of cortical cells while being
described by a limited number of free parameters. Among
these models are variations on the integrate-and-fire scheme
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(e.g., Getting 1989; Knight 1972), as well as sequences of
basic signal-processing blocks such as linear filters and static
nonlinearities (French and Korenberg 1989; Korenberg et
al. 1989). The model that we advocate in the present study
belongs to the latter category, and predicts smooth firing
rates rather than spike trains.

We performed intracellular in vitro experiments on slices
of the guinea pig visual cortex. We recorded from regular-
spiking cells, which are known to be pyramidal or spiny
stellate cells and to be excitatory (Connors and Gutnick
1990). We injected currents of various waveforms (sinu-
soids, broadband noise and steps) and analyzed the cells’
membrane potential and spike train responses.

In the first part of this study we report on the spike train
responses. We found that the responses to sinusoidal currents
have very different properties from the responses to broad-
band noise currents. With sinusoidal currents the spike-en-
coding mechanism acts as a band-pass filter, and the aver-
aged responses are very nonlinear. The nonlinearities are of
two kinds: rectification, which refers to the absence of re-
sponse in the negative portion of the stimulus, and spike
synchronization, which refers to the recurrence of spikes at
the same exact points in the stimulus cycle. In response to
broadband noise, the cells are more responsive, and encode
all the frequencies between 0.1 and 130 Hz equally well. In
addition, the averaged responses are much more linear than
with sinusoidal currents.

In the second part of this study we show that the above
mentioned properties of the spike responses are not present
in the underlying membrane potential traces. Indeed, a very
large portion of the variance of the membrane potential re-
sponses can be captured by a simple single-compartment
passive model of the cell, which is a linear low-pass filter.

In the final part of this study we propose a sandwich
model that accounts quantitatively for the spike responses. It
essentially consists of a static nonlinearity —the rectification
stage—sandwiched between two linear filters (Korenberg
et al. 1989; Victor et al. 1977). This model is an extension
of the rectification model, and is similar to one proposed by
French and Korenberg ( 1989) to describe the transformation
of injected currents into spike trains by cockroach mechano-
receptors. The linear filter that precedes the rectification
stage is low pass, and is determined by the passive properties
of the cell membrane. The linear filter that follows the recti-
fication stage is high pass. and presumably summarizes the
effect of voltage- and calcium-dependent conductances. The
whole model is described by six parameters.

In the piscussioNn we compare our approach with those
of other studies, we examine the possible role of the spike-
encoding mechanism in shaping the visual responses of neu-
rons in the primary visual cortex, and we speculate on the
possible role of the high-frequency fluctuations observed in
vivo by Jagadeesh et al. (1992).

Portions of this work have been presented as conference
abstracts (Carandini et al. 1994, 1995).

METHODS

Preparation and maintenance

Brain slices were prepared from albino or pigmented guinea
pigs (150-600 g) that were deeply anesthetized with pentobarbital
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sodium (35-70 mg/kg) and then decapitated. The skull was rap-
idly opened and the visual cortex was removed and placed in ice-
cold Ringer solution. The cooled block was affixed to the stage of
a vibratome with cyanoacrylate and 350-pum-thick slices were cut.
Slices were individually incubated at room temperature in a Ringer
solution continuously bubbled with 95% 0,-5% CO, until being
placed into a recording chamber (between 1 and 12 h later) that
was maintained at 22-33°C. The Ringer solution contained (in
mM) 124 NaCl, 5 KCI, 1.2 NaH,PO,, 2.7 CaCl,, 3 MgS0,, 26
NaHCOs;, and 10 glucose.

Cells were impaled with glass micropipettes filled with 3 M
KCl, having DC resistances of 70—150 M(2. Intracellular re-
cordings were performed with a current-clamp ( Axon Instruments )
recording amplifier utilizing capacitance neutralization. Current
was injected through an active bridge circuit, allowing the voltage
drop across the electrode resistance to be subtracted. The electrode
was tested in the solution to make sure it did not introduce substan-
tial rectification and other nonlinearities. Stimulus generation and
data acquisition were all performed by computer through a CED
1401 Plus interface (Cambridge Electronic Design). Injection
currents were sampled at 1-4 kHz; voltage traces were sampled
at 4 kHz.

The recordings were obtained from neurons in the primary and
secondary visual cortices (Choudhury 1978; Creel and Giolli 1972;
Spatz et al. 1991; Wree et al. 1981). Neurons were identified as
regular spiking if their response to current steps showed spike
frequency adaptation, had no tendency to burst, and had a definite
threshold for the generation of a single action potential (Connors
and Gutnick 1990).

Stimuli

We used three types of stimuli. /) Steps, in which the current
I(r) stepped from [, to /, and back. 2) Sinusoids: /(t) = [, +
I, sin (27f1). 3) Broadband noise, obtained by adding eight incom-
mensurate sinusoids: /(1) = I.ZL, sin (2nfir + ¢). The frequen-
cies f; were chosen so that their sums and differences would not
coincide ( Victor and Shapley 1980). The deterministic nature of
this broadband signal makes it particularly useful for system identi-
fication purposes ( Victor and Knight 1979).

Experiments contained a sequence of stimuli lasting 2—16 s
each, separated by 4-s intervals during which no current was in-
jected. The stimuli in each experiment were presented in random
order to minimize the effect of slow drifts in the quality of the
impalement. The order of the stimuli was recorded to assess the
importance of such drifts. Each cell was tested with three core
experiments.

1) A sequence of steps of different amplitude /,.

2) A sequence of sinusoids of different frequency f and of
different baseline intensity /, and/or amplitude /,.

3) An experiment constituted by 16 stimuli: 8 broadband noise
stimuli, in which the eight component sinusoids assumed different
relative phases, and 8 sinusoid stimuli, in which the component
sinusoids were presented alone. The values of the phases {¢; ], as
well as the methods for computing the frequency tuning of the
responses to the broadband stimuli, are described by Victor ( 1988 ).
The amplitude of the component sinusoids was [, = 0.25-1 nA
when presented alone, and /. = 0.075-0.3 nA when presented with
the others. Their ratio /,/I. was between 3 and 4. The root-mean-
square intensity of the broadband stimuli was 70—95% that of the
sinusoid stimuli. Two sets of frequencies f; were used (in Hz):
{0.933, 2, 4.133, 8.4, 16.933, 34, 68.133, 136.4} and {0.193,
0.452, 0.968, 2.0, 4.065, 8.193, 16.452, 32.968 } . The frequencies
in each set are integer multiples of a fundamental frequency, which
is 0.133 Hz for the first set and 0.0643 Hz for the second set. Each
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stimulus lasted one period of the fundamental frequency (7.5 or
15.5 s).

Data analysis

We analyzed two types of responses. The first was the raw
membrane potential response V (r), an analog signal. The second
was the spike train response S(7), a discrete signal that was com-
puted from V(1) off-line by detecting the downward crossings of
V(1) with a threshold around —10 mV. For mathematical analysis,
the individual spikes were considered as Dirac delta functions, i.e.,
as infinitesimal intervals in which the firing rate was infinite. A
spike train would thus have the form §(¢) = EJ-“:_., o(t — t;), where
{t;}iL, are the spike times. The Fourier transform of the spike
train at a frequency fis S(f) = (2/T)Z}, exp(2mwift;), where T
is the stimulus duration.

The sandwich model has three stages, defined respectively by
Egs. 1, 2, and 3 in the RESULTS section. Each stage has two free
parameters. The parameters of the first stage (membrane resistance
and capacitance ) were estimated by fitting the transfer function of
a circuit composed of a resistor and a capacitor in parallel (RC
circuit, Eq. 1) to the first harmonics of the membrane potential
responses. The remaining parameters, two for the rectifier (Eq. 2)
and two for the high-pass linear filter (Eg. 3), were subsequently
estimated by a minimization routine that searched for the minimum
square difference between the model predictions and the spike
trains. Both the model predictions and the spike trains were low-
pass filtered, usually with a cutoff at 200 Hz, before their difference
was computed.

RESULTS

We recorded from 26 cells in slices of the guinea pig
visual cortex. Of these, nine satisfied our criteria for healthy
impalements, were classified as regular spiking as described
in the METHODS section, and were held long enough to be
tested with the core experiments in our paradigm. The aver-
age resting potential of these cells was —70.2 = 4.7 (SE)
mV; their spike threshold was 31.1 * 5.3 mV; and their
spike height was 87.8 + 6.2 mV. The average spike half-
width was 1.1 = 0.1 ms for the seven cells recorded at 33°C,
and 2.5 and 3.4 ms, respectively, in the other two cells,
which were recorded at 22°C.

To illustrate the relation between the responses to different
stimuli, we chose to show data from the same cell in all
figures. This cell (/9s2) is typical of our sample, and the
properties described in this study were extremely consistent
across cells.

We recorded no spontaneous spikes when searching for
cells, and we did not observe postsynaptic potentials in our
intracellular recordings. This complete lack of spontaneous
activity is a fundamental difference between our in vitro
preparation and the normal in vive conditions. Indeed, our
voltage traces (e.g., Fig. 1) look very different from those
obtained in vivo (e.g., Jagadeesh et al. 1992) in that they
are entirely stimulus driven, and the only high-frequency
fluctuation in membrane potential is given by the action
potentials. As a consequence, the cells in this study should
not be thought of as part of a network, but as single computa-
tional elements.

Spike train responses

SINUSOIDAL STIMULIL. ~ Figure 1 shows the responses of a cell
to sinusoidal current injection. Figure 1, B shows the re-
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sponses elicited with a modest stimulus amplitude (0.3 nA).
Figure 1, A and C shows, respectively, the effect of doubling
the amplitude of the stimulus and of introducing a positive
baseline current (0.3 nA). In both conditions the cell fired
more spikes. This is particularly clear for the 20-Hz stimuli
(bottom), which did not elicit any spikes at low amplitude,
and elicited many spikes at high amplitude or in the presence
of a positive baseline current.

The spike-encoding mechanism of the cells exhibited a
band-pass character. For frequencies below a certain cutoff
frequency, increasing the stimulus frequency increased the
number of spikes. Frequencies above the cutoff elicited no
spikes. The value of the cutoff depended on stimulus ampli-
tude and baseline intensity. A typical example of this behav-
ior is shown in Fig. 2, which plots the amplitude and phase
of the first-harmonic component of the spike responses as a
function of stimulus frequency. The different curves corre-
spond to different stimulus amplitudes (Fig. 24 ) and base-
line intensities (Fig. 2B). The responses to low-amplitude
sinusoids in the absence of baseline injected currents are
plotted in both A and B (small ®). In this condition the
amplitude of the responses peaked at 5 Hz, and was zero
above 15 Hz. Figure 2A shows that increasing the stimulus
amplitude /, uncovered strong responses to the 15- and 20-
Hz stimuli. Figure 2B shows that introducing a positive
baseline current had a similar effect. This behavior was typi-
cal of all the cells we tested, irrespective of whether the
spike responses were measured by their first harmonic or by
the mean firing rate.

The curves fit to the phase data in Fig. 2 are the predictions
of a simple model consisting of a delay with an arbitrary
phase lead. These curves would be straight lines if plotted
in a linear scale; the phase versus frequency plot of the
output of a delay is a line whose negative slope is equal to
the duration of the delay. We call the intercept of the fitted
line with the ordinate the phase lead of the system, and the
negative slope of the line the integration time of the system.
The phase lead of the spike-encoding mechanism was posi-
tive, indicating that the spike responses to low-frequency
sinusoids were concentrated on the rising phases of the stim-
ulus. This phase lead increased with stimulus amplitude or
baseline intensity. The integration time of the spike-encoding
mechanism did not vary with the amplitude of the sinusoidal
currents. It decreased with their baseline intensity, a phenom-
enon that we further examine in the context of the responses
to broadband noise.

BROADBAND NOISE STIMULL. The frequency tuning of the
firing rate measured with broadband noise was very different
from that measured with single sinusoids. The cells were
more responsive both to the low and to the high frequencies
when they were part of a broadband stimulus than when
they appeared as a single sinusoid. A typical example of this
behavior is shown in Fig. 3. Although the frequency tuning
of the firing rate gain measured with single sinusoids was
markedly band-pass (@), that measured with broadband
stimuli was flat or mildly high pass (gray O). In other
words, all the frequencies present in the boadband stimuli
were represented in the spike train, with no sign of attenua-
tion.
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FIG. 1. Responses to sinusoidal current injections. Rows correspond to different frequencies of stimulation (f = 2, 5, 10, and
20 Hz). The modulation amplitude was /, = = 0.6 nA in A and 0.3 nA in B and C. In C, the stimulus had a positive baseline

intensity /, = 0.3 nA (the baseline intensities in A and B were (). Spikes are truncated at O mV. Cell 1952, experiment 5.

Response phase is another aspect in which the spike train
responses to broadband noise differed from the responses to
single sinusoids. The slope of the phase versus frequency
lines was steeper for sinusoids than for broadband noise,
indicating a decrease in the integration time of the spike-
encoding mechanism. The responses to broadband noise
were advanced by ~10 ms with respect to sinusoids. Also,
the phase lead decreased, from ~45° for sinusoids to ~10°
for broadband noise. This means that whereas with single
low-frequency sinusoids the spikes were concentrated on the
rising phases of the stimulus, when these sinusoids were part
of a broadband stimulus the responses were concentrated on
the peak of the stimulus cycle.

The results of the broadband noise experiments were
nearly identical in all the cells of our sample. This is made
clear in Fig. 4. Figure 4, top, shows the responsivity of the
cells as measured with sinusoids (A) and with broadband
noise (B), as a percentage of the maximal responsivity to
broadband noise. At frequencies <8 Hz, the responsivity of
all cells was mildly enhanced by the broadband stimulation.
Between 8 and 20 Hz, the responsivity was essentially the
same with broadband noise and with sinusoids. At frequen-

cies >20 Hz, the responsivity was dramatically enhanced
by the broadband stimulus. Figure 4C shows how for all
cells the integration time was shorter when measured with
broadband noise than when measured with sinusoids: the
mean integration times were 3 = | ms and 14 = 5 ms,
respectively. The phase lead also changed substantially in
the two conditions, from 28 + 7° to 6 = 3° (Fig. 4D).
NONLINEARITIES. If spike train encoding were a linear sys-
tem, the spike density in response to a sinusoidal current
injection would modulate sinusoidally. Figure 5A shows that
this was far from being the case. The period histograms of
the spike responses to sinusoidal current injection displayed
two kinds of nonlinearity (Ascoli et al. 1974; French et al.
1972). The first nonlinearity was response rectification:
there are spikes only when the sinusoidal currents are posi-
tive. This nonlinearity is to be expected in visual cortical
cells, because these cells usually show no spike activity at
rest and firing rates cannot be negative. The second nonlin-
earity is spike synchronization, which means that spikes tend
to occur at particular times in the stimulus cycle. This results
in sharp peaks in the spike histograms.

These nonlinearities are not present in the responses to
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FIG. 2. Frequency tuning of the firing rate responses to sinusoidal cur-

rents for different stimulus amplitudes (A) and baseline intensities (B).
Top: amplitudes of the responses. Bottom: phases. The cell acted as a band-
pass filter whose best frequency depended on the stimulus amplitude and
baseline intensity. Firing rates were measured by computing the first har-
monic components of the spike trains. Some of the responses appear in
Fig. 1. The continuous curves fitting the phase data are the predictions of
a delay. They would become lines if they were plotted in linear scale. Cell
1952, experiment 5.

broadband noise. An example of this is shown in Fig. 5B,
in which are plotted the period histograms corresponding to
the eight frequencies present in the broadband stimulus. The
stimulus was proportional to the sum of the sinusoidal cur-
rents of Fig. 5A. The responses to the broadband stimuli
were much more sinusoidal than the responses to the sinu-
soids (Fig. 5A), and indeed were well described by their
first harmonic. This effect is known as linearization by noise
(Spekreijse and Oosting 1970).

The linearizing effect of broadband noise cannot be judged
exclusively from period histograms such as those shown in
Fig. 5. By construction, period histograms average out any
frequency components that are not multiples of the funda-
mental frequency of the histogram. The responses to broad-
band stimuli could still be very nonlinear and have power
at frequencies that are not multiples of the eight input fre-
quencies; this nonlinearity would not appear in Fig. 5B8. In
addition, histogramming is a form of smoothing, which hides
the high-frequency components of the responses. For exam-
ple, the third frequency in Fig. 5 (0.965 Hz) is 5 times the
first frequency (0.193 Hz). The strong component of the
responses at the higher frequency (B, 3rd panel) does not,
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however, appear in the period histogram of the lower fre-
quency (B, /st panel), because the histograms contain eight
bars and are thus only able to reveal harmonics below the
fourth,

To assess more precisely the degree to which broadband
noise linearized the spike responses, we analyzed their spec-
tral composition. The responses of a nonlinear cell would
contain sinusoids of frequencies not present in the stimulus.
These additional frequencies would be expected to include
the sums and/or differences of some of the frequencies pres-
ent in the stimulus (Victor and Shapley 1980). For a single
sinusoid stimulus, these correspond to the zeroth and second
harmonics. Consistent with the nonlinearity observed in the
period histograms, the responses to sinusoidal currents
showed substantial power at the second harmonic: on aver-
age the peak power of the first-harmonic responses to sinu-
soids was only 1.2 * 0.3 times larger than that of the second-
harmonic responses. The broadband stimuli contained eight
frequencies, yielding 64 possible sums and differences of
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FiG. 3.  Comparison of the frequency tuning of the firing rate responses
to sinusoids and to broadband noise. Top: gain of the responses. Bottom:
phase. Gain was measured by computing the first harmonic of the spike
trains at a given component frequency and dividing the result by the inten-
sity of that component in the stimulus. Stimulation with broadband noise
enhanced the cell’s responsivity to the low frequencies and uncovered strong
responses to 33 Hz. The broadband noise was the sum of 8 sinusoids whose
amplitude was 0.135 nA. When injected alone, the intensity of the sinusoids
was 0.45 nA. The continuous curves fitting the phase data are the predictions
of a delay and would become lines if they were plotted in linear scale.
Their negative slope is a measure of the delay of the responses ( *‘integration
time’"). Their intercept with the O-frequency axis is a measure of the
phase by which they lead the current injections ( **phase lead'"). Cell 1952,
experiment 4.
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FiG. 4. Summary of the data obtained with sinusoid and broadband
noise currents in all cells in our sample. Top: frequency tuning of the
responses as measured with sinusoidal currents (A) and with broadband
noise currents (B). To facilitate comparison, each cell’s responses were
normalized by its maximal response to the broadband stimuli. The respon-
sivity of every cell was enhanced by the broadband stimuli, except in the
range between 10 and 20 Hz, where on average it remained constant.
Bottom: differences in the time course of the responses to sinusoids and
broadband noise. Integration time and phase lead were obtained from the
responses of each cell to sinusoids and broadband noise, by fitting the phase
vs. frequency data with lines, as in Fig. 3, bortom. Both the integration
time ( C) and the phase lead (D) were shorter in the responses to broadband
noise than in the responses to sinusoids.

frequencies. The Fourier component of the responses at these
sum and difference frequencies is called the *‘second-order
kernel’’ of the responses ( Victor et al. 1977), and is a mea-
surement to which we will return when evaluating the predic-
tions of the sandwich model. We found that on average the
peak power of the responses at the stimulus frequencies was
2.4 + 0.8 times larger than the peak power of the second
order kernel, confirming the linearizing effects of broadband
noise on the spike responses.

Membrane potential responses

The simplest possible model of the transformation of in-
jected currents into membrane potentials is a single-compart-
ment passive model of the membrane composed of a capaci-
tance and a resistance in parallel (RC model). There are
some indications that this model may be at least partially
successful in describing the subthreshold responses of corti-
cal neurons. For example, Stafstrom et al. (1984a) reported
an approximately linear current-voltage relation for the
membrane potentials of cortical cells below threshold. The
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passive model is, however, clearly incomplete above thresh-
old, where the membrane potential responses exhibit a vari-
ety of nonlinearities, which of course include the spikes
themselves. These phenomena have been extensively stud-
ied, and a large body of knowledge is now available that
describes the passive and active properties of these cells
(Connors and Gutnick 1990; Connors et al. 1982; Douglas
and Martin 1990; Gutfreund et al. 1995; Lorenzon and
Foehring 1992; McCormick et al. 1985; Schwindt et al.
1988a—c: Stafstrom et al. 1984a—c).

We were interested in modeling the transtormation of in-
jected currents into membrane potentials with as few free
parameters as possible, so that we could use such a model
as the first stage of a model of the spike train responses to
injected currents. Being described by just two parameters,
the RC model of the membrane was an ideal candidate for
this first stage. We therefore set out to measure the discrep-
ancy between its output and the membrane potential re-
sponses of our cells. We were somewhat surprised to find
that in most respects this simple linear model provided an
acceptable first approximation to the membrane potential
responses, even above threshold.

SINUSOIDAL STIMULIL. The membrane potential responses of
our cells were largely consistent with the output of a linear
filter. This substantial linearity can be assessed by observing
the degree to which the responses to sinusoidal currents were
sinusoidal. Formally, this was done by investigating their
spectral composition and comparing the size of their first-
harmonic component with that of all the other components.
Figure 6 illustrates this analysis. Figure 6A shows one period
of the response of a cell to a sinusoidal current. Figure 6B
shows the decomposition of the response into a first-har-
monic component and a residual response, which is essen-
tially constituted by the action potentials. Figure 6C plots
the power of the different frequencies in the response. The
spikes are fast events that contribute very little power: their
presence does not strongly affect the spectral composition
of the responses. The first harmonic clearly dominated the
response. The power of the first harmonic was between 9
and 141 times the power of the second harmonic. The total
harmonic distortion—the total power at the harmonics
higher than the first—was 3.8% (median) of the power at
the first harmonic.

We performed the same data analysis on the membrane
potential responses as on the spike train responses to charac-
terize the relation between the two types of response. The
frequency response of the membrane potential responses,
shown in Fig. 7, was very different from that of the firing
rate (Fig. 2). The membrane clearly acted as a low-pass
filter, with a corner frequency around 10 Hz.

The curves shown in the figure are the predictions of the
RC model, the single-compartment passive model of the
membrane. The frequency tuning predicted by the RC model
is

Vify=I(fIRI(1 + 2mifr) (1)

where V and I are the Fourier transforms of the membrane
potential V and of the stimulus intensity /. The variable fis
the frequency of the stimulus, and the parameters R and 7
are the membrane resistance and time constant. The model
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0.12 0.06 0.03

Period histograms of the spike responses to sinusoids (A) and to broadband noise (B). Horizontal lines: mean

firing rates. Sinusoidal curves: first harmonic of the responses. A: responses to 8 different sinusoids, The amplitude of the
sinusoids was I, = 0.45 nA. B: response to broadband noise obtained by adding the 8 sinusoids. The amplitude of each
sinusoid was [, = 0.135 nA. Each panel shows the spike rate over the period of one of the component sinusoids. The 8
panels originate from the same spike train, and differ only in the period used to average the responses. The sinusoid
histograms show 2 nonlinearities: *‘rectification’” (the spikes do not encode the negative portions of the signal ) and “*spike
synchronization™” (the cell tends to spike at particular stimulus phases). In the presence of broadband noise both nonlinearities
disappear: histograms are much more sinusoidal ( *‘linearization by noise™" ). Cell 1952, experiment 4.

was fit to the amplitude and phase of all the responses shown
in Fig. 7. and all the curves that appear in the figure were
determined by the same two parameters, R and 7. The fits
of the RC model were generally satisfactory. On average,
the fits accounted for 80% of the variance of the first-har-
monic data. For comparison, the fit in Fig. 7 captures 87%
of the variance. The parameters of the fits to all the cells in
our sample are listed in Table 1.

Figure 7 also illustrates some deviations from perfect lin-
earity in the membrane potential responses. Indeed, if the
cells were perfectly linear, changing the baseline intensity
of the stimuli would not affect the amplitude of their first-
harmonic responses. In that case, the data points that have
the same gray level (stimulus amplitude ) but different sizes
(baseline intensities ) would coincide. Instead, Fig. 7 B shows
that the frequency tuning did show a mild dependence on
the baseline intensity. In addition, if the cells were perfectly
linear, neither the amplitude nor the baseline intensity of the
stimuli would affect the phase of the responses. Instead, the
phase data in the figure do show a dependence on stimulus
amplitude and baseline intensity.

For some stimulus conditions the membrane potential re-
sponses of some cells displayed mildly band pass transfer func-

tions, peaking at 4—8 Hz. An example of such a transfer func-
tion is shown in Fig. 8 (gray symbols). In this case, the ampli-
tude of the responses was higher at 8 Hz than at lower
frequencies, and the phases led the predictions of the RC model.
This band-pass behavior was overall very mild, and was consis-
tent with the recent results of Gutfreund et al. (1995), who in a
similar preparation found subthreshold oscillations and resonant
frequencies in the 3- to 20-Hz range. Similar resonant behaviors
have been observed in other types of cortical cells (Llinas et
al. 1991; Silva et al. 1991). Accounting for this aspect of the
frequency tuning of the membrane potential would require a
more sophisticated model than a single RC circuit, for example
one that included voltage-dependent conductances that would
act as phenomenological inductances (Cole and Baker 1941;
Gutfreund et al. 1995; Koch 1984).

BROADBAND NOISE STIMULL  Unlike the spike train re-
sponses, the membrane potential responses to broadband cur-
rents were closely predictable from the responses to sinu-
soids. This is illustrated in Fig. 8: the membrane potential
had essentially the same frequency tuning whether it was
measured with sinusoids (@) or with broadband noise ( gray
O). This behavior is another piece of evidence for the partial
linearity of the membrane potential responses. Consistent
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FiG. 6. Predominance of the first harmonic of the membrane potential
response to sinusoidal current. A: Ist period of a response to sinusoidal
current injection at a frequency f = 5 Hz. The baseline intensity was [, =
0 and the amplitude was [, = 0.45 nA. B: decomposition of the response
into first harmonic and residual (actual response minus first harmonic).
Besides the spikes, the residual traces are substantially flat. C: squared
amplitude of the Fourier transform of the response. The first harmonic (f
= 5 Hz) is by far the largest frequency component in the response. Cell
1952, experiment 5.

with this linearity, most of the power of the membrane poten-
tial responses to the broadband stimuli was concentrated at
the eight frequencies that composed the stimuli. The peak
power of the responses at the component frequencies was
between 11 and 426 (mean: 133) times larger than the peak
power of the responses at the sums and differences of the
component frequencies.

To ascertain whether the equivalence of the membrane
potential responses to sinusoids and to broadband noise was
shared by all our cells, we fit the first-harmonic responses
to broadband noise and sinusoids independently with the use
of Eq. 1 and compared the parameters obtained in the two
conditions. The result is illustrated in Fig. 9: neither the
resistance nor the time constant changed substantially be-
tween the two stimulus conditions. In some cells, however,
the sinusoid measurements appeared more erratic, and the
quality of the fits achieved by Eg. ! was lower than that of
the fits to the broadband noise measurements. On average,
the root-mean-square error in the fits to the broadband noise
measurements was 72% of the root-mean-square error in the
fits to the sinusoid measurements. This occasional discrep-
ancy may be due to the higher intensities used in the sinusoid
stimuli, which may have activated strong active conduc-
tances.

M. CARANDINI, F. MECHLER, C. S. LEONARD, AND J. A, MOVSHON

Sandwich model

To account for the transformation of injected currents into
firing rates, we have used a simple ‘‘sandwich’ model.
Sandwich models are composed of a static nonlinearity sand-
wiched between two linear filters, and have been used to
model a variety of neural systems (French and Korenberg
1989; Korenberg et al. 1989; Victor 1988; Victor et al.
1977). Figure 10A illustrates the structure of the model.

The first stage of the model is a low-pass linear filter,
the single-compartment passive model of the membrane. Its
input is the injected current /(f) and its output is a linear
prediction of the membrane potential V (t). This stage is
described (in the frequency domain) by Eg. I, which is fully
determined by two parameters: the membrane resistance R
and the time constant 7.

The second stage is a static nonlinearity: a rectifier with

threshold V. Its output m is given by
m(t) = G max [0, V(r) — Vq] (2)

This stage has two free parameters: the threshold Vi (in
mV), and the gain G (in spikes*s ™ '*mV '),
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FIG. 7. Frequency tuning of the membrane potential responses to sinu-

soidal currents for different stimulus amplitudes (A ) and baseline intensities
(B). Top: amplitudes of the responses. Botrom: phases. Responses were
measured by computing the first harmonic components of the membrane
potential traces. The cell acted as a low-pass filter. By contrast, the firing
rate responses of the same cell to the same stimuli were more band pass
(Fig. 2). Dashed curves: predictions of a single-compartment passive model
of the membrane, composed of a resistor and a capacitor in parallel RC
circuit (Eq. 1). Cell 1952, experiment 5.
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TABLE 1. General properties of cells in our sample

Cell Layer Vst MV R, MQ T, ms
0252 ? —56.6 28.1 85
0253 ? -530=x16 484 = 7.8 6.7 = 1.3
0551 i -77.0 = 14 345+ 24 8.0 %13
1551 II/1T —95.8 = 38 109 = 14 56 £ 0.6
1651 ViV =709 = 1.4 71.3 £ 16 17.6 = 3.1
18s1 /111 -76.0 = 1.3 409 = 7.9 7.1+ 14
1951 HINAY —78.6 = 0.1 523 = 12 9.5+ 24
1952 VIV =707 14 583 = 35 9305
20s1 vV —536 £ 05 734 £ 9.0 89 £ 1.6

Values with = are means * SD. V., resting potential of the cells. Input
resistance (R) and time constant (7) were measured by fitting the frequency
tuning of a single-compartment passive model of the cell membrane (Eg.
1) to the first harmonic of the membrane potentials obtained with sinusoidal
stimulation. Large SD values indicate that the parameters varied substan-
tially during a recording session, presumably an effect of the decaying
quality of the impalements.

The third stage is a high-pass linear filter. Its output F is
described in the Fourier domain by

F(f) = m(f)I1 — gul(1 + 27ifry)] (3)

where m is the output of the rectification stage, and gy; and 7
are free parameters that determine the shape of the transfer
function.

The model also includes a fourth stage, a half-rectifier
that ensures that the predicted firing rates are positive. This
stage requires no parameters. Its output is the firing rate R(r)
predicted by the model

R(t) = max [0, F(1)]. (4)

Figure 10, B—E, illustrates the output of the different
stages for four different input currents. The current in B is
a low-frequency sinusoid. The membrane potential response
(V) predicted by the RC model of the membrane is quite
large, and a substantial portion of it (m) is above threshold
and is input to the high-pass filter. The filter enhances the
portions of its input that vary rapidly in time and suppresses
the portions that are roughly constant. Its rectified output
(R) is thus concentrated in the upward-going portion of the
sinusoidal input. The input current in Fig. 10C is a high-
frequency sinusoid. It is substantially attenuated by the first
low-pass filter, so no portion of it reaches threshold. As a
consequence, the output of the model is zero. The input
current in Fig. 10D is the sum of the ones in B and C. The
output V of the first linear filter is thus the sum of its outputs
in B and C. The two sinusoids help each other get across
the threshold, and the output m of the rectification stage
contains both the low and the high frequency. The high-pass
filter enhances the high-frequency components of the input
current, so the firing rate R has strong high-frequency com-
ponents. The current in Fig. 10E is a square wave. The
output V of the first linear filter is a smoothed version of
the current. A substantial portion of it is above threshold,
so it appears in the output m of the rectification stage. The
high-pass filter enhances the initial transient and suppresses
the subsequent constant portion, yielding a rapidly adapting
firing rate R.

The model provided good fits to our data. For broadband
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noise experiments (which included eight sinusoid stimuli
and eight broadband stimuli ) it accounted for 78-95% of the
variance of the responses (median: 89% ). The percentage of
the variance was measured as the variance of the difference
between predicted and actual responses, divided by the vari-
ance of the actual responses. Before this measurement both
responses were smoothed with a cutoff of 150 Hz. The values
of the parameters obtained for each cell are listed in Table
2; the median values of the parameters were used to draw
Fig. 10A. Figures 11-13 illustrate the fits to the data set
that we have previously used when comparing the responses
to broadband noise with those to single sinusoids. Because
the model accounted for 86% of the variance of the responses
in this data set, these figures give a conservative example
of the quality of the fits.

Figure 11, bottom, illustrates how the sandwich model
captures general features of the responses, such as the fact
that the spikes are preferentially located on the rising phase
of the sinusoidal currents. The thick curves are the actual
firing rates of the cell, obtained by smoothing the spike
trains, and the thin curves are the predictions of the model.
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FiG. 8. Comparison of the frequency tuning of the membrane potential
responses to sinusoids and to broadband noise, Top: gain of the responses
(the membrane impedance ). Bottom: phase. Gain was measured by comput-
ing the first harmonic of the membrane potential responses at a given
component frequency and dividing the result by the intensity of that compo-
nent in the stimulus. The similarity of the tuning to sinusoids and broadband
noise is consistent with the cell operating as a linear system. By contrast, the
firing rate responses of the same cell to the same stimuli show a substantial
difference between the sinusoid and broadband noise conditions (Fig. 3).
Dashed curves: fit of the single-compartment passive model of the mem-
brane (RC circuit) to the sinusoid data. Cell 1952, experiment 4.
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The model predicts the locations of the clusters of spikes in
response to the broadband stimuli, although it does not al-
ways predict the right number of spikes in the clusters. An-
other aspect of the responses that is captured by the model
is the phenomenon of linearization by noise. We observed
this by averaging the predicted firing rate responses over
one period of a sinusoid composing the stimulus, as was
done for the actual firing rate in Fig. 5. The result was much
more sinusoidal when the stimulus was broadband noise than
when it was a sinusoid. As pointed out by Spekreijse and
Oosting (1970), linearization by noise is a general property
of models that include a static nonlinearity such as the recti-
fication stage.

To better compare the predictions of the model with the
data, we performed on the simulated responses the same
analysis that we had performed on the actual responses of
the cells. An example of the results is shown in Fig. 12. The
figure shows a comparison of the linear responses of the cell
and of the model to sinusoid and broadband noise stimuli.
The model correctly predicts the band-pass tuning of the
responses to sinusoids, and the broadening of the tuning
caused by stimulation with broadband noise. In addition, the
model captures the different response phases obtained with
the two kinds of stimuli, correctly predicting the lower inte-
gration time and phase lead that are obtained with the broad-
band stimulus.

We further evaluated the quality of the fits by analyzing
the second-order kernels of the broadband noise responses,
which measure the frequency component of a response at
the sums and differences of frequencies present in the input
(Victor and Shapley 1980; Victor et al. 1977). The second-
order kernel of a response R is defined as K>(f,, = f) =
R(f, * f,), where f, and f, are frequencies present in the
input, and R( f) is the Fourier transform of the response R
at the frequency f. Because our broadband stimuli contain
eight different frequencies, K, assumes 2 X 8 X 8 values,
except that it is undefined in the eight cases in which
fi= —h.

Figure 13A shows the second-order kernel of the broad-
band noise responses of a cell. It is about half the size of
the first-order kernel for the same experiment, which we
illustrated in Fig. 12 (gray O). For a linear system the
second-order kernel is zero because all the power is concen-
trated at the input frequencies. In very nonlinear systems
such as Y ganglion cells in the cat retina, the second-order
kernels can be much larger than the first-order kernels (Vic-
tor et al. 1977).

The second-order kernel of the responses predicted by the
sandwich model is shown in Fig. 13 B. The model replicates
the size, the phase, and the general shape of the second-
order kernel of the actual responses. It however consistently
underestimates the highest frequency components, which are
shown in the far edges of the surface plots. This underestima-
tion was present in most fits, and was in some cases evident
already in the first-order kernel. Indeed, in Fig. 12 the 33-
Hz component of the broadband noise response (rightmost
gray data point) is underestimated by the model. For fre-
quencies below ~30 Hz, the model provided good fits to
the second-order kernels of all our cells.

Figure 14 compares the model predictions with the re-
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FIG. 9. Summary of the passive properties of the membrane, as mea-
sured with sinusoids (abscissae) and with broadband noise (ordinates). A:
membrane resistance. B: membrane time constant. The values were obtained
by fitting the broadband noise responses and the sinusoid responses with
the predictions of a single-compartment passive model of the membrane.
Each data point corresponds to an experiment in which sinusoid and broad-
band stimuli were randomly interleaved. Of the 9 cells in our sample, 4
were tested with 2 different sets of frequencies, yvielding a total of 13 data
points. The substantial identity of the fitted values suggests that the cells
encode the input currents into membrane potentials in a linear fashion.

sponses of two cells to sinusoidal currents of different ampli-
tudes and baselines. The model captures the general behavior
of the data: it predicts the dependence of the frequency tun-
ing on the stimulus amplitude and baseline intensity. The
quality of some of the fits to the sinusoid data, however, is
not entirely satisfactory. An analysis of these errors shows
that the model inherits the shortcomings of its first stage,
the RC model of the cell’s membrane. For example, the
sandwich model underestimated the responses to the low-
amplitude stimuli (dark symbols) in C. This underestimation
can be traced back to the RC model underestimating the
membrane potential responses to those stimuli (Fig. 7A).
When the RC model provided good fits to the membrane
potential data, as in Fig. 8, the sandwich model provided
good fits to the firing rate data (Fig. 12).

To measure the degree to which the RC model of the
membrane contributed to the total error in the fits, we ex-
plored the effects of bypassing it and feeding the rest of the
model directly with the linear membrane potential responses
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Its output is the amount of activation of the cell. The 3rd stage is a high-pass

linear filter. Its output is fed to a (parameter-

free) rectification stage, which ensures that the predicted firing rates are positive. B—E: output of the different stages

for different input currents: a low-frequency sinusoid (B), a high-frequency

sinusoid (C), the sum of the two (D), and a

step (E). The model parameters used in this figure are the median values of the parameters estimated for our population

(Table 2).

of the cell such as that depicted in Fig. 6 B. Without its first
stage the sandwich model becomes a model of the transfor-
mation of the “‘slow’ membrane potential responses into
firing rates similar to that proposed by Korenberg et al.
(1989) for the catfish retina. The reduced model provided
better fits to the spike data than the full sandwich model:
whereas the fit of the full model shown in Fig. 14, C and
D, accounted for 69% of the variance of the spike data, the
reduced model (not shown in the figure ) accounted for 84%
of the variance. As a model of the transformation of the
injected currents into spike trains, however, the reduced
model does not constitute a good alternative to the sandwich

model, because it requires knowledge of the first harmonic
of the membrane potential responses to all the frequencies
present in the stimulus.

A final example of the performance of the sandwich model
is illustrated in Fig. 15. Figure 15, bottom, shows the re-
sponses of a cell to two current steps of different intensity.
The thick traces show the smoothed spike trains, and the
thin traces show the predictions of the sandwich model. The
model exhibits spike rate adaptation because the step onset
has strong high-frequency components, which are amplified
by the high-pass filter much more than the subsequent con-
stant current injection.
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TABLE 2. Parameters of sandwich model for our sample

Cell Vi, mV G, spikes-s '-mV "' gu, % TH, ms
0252 —49.5 107.01 98 32
0253 —48.7 + 0.0 190+ 99 97 + 2 57.8 = 60
05s1 -60.0 = 3.0 214 £ 193 88 + 5 17.1 = 7.7
1551 —792 + 44 30+ 1.2 85 +12 439+ 93
16s1 -619 + 26 7.7+ 30 94 + 3 146 + 7.8
1851 -523 + 48 T §3 88 = 14 483 + 46
1951 —56.3 = 49 57+ 18 96 = 5 32.1 + 84
1952 —60.1 = 1.6 13 0.7 94 + 4 153 24
20s1 —438 + 24 B2+ 24 84 = 4 16.3 + 89

Values with = are means + SD. The model was fit independently to
each experiment. The first 2 parameters determine the rectification stage
(Eq. 2): Vy, is the threshold; G, gain. The last 2 parameters determine the
high-pass filter (Eq. 3): gy. 0-frequency attenuation; 7y, low-cut frequency.

DISCUSSION

The goal of this study was to gain insight into the spike-
encoding properties of regular-spiking cells. To this end, we
measured the spike responses of the cells to injected currents
with different waveforms. We found that the spike encoder
had markedly band pass properties when measured with si-
nusoids, and was instead not selective for stimulus frequency
when measured with broadband noise, which enhanced its
responsivity both to the low and to the high frequencies. In
addition to enhancing the cells’ responsivity, broadband
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noise also linearized their averaged spike responses, which
were otherwise quite nonlinear.

Nonlinearities in the spike train responses

The most evident type of nonlinearity that we encountered
in the spike train responses was rectification. Rectification
is to be expected in cortical cells because their low resting
firing rate does not allow them to encode negative currents.
By contrast, some noncortical neurons that have high resting
firing rates can act as linear encoders (du Lac and Lisberger
1995).

The other type of nonlinearity that we observed is spike
synchronization. This nonlinearity has been observed in a
variety of neural systems. These include cockroach mecha-
noreceptors (French et al. 1972), and eccentric cells of the
Limulus eye (Ascoli et al. 1974). Knight (1972) observed
that spike synchronization seriously limits the amount of
information that a spike train can carry and showed that
spike synchronization is predicted by a model of spike train
generation as simple as the leaky integrate-and-fire model.
On the basis of this model, Knight concluded that even very
low amounts of noise should be sufficient to get rid of spike
synchronization in the averaged spike train responses. This
prediction was confirmed experimentally by French et al.
(1972) in studies of the spike-encoding properties of a cock-
roach mechanoreceptor, and we have seen that it is also
correct for regular-spiking cells in the visual cortex. Many
other results of the present study can be likened to results
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Responses to a low-frequency sinusoid, to a high-frequency sinusoid, and to a broadband noise stimulus. Top:

injected currents. Middle: membrane potential responses. Bottom: spike train responses (thick gray curves) and predictions
of the sandwich model (thin black curves), both low passed by convolving with a Gaussian (o = 25 Hz). The parameters
of the sandwich model were obtained by fitting all the responses in the experiment, which consisted of 8 sinusoid stimuli
and 8 broadband stimuli obtained by adding the sinusoids with 8 different sets of relative phases. Cell 1952, experiment 4.
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broadband stimulation. It also predicts the effects of broadband stimulation
on response timing: the shortening of the integration time and of the phase
lead. Data points are the same as in Fig. 3. Some of the raw responses are
shown in Fig. 11. Cell 1952, experiment 4.

obtained in the cockroach mechanoreceptors and Limulus
eccentric cells. For example, the frequency tunings of both
types of cells measured with sinusoidal stimulation were
found to be markedly band pass (French et al. 1972; Knight
et al. 1970).

The sandwich model

To account for the spike responses, we used a sandwich
model consisting of a low-pass linear filter (the RC circuit),
a rectification nonlinearity, and a high-pass linear filter.
Sandwich models have been successfully used for a variety
of neural systems. Spekreijse (1969 ) used a sandwich model
to predict the spike responses of ganglion cells in the goldfish
retina to light stimulation, and Victor and Shapley (Victor
1988; Victor et al. 1977) applied it to Y ganglion cells in
the cat retina. Korenberg et al. (1989) used a sandwich
model to describe the generator potential responses of catfish
retinal ganglion cells to light stimulation. In addition, they
used a static nonlinearity followed by a band-pass linear
filter to describe the transformation of generator potentials
into spike trains. More directly related to this study is the
work of French and Korenberg (1989 ), who used a sandwich
model to describe the transformation of injected currents
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into spike trains by cockroach mechanoreceptors. Our results
confirm the validity of such a model, and extend it to a
different type of neuron.

A major difference between our approach and the afore-
mentioned studies lies in our effort to limit the number of
free parameters to a bare minimum. This was motivated by
our goal of eventually incorporating the sandwich model
into large-scale models of the visual cortex. For this reason
we imposed severe restrictions on the stages of the model.
In particular, we required that the first stage be a single-
compartment passive model of the cell membrane (RC
model). Such a model is defined by two parameters, the gain
and the time constant of the membrane. We also required that
the static nonlinearity be a simple rectifier, which is also
described by two parameters, i.e., the threshold and the gain.
Finally, we required that the second linear filter be high-pass
with a very strict functional form ( Eq. 3), also described by
two parameters.

The first stage of the model—the RC model of the mem-
brane—is the only one we can directly relate to the cell
biophysics. Its parameters are derived from the membrane
potential responses of the cells. By contrast, the rectification
stage has no firm biophysical interpretation. It embodies a
threshold that was in general lower than the voltage threshold
at which spikes were generated. We think of its output as a
measure of sodium channel activation. Finally, the high-pass
filter can be interpreted as a phenomenological description
of the effects on the spike train of sodium inactivation and of
the afterhyperpolarization currents present in cortical cells.

The sandwich model captures most of the essential proper-
ties of the firing rate responses of regular-spiking cells in
the visual cortex to sinusoidal stimuli, broadband noise, and
step currents. In particular, the model predicts the approxi-
mately linear dependence of the firing rate on the injected
current observed by Jagadeesh et al. (1992). If a stimulus
is suprathreshold, increasing its amplitude results in a pro-
portional increase in the predicted firing rate of the cells.
According to the model, the slope of the current-rate line is
a function of the stimulus frequency, the absolute value of
the product of the two filters’ transfer functions. Other prop-
erties of the spike-encoding mechanism that are captured by
the model include spike rate adaptation, band-pass tuning
and rectification in the responses to sinusoids, the general
shape and size of the second order kernels, and the phenome-
non of linearization by noise observed with broadband stimu-
lation.

The model, however, outputs analog firing rate traces, so
it cannot predict spike synchronization and other phenomena
related to the exact timing of the individual spikes. Another
shortcoming of the model is that it relies on a very simplified
model of the membrane potential responses, the RC model,
which tends to be less accurate when the injected currents
have large modulations or baseline intensities. The advan-
tage of the RC model, however, is that it is specified by
only two parameters.

It would be interesting to test the sandwich model on the
data of Stafstrom et al. (1984b), who measured the firing
rate responses of cortical cells to current ramps. In that study,
the authors discuss—and ultimately reject—a model in
which the firing rate R is a weighted sum of the membrane
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potential V and of its derivative dV/dt. Such a model is a
particular type of high-pass filter, so it is possible that the
sandwich model, being more general, would provide better
fits to those data.

Neuronal inputs and outputs

In natural conditions the input to a neuron is constituted by
synaptic conductances. To what degree can somatic current
injection simulate synaptic stimulation? Schwindt and Cal-
vin (1973), and more recently Powers et al. (1992) and
Powers and Binder (1995) showed that somatic injection of
current into motoneurons has the same effect on the spike
trains as synaptic stimulation. The spike train of the cell can
thus be taken to reflect the overall synaptic current that
reaches the site of spike initiation, which is located in the
axon hillock ( Stuart and Sakmann 1994 ). A similar conclu-
sion was drawn by Ahmed et al. (1993), who reported that
the net somatic input current can be estimated from the
spike discharge of a neuron *‘by deconvolving the spike
train response to visual stimuli with a suitably transformed
response to somatic step current’” (R. Douglas, personal
communication). This is akin to considering the firing rate
as the output of a linear filter whose input is the synaptic
current. Above threshold, this model resembles the sandwich
model.

' Phase (deg)
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FiG. 13, Second-order kernels of the responses to
broadband noise stimuli. A: observed. B: predicted by
sandwich model. At each pair of frequencies f.. f, the
2nd-order kernel K,(f,, fi,) is given by the component
of the response at the frequency f, + f,. In the plots,
surface height represents response amplitude, and gray
level represents response phase. The surfaces are not
defined in the diagonal in which f, = — f,. The *‘Fre-
quency b’ axis is the juxtaposition of 2 logarithmic
axes, | for the positive frequencies and | for the nega-
tive frequencies. The observed and predicted |st-order
kernels for this cell are shown in Fig. 12 (gray circles
and line fitting them). Cell 1952, experiment 4.

Frequency a (Hz)

Role in visual responses

The nonlinear nature of firing rate encoding in visual corti-
cal neurons may contribute to the many nonlinearities of
their contrast responses (reviewed in Heeger 1992a.b). The
extent of this contribution can be roughly assessed by equat-
ing our current injection with the synaptic current resulting
from visual contrast stimulation. It is reasonable to assume
that the relation between visual contrast and synaptic current
is monotonic, with higher visual contrasts resulting in larger
modulations in the synaptic currents. For simple cells, in
particular, this assumption has been tested intracellularly,
The membrane potential responses were found to be consis-
tent with a linear dependence of synaptic current on visual
contrast (Jagadeesh et al. 1993),

Remarkably, the period histograms obtained from simple
cells with sinusoidal contrast modulation look much more
sinusoidal than those that we obtained with sinusoidal cur-
rent injection. This must be due to the synaptic and active
currents that result from sinusoidal visual stimulation con-
taining power at many frequencies besides that of the stimu-
lus (Jagadeesh et al. 1993). This ‘‘noise’’ linearizes the
averaged responses, which are therefore more sinusoidal
than they would have been if they had received a perfectly
sinusoidal current as input.

On the basis of our results, we suggest that spike encoding
may contribute to the increase in the temporal resolution of
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FIG. 14.  Comparison of the amplitudes of the first harmonics of the spike responses of 2 cells to sinusoids with the
predictions of the sandwich model. A and B: responses of a cell to sinusoids of different amplitudes and baselines. The
model captures the rightward shift in the tuning curves observed with increasing amplitude or baseline. Cell 0551, experiment
10/6. C and D: same data as in Fig. 2, fitted with the predictions of the sandwich model.

V1 cells observed with increasing visual contrasts (Hawken
et al. 1992; Holub and Morton-Gibson 1981). Indeed, in-
creasing the current amplitude in our sinusoidal current in-
jections had a similar effect on the high-cut temporal fre-
quency (Fig. 2A4).

Spike encoding is also likely to contribute to the differ-
ences in the temporal frequency bandwidth and integration
time observed with broadband noise and sinusoidal contrast
modulations (Reid et al. 1992). The broadband stimuli used
in the present study were constructed in the same way as
those used by Reid et al., i.e., by adding eight different
sinusoids. Similarly to Reid et al., we found that the cells
were more responsive to the low and high frequencies when
they were stimulated with broadband noise than when the
stimuli were sinusoidal. Moreover, we found that the in-
crease in bandwidth was accompanied by a decrease in inte-
gration time of ~10 ms. By comparison, the decrease in
integration time reported by Reid et al. with visual contrast
modulation is 20-30 ms. The difference in bandwidth be-
tween the sinusoid and broadband noise conditions was,
however, most probably larger in our injected currents than
in the synaptic and active currents resulting from visual stim-
ulation. As a consequence, the spike encoding mechanism
likely played a lesser role in the results of Reid et al. than
in our experiments.

Another temporal nonlinearity in which spike encoding

may play a role is the increased transiency of the responses to
contrast steps with respect to the predictions from sinusoidal
contrast modulation (Tolhurst et al. 1980). Indeed, the spike
responses to step currents are more transient than predicted
from the tuning to sinusoids: the frequency tuning deduced
from the step responses showed more low-frequency attenua-
tion than that measured with sinusoids (Carandini et al.
1995).

High frequencies and visual responses
gn jreq

Intracellular in vivo records of visual cortical cells show
that their membrane potential contains substantial power at
frequencies in the 40- to 100-Hz range (Jagadeesh et al.
1992). We have seen that if other frequencies are present
in the stimulus, as is the case for our broadband stimulus,
the cortical cells can encode such high-frequency signals
into their spike trains. Indeed, high-frequency components
have been observed in the spike responses of visual cortical
cells (Gray and Singer 1989), and are considered by some
to carry an important signal (Singer 1991 ). High-frequency
signals may not be sufficiently strong to elicit spikes by
themselves, but could serve to determine the timing of the
spikes when larger, but more slowly varying, signals are
superimposed.

Our results suggest an additional role for these high-fre-
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FIG. 15. Responses to current steps. Top: injected currents. Middle:
membrane potential responses. Botfom: spike train responses (thick gray
curves) and predictions of the sandwich model (thin black curves), both
low passed by convolving with a Gaussian (o = 30 Hz). The model
captures the spike rate adaptation because its last stage is a high-pass filter,
which attenuates the responses to steady inputs. Cell 1952, experiment 3.

quency fluctuations, related to the phenomenon of lineariza-
tion by noise and to the broadening of the range of encoded
frequencies caused by broadband stimulation that we ob-
served in the spike mechanism. By increasing the stimulus
bandwidth, the high-frequency fluctuations can act to effec-
tively amplify and linearize the spike responses to lower-
frequency currents, improving the ability of the cells to pass
information about the visual stimuli.

In conclusion, we have described the basic properties of
spike encoding in a class of cortical cells. We found that
the bandwidth of the signals can profoundly affect the input/
output properties of the neurons. In addition, we have pro-
posed a model that succeeds in describing the spike-encoding
mechanism while using very few parameters. Our hope is
that such a model will help in the interpretation of extracellu-
larly recorded spike trains, and will improve the design of
large-scale models of the cerebral cortex.
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