Visual Neuroscience (1993), 10, 1157-1169. Printed in the USA.

Copyright © 1993 Cambridge University Press 0952-5238/93 $5.00 + .00

Responses of neurons in macaque MT

to stochastic motion signals

KENNETH H. BRITTEN,' MICHAEL N. SHADLEN,'
WILLIAM T. NEWSOME,' anp J. ANTHONY MOVSHON?

! Department of Neurobiology, Stanford University School of Medicine, Stanford
2Howard Hughes Medical Institute, Center for Neural Science, and Department of Psychology,

New York University, New York
(RECEIVED October 26, 1992; AccepTeD May 19, 1993)

Abstract

Dynamic random-dot stimuli have been widely used to explore central mechanisms of motion processing.
We have measured the responses of neurons in area MT of the alert monkey while we varied the strength
and direction of the motion signal in such displays. The strength of motion is controlled by the proportion
of spatiotemporally correlated dots, which we term the correlation of the stimulus. For many MT cells,
responses varied approximately linearly with stimulus correlation. When they occurred, nonlinearities were
equally likely to be either positively or negatively accelerated. We also explored the relationship between
response magnitude and response variance for these cells and found, in general agreement with other
investigators, that this relationship conforms to a power law with an exponent slightly greater than 1. The
variance of the cells’ discharge is little influenced by the trial-to-trial fluctuations inherent in our stochastic
display, and is therefore likely to be of neural origin. Linear responses to these stochastic motion stimuli are
predicted by simple, low-level motion models incorporating sensors having relatively broad spatial and

temporal frequency tuning.
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Introduction

It is now widely recognized that a subset of areas in primate
visual cortex is specialized for the analysis of visual motion. This
“motion pathway” has become a particularly fruitful model sys-
tem for understanding how sensory information is processed
and used at higher levels of the cerebral cortex. The pathway
was first discovered by Zeki and colleagues who showed that
a large majority of neurons in the depths of the superior tem-
poral sulcus are selective for the direction of motion of visual
stimuli (Dubner & Zeki, 1971; Zeki, 1974). More recently, the
various areas that contribute to the motion pathway have been
identified and mapped, and the anatomical connections between
the areas described (e.g. Maunsell & Van Essen, 1983a; Desi-
mone & Ungerleider, 1986). In parallel with these organizational
studies, several physiological analyses addressed the issues of
representation and information processing in the motion path-
way, vielding novel insights into the mechanisms that encode
the motion of complex objects, optic flowfields, and figure-
ground relationships (for reviews, see Nakayama, 1985; Maun-
sell & Newsome, 1987).

Reprint requests to: Kenneth H. Britten, Department of Neurobiol-
ogy, Stanford University School of Medicine, Stanford, CA 94305,
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For several years, our own efforts have been directed towards
establishing an empirical link between neuronal activity in the
motion pathway and the perception of visual motion. Thus far,
we have concentrated on the middle temporal visual area (MT,
or V5) because this is the first area on the pathway in which
a large majority of neurons is directionally selective. Our basic
strategy was to record and manipulate the activity of neurons
in MT while trained rhesus monkeys performed a near-thresh-
old direction discrimination task. These experiments revealed
that MT neurons carry directional signals of sufficient preci-
sion to account for the psychophysical sensitivity of behaving
monkeys (Britten et al., 1992), and that electrical microstimu-
lation of MT can influence choices in the discrimination task
in a directionally specific manner (Salzman et al., 1992). Addi-
tional experiments showed that lesions of MT, at least initially,
impaired performance on the direction discrimination task while
leaving contrast thresholds unchanged (Newsome & Pare, 1988).
Taken together, these findings strongly support the idea that
directional signals in the motion pathway, and specifically in
area MT, contribute directly to the perception of motion.

The visual stimuli employed in these studies were stochastic
random-dot patterns in which the experimenter controlled the
strength of the motion signal by specifying the percentage of
dots undergoing coherent rather than random motion. These
stimuli, which are related to but distinct from previously used



1158

random-dot stimuli (Morgan & Ward, 1980; Williams & Sekuler,
1984), have also proven useful for psychophysical studies of
motion vision in humans (Downing & Movshon, 1989; Hiris &
Blake, 1992) and for clinical analyses of neurologically impaired
patients (Hess et al., 1989; Vaina et al., 1990; Braun et al., 1991).
To understand how these stimuli are represented within the cen-
tral nervous system, we have examined the influence of stochas-
tic random-dot patterns on the activity of visual cortical
neurons. We provided a partial description of these results in
our prior comparison of neuronal and behavioral sensitivity to
the stochastic motion signals (Newsome et al., 1989; Britten
et al., 1992), but we now provide a more thorough analysis by
describing quantitatively the response functions relating neu-
ronal activity to the strength of the motion signal. The analysis
reveals that most MT neurons respond approximately linearly
to changes in the strength of the motion signal and that the vari-
ance of the responses depends approximately linearly on their
magnitude. We also report the results of simulations suggest-
ing that these response properties are to be expected from rela-
tively simple motion filters like those which have been employed
in recent models of early motion processing (e.g. Adelson & Ber-
gen, 1985; Watson & Ahumada, 1985). Thus, the responses of
MT cells to more complex stimuli can be well characterized by
surprisingly simple models.

Methods

The methods used for these experiments have been described
in detail elsewhere (Britten et al., 1992). Three rhesus monkeys
(Macaca mulatta; two male and one female) were implanted
with stainless-steel head holders and scleral search coils for mon-
itoring eye movements (Judge et al., 1980), and then trained for
several months on a two-choice direction-discrimination task.
Immediately prior to recording, a stainless-steel cylinder was
implanted over occipital cortex, allowing a posterior approach
to area MT. All surgical and animal care methods conformed
to NIH guidelines for the care and use of laboratory animals.

Visual stimuli

We employed a stochastic, variable-strength motion display
(Morgan & Ward, 1980; Britten et al., 1992) in which random
dots were continuously plotted at 6.67 kHz on the face of a large
CRT (P4 phosphor), resulting in an average density of 16.7
dots-s~!-deg 2. The dots were approximately 0.1 deg in diam-
eter and were of high contrast, but their low space-time den-
sity produced an average luminance of only 0.2 cd/m?, against
a background luminance of 0.01 cd/m?. A certain proportion
of these dots carried a specified motion signal, because dots were
replotted with a fixed spatial offset after a fixed temporal inter-
val. This proportion, which we express as a percentage and term
the correlation of the stimulus, controls the strength of the
motion signal without affecting the luminance, contrast, or aver-
age spatial and temporal structure of the stimulus. Dots not so
replotted were randomly repositioned, producing dynamic mask-
ing noise. Thus, the correlation determines the signal-to-noise
ratio between the correlated and random components of the
motion in the stimulus. The speed and direction of the corre-
lated motion were controlled by adjusting the magnitude and
direction of the spatial offset of the signal dots; in these exper-
iments, the temporal interval was held fixed at 45 ms, a value
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shown previously to be near optimal for psychophysical per-
formance in the range of eccentricities where these data were
gathered (Newsome & Pare, 1988). We have described these
stimuli in detail in a previous publication (Britten et al., 1992).

Recording

MT was located and mapped using transdural, glass-coated plat-
inum-iridium electrodes. A guide tube support grid with holes
spaced 1 mm apart (Crist et al., 1988) was then secured inside
the recording cylinder, and stainless-steel guide tubes were
inserted to within 5 mm of area MT. We inserted tungsten micro-
electrodes through these guide tubes and recorded the responses
of single neurons using standard extracellular methods. Eye-
movement monitoring, behavioral reinforcement, and unit data
collection were carried out by a PDP 11/73 computer running
software developed at NIH for these purposes (Hays et al.,
1982). A second PDP 11/73, under control of the first, gener-
ated and presented the dynamic random-dot stimuli.

In each daily session, we searched for units while the mon-
key maintained fixation on a spot of light from a laser or pro-
jection LED. We slowly advanced the electrode and isolated
action potentials from single units while activating the local
background activity with effective search stimuli. Once an MT
cell was isolated, its receptive field (RF) was mapped using mov-
ing bars, and a circular aperture was fitted in front of the screen
so that the random-dot stimulus just filled the RF. In cases where
the initial receptive-field map was uncertain because of poor
responses to the moving bar stimuli, we adjusted the size and
location of the aperture to maximize the neuron’s response to
random-dot stimuli. The neuron’s preferred direction and speed
of motion were then determined using random-dot stimuli. If
the neuron was reasonably responsive and directional, the pre-
ferred-null axis was determined by listening to the neuronal dis-
charge over an audiomonitor, but if the neuron was less
responsive or less directional, this assignment was made on the
basis of a computer-controlled direction series (see below). The
neuron’s optimal speed was also estimated “by ear,” and ranged
from 0.4-28 deg/s.

The raw data used in this paper were the same as those
employed for the analysis of neuronal sensitivities in a prior pub-
lication. We recorded from 216 MT neurons that responded to
random-dot patterns in a directionally selective manner (Brit-
ten et al., 1992). The primary data were obtained from runs in
which the stimuli were presented in pseudo-random sequence
at the preferred speed in the preferred and null directions over
a range of correlation levels spanning neuronal and behavioral
threshold (Britten et al., 1992, “combined threshold series”).
Most experiments contained 5-7 different correlation levels, dif-
fering from one another by a factor of 2. In all but a few cases,
0% correlation trials (pure noise) were also interleaved. The
monkey was required to make a direction judgement subsequent
to the stimulus presentation for each trial in a combined thresh-
old series. Repeat blocks of data were collected as long as iso-
lation of the cell could be maintained. Accordingly, the number
of trials per condition ranged from 7-120, with an average of
about 30. For 168 of the 216 cells, we also presented a direc-
tion series while the monkey was fixating to measure quanti-
tatively the direction tuning to random-dot fields of 100%
correlation. For these experiments, we presented stimuli at the
optimal speed in eight directions of motion differing by 45 deg,
once again randomly interleaved.
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Histology

At the time of data collection, MT was identified on the basis
of physiological landmarks; histological confirmation of the
location of recordings was obtained for two of the three mon-
keys following the conclusion of experiments. The third mon-
key is being used in an ongoing study. Two monkeys were killed
with an overdose of barbiturate, and then perfused transcardi-
ally with 0.9% saline followed by 10% buffered formalin. Each
brain was removed and allowed to sink in 30% sucrose, blocked,
and the relevant regions of cortex were cut frozen in the coro-
nal plane at 48-um thickness. Sections were mounted on slides,
dried, and alternate series (each consisting of every tenth sec-
tion) were stained for cell bodies with cresyl violet or for mye-
lin with a reduced silver method (Gallyas, 1979). Although
individual penetrations were impossible to recover, the region
from which we recorded was evident from guide tube scars pos-
terior to the superior temporal sulcus (STS) and from electrode
track damage approaching the posterior bank of the STS. In
both monkeys, the region thus identified corresponded well to
the heavily myelinated region on the posterior bank of the STS,
and therefore we can assert with confidence that the recordings
were made from area MT in both of these animals. This proce-
dure also serves to validate our physiological identification of
area MT, so it is likely that the same will be true for the third
animal as well.

Results

Response as a function of correlation

Fig. 1 illustrates the responses of a typical neuron to the sto-
chastic stimuli employed in this study. The left-hand column
of raster and spike-density plots illustrates responses to increas-
ing stimulus correlation for motion in the neuron’s preferred
direction. The right-hand column shows responses to motion
in the null direction. At 6.4% correlation, the neuron responded
equivalently to the two directions. As stimulus correlation in-
creased, responses to preferred direction motion increased mono-
tonically while responses to null direction motion decreased. At
the highest correlation, therefore, the neuron was strongly direc-
tion selective. Inspection of these data also reveals that the firing
rate of the neuron, following a brief transient burst, remained
approximately constant during the 2-s stimulus presentation
interval. This response pattern was typical of the neurons in our
sample, and few neurons showed any other temporal structure
to their responses. This suggests that the simple spike count pro-
vides a good estimate of the visual signal encoded by these neu-
rons, and we therefore employ integrated spike counts as our
measure of neuronal response.

A more complete description of neuronal responses to our
stimulus set is provided by the “correlation-response functions”
shown in Fig. 2 for six MT neurons. For each neuron, the mean
response to multiple trials is shown as a function of stimulus
strength in the neuron’s preferred (filled symbols) and null (open
symbols) directions. The average maintained activity measured
during the intertrial period is indicated by the horizontal dot-
ted line. The data confirm the observation from Fig. 1 that
responses increased monotonically with stimulus correlation in
the preferred direction, and decreased with increasing corre-
lation in the null direction. The figure shows, however, that
considerable variability exists in the shape of the correlation-
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Fig. 1. Raster diagrams and spike-density profiles for the responses of
a single MT neuron to stimuli presented in the preferred and null direc-
tions at three correlation levels. Each panel represents the responses to
15 presentations (a typical value for a single block of trials), which are
individually plotted on the rasters forming the upper part of each panel.
The spike-density plots result from averaging all of the trials in the cor-
responding raster plots. The vertical calibration bar at stimulus onset
corresponds to 100 spikes/s; and the solid bar beneath each axis, cor-
responding to the entire duration of the visual stimulus, is 2 s in duration.

response functions. In Figs. 2A and 2B, for example, the rela-
tionship between firing rate and correlation is nearly linear,
while the relationship is highly nonlinear in Figs. 2E and 2F.
The correlation-response functions in Figs. 2C and 2D are inter-
mediate, having relatively small nonlinear components.

To assess the linearity of these response functions, we com-
pared maximume-likelihood fits of first- and second-order poly-
nomials for each of the 216 neurons in our sample. The
first-order polynomial fit was the best-fitting straight line; the
second-order fit incorporated a quadratic term. The best-fitting
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Mean response (impulses/sec)

Fig. 2. Response functions indicating mean re-
sponse as a function of correlation for six MT cells.
Solid circles show responses to preferred direction
stimuli; and open circles show responses to null
direction stimuli. Error bars indicate standard
errors of the mean. The curves through each set
of points are the best-fitting linear (dashed) and
quadratic (solid) functions for each. The horizon-
tal dotted line in each panel represents the average
maintained activity during the intertrial interval.
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linear and quadratic functions are illustrated in Fig. 2 as the
dashed and solid lines, respectively. For the linear responses
shown in Figs. 2A and 2B, the two functions are almost exactly
superimposed. Progressively larger second-order contributions
to the fits are observed in Figs. 2C-2F. For the highly nonlin-
ear response functions in Figs. 2E and 2F, the quadratic fits
depart considerably from the linear fits, and provide a much
better account of the data. To compare the contributions of lin-
ear and quadratic terms across the entire set of response func-
tions, we calculated the ratio of the quadratic coefficient to the
linear coefficient for each second-order fit. The absolute value
of this ratio indicates the relative contribution of the quadratic
term, and the sign of the ratio indicates whether the nonlinearity
is positively or negatively accelerating with respect to the lin-
ear component. Thus, for example, the positively accelerating
nonlinearity in the preferred direction response function in
Fig. 2C yields a positive ratio because both the linear and the
quadratic-term coefficients are positive, while the positively
accelerated nonlinearity in the same cell’s null direction response
function yields a negative ratio because the linear-term’s coef-
ficient is negative. The distribution of this ratio for the 216 cells
in our sample is shown in Fig. 3. Separate distributions are
illustrated for preferred direction (Fig. 3A) and null direction
(Fig. 3B) response functions. An intuitive feel for the degree
of nonlinearity represented within these distributions may be
obtained by examining the “g//” ratio values provided next to
each response function in Fig. 2. It is apparent that roughly 2/3
of the neurons in our sample yielded correlation-response func-
tions that were at least as linear as those in the middle row of
Fig. 2. The distributions are roughly symmetrical about a ratio
of zero, indicating that nonlinearities of either sign occurred with

The number next to each response function is the
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Fig. 3. Distributions of the ratio of the magnitudes of the quadratic
term to the linear term for the best-fitting quadratic functions (solid
curves in Fig. 2) for all 216 cells in our sample, separately plotted for
preferred and null direction response functions.
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approximately equal frequency. Negatively accelerating nonlin-
earities (the sign was expressed relative to the sign of the linear
term) were somewhat more common for the null direction re-
sponse functions, probably because of a “floor” effect resulting
from complete inhibition by null direction motion (e.g. Fig. 2D).

Although the nonlinear contributions to MT correlation-
response functions do not appear large on average, we wished
to determine the proportion of neurons for which the quadratic
functions provided a significantly better description of the data
than the corresponding linear functions. To accomplish this, we
conducted a nested hypothesis test (Hoel et al., 1971) of the
improvement in fit resulting from inclusion of the quadratic
term. The quadratic term failed to improve the fit for 76 of the
216 (35%) preferred direction response functions in our data
set; the linear fit generally provided an excellent description of
these data. For an additional 38 neurons (18%), inclusion of
the quadratic term led to a significantly better fit (0.001 < P <
0.05), but the improvement in the fit was very modest. The
median r* value for these fits, which indicates the fraction of
the total variance in neuronal response accounted for, increased
from 0.946-0.972 when the quadratic term was included, an
improvement of only 2.7% (median values were used because
these distributions were highly skewed). For these response func-
tions the quadratic term, while significant, contributed only a
minor modification to a predominantly linear response func-
tion. For the remaining 102 neurons (47%), the contribution
of the quadratic term was highly significant (P < 0.001) and
more substantial in size. The median value of r? for these
response functions increased by 5.8% following inclusion of the
quadratic term. For the null direction response functions, incor-
porating the quadratic term resulted in a highly significant
improvement (P < 0.001) for 93 of the 216 cases (43%). There-
fore, the nonlinear contributions to the MT correlation-response
functions appear substantial for less than half of our data sets.
This conclusion is consistent with the impression gained from
the examples in Fig. 2 and from the distributions of g// ratios
in Fig. 3.

Response variance

The information signaling capacity of a neuron is influenced
not only by the magnitude, but also by the variability of its
responses. The variability of cortical responses is typically re-
lated to the mean response by a function of the form

Variance = k (mean)”

(Dean, 1981; Tolhurst et al., 1983; Vogels et al., 1989; Snow-
den et al., 1992). We used a maximum-likelihood technique that
takes account of the variability of the estimates of both mean
and variance to fit this relationship to our data. The average
value of the exponent b for 190 cells (for 26 cells, the model
I regression routine we employed was unstable) in our sample
was 1.20, a value similar to the reported mean values of 1.16
(Dean, 1981) and 1.11 (Tolhurst et al., 1983; Vogels et al., 1989)
obtained in studies of striate cortical neurons, and also to the
value of 1.10 reported for MT neurons (Snowden et al., 1992).

It was also of interest to determine whether the power law
relating variance to mean discharge would be the same for the
entire sample of cells taken together as it was for the individ-
ual cells. This is not a foregone conclusion, since the range of
response values covered by the population is much greater than
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Fig. 4. Relationship between mean response level and response vari-
ance for each condition presented to all of the 216 cells in our sample.
The dashed line represents the average slope of the relationship esti-
mated using maximum-likelihood fitting to individual cells’ data.

the dynamic range of each cell’s responses. Fig. 4 illustrates this
relationship for the entire pool of observations from our 216
MT cells. Superimposed on this scatterplot is a dashed line illus-
trating the average of the single-cell relationships as previously
described. This line passes directly through the cloud of data,
indicating that the relationship observed for individual neurons
correctly describes the population response as well.

For most experiments in this study, the visual stimuli were
stochastic motion displays in which the exact spatio-temporal
pattern of signal and noise dots was unique on each trial. In
other words, variance was present within the set of visual stim-
uli for a particular test condition (strength and direction of the
motion signal), and it was therefore possible that some portion
of the response variance represented in Fig. 4 originated in the
visual stimulus itself rather than in the central nervous system.
Alternatively, noise sources within the central visual pathway
might be sufficient to obscure any contribution of variance in
the visual stimulus itself. To determine whether stimulus vari-
ance contributed to the response variance of MT neurons, 56
of the 216 experiments were conducted such that the pattern
of random dots was identical on all trials of a given stimulus
condition. The average ratio of response variance to response
mean was calculated for each neuron in both sets of experiments:
those with stimulus variance and those lacking stimulus vari-
ance. The resulting distributions (log-transformed so as to be
approximately normal) are illustrated in Fig. 5. These distribu-
tions are not significantly different (7-test, t = 1.13, P =0.26),
suggesting that the observed response variance of MT neurons
did not result from variance in the visual stimulus. However,
the two distributions are sufficiently broad that differences
between cells might obscure small shifts of the means. We there-
fore made measurements of response variance under both con-
ditions on a group of 31 cells, with the no-stimulus-variance
trials randomly interleaved among ordinary trials. The ratios
of variance to mean were then calculated for each type of trial
and compared, and again there was no difference resulting from
the presence of stimulus variance (paired -test, t = 0.27, P =
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Fig. 5. Distribution of the ratio of response variance to response mean
for all of the cells in our sample. Each cell provides one ratio value,
which is the average of log(variance)/log(mean) across all conditions
presented to the cell. Hatched bars show the values for the 161 cells
in which the individual trials were novel random patterns, and the solid
bars show the values for the 56 cells in which repeated trials of a given
type were identical (no stimulus variance).

0.79). In both of these experiments, variance in eye position or
movement may have contributed to the residual variance as well.
We believe such effects to be minor, however, since the dimen-
sions of the fixation window were small with respect to the
dimensions of MT receptive fields. Unfortunately, the magni-
tude of this contribution is impossible to estimate because ana-
log eye-movement data were not stored in these experiments.
From these control experiments, though, we can conclude that
neuronal response variance observed in our experiments does
not arise from variance in the stochastic visual stimuli them-
selves.
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Fig. 6. Distribution of the 0% correlation responses for the 209 MT
cells which were presented 0% correlation stimuli. Each was corrected
for maintained activity, so that positive values indicate excitation and
negative values indicate inhibition.
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Responses to 0% correlation stimuli

An unexpected feature of our data was a substantial heteroge-
neity in the responses of MT neurons to the 0% correlation stim-
ulus. Across the entire data set, responses to the 0% correlation
condition ranged from zero to 112 impulses/s. For example, the
cells in Figs. 2A and 2B were highly excited by the 0% correla-
tion stimuli, while the cell in Fig. 2C was quite strongly inhib-
ited. In Fig. 6, we show the distribution of these responses for
the entire sample of 207 neurons for which we obtained such
data (a few of the early experiments contained no 0% correla-
tion trials). These responses have been corrected for maintained
activity, so negative values show inhibition and positive values
indicate excitation. Most of the cells were modestly excited by
these stimuli, since responses to 0% stimuli averaged 20% of
the maximum observed.

Since the 0% correlation stimulus contains motion signals
that are randomly distributed in direction and speed, it seemed
likely that responses to this stimulus reflect a combination of
the excitatory and inhibitory inputs arising from the various
motion signals in the 0% stimulus. Inhibition from null direc-
tion stimulation is a widespread feature in MT (Maunsell & Van
Essen, 1983b; Snowden et al., 1992), and about half of the cells
in our experiments (110/216) were significantly inhibited by the
highest correlation null direction stimuli. The only cells which
would be expected not to respond to the 0% stimulus are those
with precisely balanced opponent inputs. To test this idea, we
obtained an independent estimate of the net balance of excita-
tion and inhibition for each neuron by averaging the responses
of the neuron to 100% correlation stimuli moving in eight
equally separated directions (see Methods). Normalized re-
sponses to individual directions were computed relative to the
maintained firing rate; excitation thus yielded positive response
values while inhibition yielded negative values. This average can
be thought of as the predicted response from a linear cell pre-
sented with the superposition of all eight individually presented
directions. Fig. 7 shows that this average response across direc-
tions is positively correlated with the similarly normalized 0%
correlation response (r =0.596, P < 0.0001). Thus, the 0% cor-
relation response is predicted reasonably well by the linear super-
position of responses to various directions of motion presented
individually.

The estimate of net response provided by the average across
directions is imperfect for at least two reasons: (1) inhibition
is poorly measured if the maintained discharge rate of a neu-
ron is low, and (2) the direction tuning curves were measured
at a constant stimulus speed (the preferred speed of the neu-
ron) thus omitting possible contributions from other speeds.
Were we able to surmount these limitations, the relationship
illustrated in Fig. 7 might be more precise. Nevertheless, this
relationship confirms the basic intuition that responses to the
0% correlation stimulus reflect the net balance of excitatory and
inhibitory inputs elicited by the uniformly distributed motion
signals in the stimulus.

Relationship to measures of neuronal threshold

We have previously presented an analysis of these data in which
we calculated thresholds for the discrimination of direction of
motion from the neuronal responses (Britten et al., 1992). We
used methods based on the theory of signal detection to trans-
form neuronal firing rates into discrimination probabilities.
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Fig. 7. The relationship between directionality and the response to 0%
correlation trials. The ¥ axis shows the response to 0% correlation, and
the X axis shows the average of the responses to stimuli presented at
100% correlation in eight directions 45 deg apart. The responses were
normalized to the maximum observed excursion from maintained activ-
ity for each cell, so overall differences in cell responsiveness cannot con-
tribute to the observed correlation. All 163 cells to which we presented
direction series and 0% correlation stimuli are included.

These probabilities defined “neurometric functions™ that relate
the probability of correct discrimination of motion to stimulus
correlation. Examples of such functions for the six neurons
whose data were shown in Fig. 2 are shown in Fig. 8. The
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smooth curves represent fits to standard sigmoid functions
(Quick, 1974) that yield an estimate of neuronal threshold,
defined as the value of the stimulus correlation supporting 82%
correct neuronal performance. Thresholds measured in this way
vary substantially across cells, and it is natural to wonder how
the factors we have described in this paper contribute to these
neuronal thresholds.

For the neurons illustrated in Fig. 2, the preferred and null
direction response functions diverge significantly at varying
points between 0% and 50% correlation. Thus, each neuron can
discriminate the direction of motion of the stimulus over a range
of correlations. These curves can be used to gain a more intu-
itive grasp of the physiological characteristics that distinguished
sensitive from insensitive neurons in the prior study. Three obvi-
ous properties can influence neuronal thresholds for discrimi-
nating direction of motion: the intrinsic variability in neuronal
responsiveness as analyzed above, and the slopes (or gains) of
the preferred and null direction correlation-response functions.
To characterize these slopes quantitatively, we interpolated lin-
early between two points on the best-fitting quadratic correla-
tion-response function: 0% and 20% correlation. We chose these
two points because the thresholds of most neurons fell within
this range and because data were collected up to 20% correla-
tion for all neurons. The distributions of these slopes for the
preferred and null direction response functions are shown in
Figs. 9A and 9B, respectively. The distributions are broad, rang-
ing across two orders of magnitude for the preferred direction
and slightly less for the null direction. On average, the slopes
are almost four times higher for the preferred direction than
for the null direction (means of 39.2 and —11.1, respectively).
The preferred and null direction slopes were inversely correlated;

o —
@ o

@)
[ ]

1.0 B
0.8
0.6
041 wig7
0 25 ”50”'75 I‘IOO 0'1|0'2|0'

Proportion correct
o
(=]

Fig. 8. Neurometric functions relating the discrim-
inative capability of single neurons’ signals to the
strength of the motion stimulus. The height of each
point was derived from the integrated area beneath
the receiver operating characteristic curve (ROC)
for that correlation level [(Green & Swets, 1966),
see (Britten et al., 1992) for details]. Each indicates
how well an ideal observer could discriminate the
direction of motion were she to base her judge-
ments only on the spike counts we recorded from
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the neuron. Each panel (A-F) is from the same
neuron whose correlation-response function is
shown in the corresponding panel of Fig. 2.
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Fig. 9. Distribution of a slope measure of sensitivity for the 216 cells
in our sample. The slope is derived from the best-fit quadratic func-
tion, evaluated at 0% and 20% correlation. A: Slopes of preferred direc-
tion response functions. B: Slopes of null direction response functions.

cells with large, positive slopes in the preferred direction tended
to have large, negative slopes in the null direction (r = —0.409,
P < 0.001).

Since most MT neurons obey a simple rule relating the vari-
ance and the mean of firing rate (Fig. 4 and associated text),
we suspected that the range of response function slopes illus-
trated in Fig. 9 is primarily responsible for the range of neuro-
nal thresholds alluded to above. To confirm this, we conducted
a stepwise multiple-regression analysis which explored the depen-
dence of neuronal threshold on four factors: the slopes of the
preferred and null direction response functions, the average ratio
of variance to mean, and the 0% correlation response. Each
of these factors influenced neuronal threshold significantly
(P < 0.05), but the slope of the preferred direction response
function was by far the most important, capturing approxi-
mately ten times as much of the variance in neuronal threshold
as any of the other three variables. Thus, preferred direction
gain is the primary determinant of the neuronal thresholds
reported in our prior study.

Discussion

We have explored the dependence of MT neurons’ responses
upon the strength of the motion signal contained in a stochas-
tic random-dot display. We found that many MT cells have an
approximately linear dependence of mean firing rate on stimu-
lus correlation, although a substantial minority show strong
nonlinearities. About half of the cells showing nonlinearities had
negatively accelerating “compressive” nonlinearities, similar to
those seen in cortical contrast-response functions (e.g. Albrecht
& Hamilton, 1982; Sclar et al., 1990), but an equally numer-
ous group showed positively accelerating correlation-response
functions. Thus, the modal MT cell provides a rather linear rep-
resentation of the strength of the motion signal in our display.
We were struck by the frequency of linearity, and sought to
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explore what aspects of the stimulus also varied linearly with
stimulus correlation, and thus were likely to be encoded linearly
by MT neurons. By employing Fourier analysis of the stimulus
set (see below), we discovered that the spectral power in the stim-
ulus associated with the specified direction of motion varies lin-
early with the correlation of the stimulus. This property of the
stimulus allows us to relate the neuronal responses observed in
MT to recently formulated computational models of motion
processing.

Spectral analysis of stimuli

The stimuli employed in these experiments consist of randomly
positioned dots which can be either correlated or uncorrelated
in space and time. The proportion of dots which are so corre-
lated is the principal dimension along which we vary the stimu-
lus. What this implies is that any mechanism which is capable
of counting dots, and which responds differentially to corre-
lated and uncorrelated dots, will modulate its output linearly
with correlation. It is unlikely, however, that MT cells can be
described by such a simple mechanism, since they show highly
nonlinear responses to increasing numbers of dots moving in
the preferred direction (Snowden et al., 1992). Alternatively,
a number of recent theoretical treatments of motion signaling
have made clear the utility of frequency-domain approaches to
motion analysis (Fahle & Poggio, 1981; Watson & Ahumada,
1983; Adelson & Bergen, 1985; Watson & Ahumada, 1985;
Emerson et al., 1992; Heeger, 1992). The application of this
approach to our stimuli is illustrated in Fig. 10. For ease of pre-
sentation, we will consider only one spatial dimension of our
display, thus restricting analysis to motion components paral-
lel to the x axis. The left column of panels shows space-time
portrayals of a two-dimensional simulation of our display at
four different correlation levels, 0%, 30%), 60%, and 95%.'
The horizontal position of each dot represents its position along
the axis of correlated motion and the vertical position repre-
sents its time of occurrence. At 0% correlation the distribution
of dots in the space-time portrayals is isotropic, corresponding
to the uniform distribution of velocities in the display. As stim-
ulus correlation increases, the longer dot lifetimes create a pro-
gressively stronger structure whose orientation corresponds to
the velocity of the specified motion signal; as more and more
dots join the oriented elements in the display, proportionally
fewer remain in the isotropic randomly moving cloud of “noise”
dots.

The task of detecting the space-time orientation in this dis-
play can usefully be viewed as that of detecting particular inho-
mogeneities in its spatio-temporal frequency content, because
orientation in space-time produces obliquely distributed power
in the frequency domain as well. The right column of panels
in Fig. 10 shows two-dimensional power spectra of the corre-
sponding space-time stimulus analogues in the left column. The
two-dimensional space-time images in the left column contain
one spatial and one temporal dimension (x and ¢), so the spec-
tra in the right column contain one axis each of spatial frequency
and temporal frequency (w, and w,). The directional content is
captured in these spectra by the relative magnitudes of compo-
nents in different quadrants of the display. Components whose
spatial and temporal frequencies are of the same sign (quad-

'A more complete simulation of our display with two spatial and
one temporal dimensions yielded indistinguishable results.
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Fig. 10. A-D: Schematic represen-
tation of the random-dot stimulus.
Each panel shows a space-time rep-
resentation of a two-dimensional
analog to our stimulus at one of four
different correlation levels. Each row
shows subsequent points in time,
and the orientation seen at higher
correlation levels thus corresponds
to motion to the left over time. This
version differs from our stimulus in
its fine structure; in this simulation
the dots are simultaneously pre-
sented (as in a frame-based display),
while in the actual stimulus dots
were plotted asynchronously. Note
the increasingly visible orientation
with higher correlation, reflecting
the strength of the motion signal.
Note also that the spatial and tem-
poral parameters of the motion (em-
bodied by the slant of the oriented
segments) and the contrast (darkness
of the lines) are invariant with cor-
relation. A complete three-dimen-
sional portrayal of our stimulus
would be very similar, and would fill
a volume defined by two spatial
dimensions and one temporal one.
Orientation with respect to the X
and Y (spatial) dimensions would
correspond to the direction of stim-
ulus motion and orientation with re-
spect to the 7 axis would correspond
to speed. E-H: Two-dimensional
Fourier power spectra of the stimuli
illustrated in A-D. These have one
spatial-frequency dimension (w,)
and one temporal-frequency dimen-
sion (w,). Four correlation levels
are illustrated here, ranging from
0% correlation (spectrally flat, or
“white”) to 95% correlation. Note
the diagonal band corresponding to
the motion energy of the specified
speed. The width of this band de-
creases with increasing correlation,
indicating that spectral power con-
centrates onto a narrower range of
spatial and temporal frequencies.
The integrated power for all corre-
lation levels is the same, something
that is not evident from these nor-
malized images. The DC level (w, =
0, w, = 0) was zeroed for the pur-
poses of illustration. Otherwise, it
would dominate and the distribution
of nonzero power would be con-
cealed, especially at low correlation.
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rants | and I11) move in one direction, while components whose
frequencies are of opposite sign (quadrants II and IV) move in
the opposite direction. Thus, all components off the cardinal
axes in the right column of panels in Fig. 10 correspond to
motion in the stimulus. The spectral power of each component
(the square of its amplitude) is represented by the darkness of
each point, with darker values representing higher power (note
that the grey scale used is not absolute, but is normalized for
each spectrum). For low stimulus correlations, the power in the
spectrum is roughly uniformly distributed in all quadrants. As
stimulus correlation is increased, power concentrates in quad-
rants I and III (corresponding here to “forward” motion, which
is the specified direction of the correlated signal dots), and is
withdrawn from quadrants II and IV (“backward” motion). Of
course, because these are spectra of two-dimensional slices
through the full three-dimensional stimulus, only these two
directions of motion are represented. In spectra such as those
in Fig. 10, motion of a spatially broadband stimulus at a single
speed appears as a line, on which spatial and temporal frequency
are proportional. Thus, the coherent motion of the high-corre-
lation stimulus seen in the lower left panel produces a diagonal
line of elevated power in the corresponding lower right panel.
Coherent motions at different speeds would form lines of dif-
ferent orientation. Were we able to portray the corresponding
spectra for a three-dimensional case, the locus of points con-
taining the elevated power would form a plane rather than a line.

We can now ask how the distribution of spectral power in
the stimulus changes as a function of stimulus correlation. We
integrated the total power in a quadrant (octant in the three-
dimensional cases) corresponding to the specified direction (one
of the ones containing the diagonal band of elevated power in
the right column of Fig. 10) and also in the adjacent quadrant
(opposite direction) at a number of correlation levels; the results
are plotted in Fig. 11. The relationship between integrated spec-
tral power and stimulus correlation is quite linear. Power accu-
mulates in the quadrant corresponding to the specified direction
and is removed from the adjacent quadrant, while the total
power remains constant (as it must, since the total number of
dots is not changing). Therefore, if a direction-selective cell
responded to the pooled spectral power in its “preferred” quad-

o—e specified direction quadrant
o—o opposite direction quadrant

2000
1500
1000

500

0+ T T T T 9
0 20 40 60 80 100
Stimulus correlation (%)

Integrated spectral power (AU)

Fig. 11. The total spectral power (Fourier series amplitudes were
squared, then integrated) within each of two quadrants of spatio-tem-
poral frequency space for our stimuli as a function of correlation level.
Note the approximately linear change in total power with increasing
correlation for both quadrants.
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rant, we would expect its output also to rise linearly as a func-
tion of correlation.

This linear relationship is observed if we integrate across
entire quadrants, but we know that MT cells do not respond
to an entire quadrant of frequency space. Like most cells in
visual cortex, their spatio-temporal frequency tuning is typically
bandpass (Newsome et al., 1983; Movshon et al., 1988, and
unpublished observations). We have explored the consequences
of this bandpass filtering by creating Gaussian filters whose
spatial and temporal bandwidths approximate those of MT neu-
rons (Movshon, unpublished observations). These Gaussian fil-
ters, which are in fact frequency-domain implementations of
“motion energy” sensors (Adelson & Bergen, 1985), limit the
integration of spectral power to a restricted region of spatio-
temporal frequency space. We measured the output of these fil-
ters as a function of stimulus correlation. Only the filters with
the narrowest frequency bandwidths (standard deviations of
0.2 cycle/deg spatially and 1 Hz temporally) showed strikingly
nonlinear, positively accelerated responses. Most were quite lin-
ear, as were the responses of typical MT cells in our sample.
Therefore, the observed linearity of correlation-response func-
tions may simply be a consequence of the breadth of the fre-
quency tuning of MT cells, combined with a linear encoding
of the spectral power within their receptive fields. Thus, a rela-
tively simple model based on spectral power distributions can
account for the main features of MT cell responses, and indeed
might explain some of the nonlinearities as well. For example,
we would expect that MT cells with narrow passbands would
be the ones to show the most positively accelerated nonlinear
correlation-response functions. This prediction remains to be
tested.

We may draw two related conclusions from this analysis: (1)
spectral power in our random-dot stimuli changes linearly as
a function of correlation when one considers any reasonably
broad region of frequency space; and (2) motion filtering mod-
els which detect spectral power will also respond linearly as a
function of increasing correlation, provided that the spectral
bandwidths of the filters are sufficiently broad. The first con-
clusion makes no assumption about mechanism; it merely draws
attention to a relationship between dot correlation in our dis-
play and a quantity of more general interest. The second is of
more biological relevance, and makes predictions about neu-
ronal responses to other classes of stimuli.

Comparison with contrast-response functions

The analysis that we have just described explores the conse-
quences of increasing the amount of motion energy within the
RF of a spatially and temporally tuned neuron. In some ways,
this is analogous to increasing the contrast of a grating within
the cell’s RF, and we reasoned that there might be a relation-
ship between correlation-response functions and contrast-
response functions. The contrast-response functions of MT
neurons are typically nonlinear, positively accelerating at low
contrast and saturating at medium or high contrast (Sclar et al.,
1990). How can we reconcile the predominantly linear nature
of our correlation-response functions with the profoundly non-
linear contrast-response functions of MT neurons? First, it is
important to remember that the contrast of our random-dot dis-
plays is constant across correlation levels. Thus, it is perfectly
reasonable for single neurons to yield both a linear correlation-
response curve and a nonlinear contrast-response curve. More
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generally, linear correlation-response functions at the level of
MT can arise from the pooled outputs of lower level neurons
whose transducer (i.e. contrast-response) functions are nonlin-
ear provided that the pooling operation itself is linear. Nonlin-
earities in the pooling process would generate corresponding
nonlinearities in the correlation-response functions of MT neu-
rons irrespective of the shape of the transducer functions of the
individual inputs. This analysis is, of course, consistent with the
simulations presented in the preceding section which yielded con-
sistently linear correlation-response functions despite the inclu-
sion of an explicitly nonlinear contrast-response relationship
(spectral power is the square of the contrast). Thus, our data
are consistent with the nonlinear contrast-response functions
of MT and V1 neurons as long as the pooling that forms the
RF of an MT cell is approximately linear.

This reasoning might account for the lack of a positively
accelerating nonlinearity at low correlations, but does not ex-
plain the lack of a saturating nonlinearity at high correlations.
Saturating nonlinearities are nearly universal in MT contrast-
response functions, but in our data are no more frequently seen
than accelerating nonlinearities. One possible explanation for
this discrepancy is the range of correlation values over which
we recorded —we did not take each cell up to the maximum
achievable correlation of 100% . Two analyses render this expla-
nation unlikely. First, the cells which we did stimulate with a
full range of correlations were no more likely to saturate (i.e.
have negative g// ratios) than those which were stimulated with
only lower values. Second, we divided each response function
into two approximately equal parts; the upper parts showed sat-
uration no more pronounced than the lower parts. Lower g//
ratio values would be expected if the cell were nearing satura-
tion at the high end of the stimulus range. Another possible
explanation for the lack of saturation results from the relatively
low spectral energy density (and thus effective contrast in any
particular frequency band) of our stimuli. Thus, despite the high
local peak-to-peak contrast of our dots, our stimuli might not
invade the saturating portion of the cells’ response functions.

Varying dot correlation in our display differs in one impor-
tant way from varying the contrast of moving gratings or the
number of coherently moving dots: for all but the strongest
motion stimulus (100% correlated dots), our display contains
opposing motion signals due to the presence of uncorrelated ran-
dom dots. These “noise” dots carry a mixed motion signal and
stimulate most MT neurons (Fig. 7). It is reasonable to conclude
that our stimuli effect a mixture of excitation and inhibition to
the MT neuron. We believe that this property may account for
the linear behavior we have observed with our stimuli and the
nonlinear responses to gratings and coherent dot displays (Snow-
den et al., 1992). Berman et al. (1992) have suggested that inhi-
bition may reduce the effective gain of excitatory inputs by the
action of cortical feedback circuits, producing a strongly non-
linear response to dominantly excitatory input and a graded lin-
ear response to more balanced stimuli.

Lastly, differences between correlation-response functions
and contrast-response functions, both of exponent and with
regard to saturation, might be a consequence of the action of
cortical contrast-gain control mechanisms (e.g. Albrecht et al.,
1984; Ohzawa et al., 1985; Bonds, 1991). Since the contrast of
our stimuli is constant at all correlation levels, they would not
modulate the gain-setting activity of these circuits. On the other
hand, responses to stimuli whose contrast varies will be affected
to some degree by changes in cortical gain.
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Relationship to models of motion analysis

It is useful to consider how our data compare with predictions
that arise from computational models of motion analysis (e.g.
Adelson & Bergen, 1985; van Santen & Sperling, 1985; Watson
& Ahumada, 1985; Heeger, 1987). These models, while differ-
ent in important details, all extract local estimates of image
velocity using filters localized in space-time and in frequency
space. We wish to explore how far such simple, low-level mo-
tion detectors can go towards predicting the responses of MT
cells to more complex stimuli, such as those employed in the
present experiments. Broadly, we can say on the basis of the
simulations described above that the principal result of these
experiments —responses approximately linear with stimulus cor-
relation —is consistent with the predictions of a low-level motion
filter model, assuming that the filters are sufficiently broadly
tuned, or that a summation step accomplishes the same result.
The model we employed was, in fact, very similar to the non-
opponent stage of an Adelson-Bergen motion energy model,
although we have explored related models lacking a squaring
nonlinearity which produce very similar results. The similarity
of the predictions of the linear and energy models makes the
point that the present data do not serve well to distinguish
between different specific models. Most local motion filters
would probably be consistent with the present results. The same
is true with regard to motion opponency, another specific point
of divergence between different early motion models. The pre-
dominantly negative slopes of null direction response functions
(Fig. 9) are consistent with either opponent or nonopponent
mechanisms, since increasing motion strength in the null direc-
tion withdraws power from the components of the noise in the
preferred direction quadrant. However, we do have some evi-
dence for opponency in that about half of the cells show overt
inhibition to strong null direction stimuli. Opponency is also
strongly supported by the results of Snowden et al. (1992) show-
ing suppression of preferred direction responses by the addi-
tion of superimposed null direction motion.

Although broadly consistent with the predictions of early
motion models, one aspect of the present results remains un-
explained. A substantial minority of cells showed negatively
accelerating preferred direction response functions, while the
simulations produced only positively accelerating nonlinearities.
Although this might be interpreted legitimately as a fundamen-
tal discrepancy, relatively minor modifications to early motion
models could predict this form of response function as well.

Given that simple motion filters predict fairly well the re-
sponses of MT cells to these stimuli, can we make the general
statement that MT cells are analogous to such filters? To answer
this, we considered other experimental results as well. It is clear
from the relationship between the spatial dimensions and the
spatial tuning of MT cells (Movshon et al., 1988) that the sim-
plest form of local motion operators are inadequate: some spa-
tial pooling is required. In addition, because the spatial- and
temporal-frequency bandwidths of MT cells are larger than
those in V1, there is probably summation in the frequency do-
main as well. Appropriate pooling of local motion filter inputs,
then, might be sufficient to account for known MT response
properties. Linear pooling of local inputs would explain many
of the response functions reported in this paper. The shape of
the local detectors’ transducer functions does not matter; if their
outputs are linearly summed, linear correlation-response func-
tions will result. Linear summation of local inputs is also con-
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sistent with the results of the superposition test illustrated in
Fig. 7. Such pooling across inputs will also predict some MT
cells’ responses to plaid stimuli, since “component” direction
selectivity (Movshon et al., 1985) is direction tuning predicted
by the linear superposition of responses to the individual stim-
ulus components. It is perhaps coincidental but nonetheless
intriguing that in both those experiments and the present ones,
approximately half of the cells sampled showed significant
departures from the simple linear prediction. A natural ques-
tion to ask is whether the same cells showing “pattern” direc-
tion selectivity would show nonlinear responses to the stimuli
employed in the present experiments.

Overall, then, with the addition of a relatively simple sum-
mation step, we can answer the question posed above in the
affirmative: most MT cells can be well described by spatially
summed local motion operators. Where the simple linear sum-
mation model fails, we might glean important clues to biologi-
cally significant nonlinear operations. The broadband stimuli
employed in the present experiments are not ideal for explor-
ing the nature of nonlinearities when these are present, but the
present experiments certainly help to guide future experiments.
Careful investigation of the summation mechanisms that serve
to build the spatially and spectrally broadly tuned MT cell recep-
tive field would be timely and potentially very rewarding.
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