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We compared the ability of psychophysical observers and 
single cortical neurons to discriminate weak motion signals 
in a stochastic visual display. All data were obtained from 
rhesus monkeys trained to perform a direction discrimination 
task near psychophysical threshold. The conditions for such 
a comparison were ideal in that both psychophysical and 
physiological data were obtained in the same animals, on 
the same sets of trials, and using the same visual display. 
In addition, the psychophysical task was tailored in each 
experiment to the physiological properties of the neuron un- 
der study; the visual display was matched to each neuron’s 
preference for size, speed, and direction of motion. Under 
these conditions, the sensitivity of most MT neurons was 
very similar to the psychophysical sensitivity of the animal 
observers. In fact, the responses of single neurons typically 
provided a satisfactory account of both absolute psycho- 
physical threshold and the shape of the psychometric func- 
tion relating performance to the strength of the motion signal. 
Thus, psychophysical decisions in our task are likely to be 
based upon a relatively small number of neural signals. These 
signals could be carried by a small number of neurons if the 
responses of the pooled neurons are statistically indepen- 
dent. Alternatively, the signals may be carried by a much 
larger pool of neurons if their responses are partially inter- 
correlated. 

How is the exquisite psychophysical sensitivity of human and 
animal observers related to the sensitivity of individual cortical 
neurons? While there can be little doubt that such a relationship 
exists, the nature of the transformation between sensory signals 
and perceptual responses remains the uncertain province of the- 
ory rather than experiment. A fundamental problem is to es- 
timate the size and location of the pool of neurons that con- 
tributes to any particular perceptual judgement. The traditional 
trigger feature concept in sensory physiology (Lettvin et al., 
1959; Barlow, 1972) attributes to each neuron a unique role in 

Received Feb. 17, 1992; revised June 23, 1992; accepted June 25, 1992. 

We are grateful to Laurence Maloney, Richard Olshen, Denis Pelli, and Brian 
Wandell for helpful comments and suggestions during the course of this work. 
We also thank Avery Wang for his assistance with some of the analysis, Judy 
Stein for excellent technical assistance, and Daniel Salzman for participating in 
some of the experiments. This work was supported by the National Eye Institute 
(EY-5603 and EY-2017) and by a McKnight Development Award to W.T.N. 
K.H.B. is supported by an NIH training grant to the Stanford University De- 
partment of Neurobiology (NS 07 15% 11). 

Correspondence should be addressed to Dr. William T. Newsome, Department 
of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305. 
Copyright 0 1992 Society for Neuroscience 0270-6474/92/124745-21$05.00/O 

signaling the presence of a particular feature in the visual en- 
vironment. “Fuzzy” versions of the trigger feature hypothesis, 
while less emphatic about the impact of individual neurons, 
continue to focus upon the signaling capacities inherent in the 
activity of a relatively small population of neurons. 

In contrast, more recent psychological approaches have tend- 
ed to emphasize the role of larger neuronal networks and pools 
in solvingeven simple perceptual problems. Unfortunately, cur- 
rent pooling models lead to widely divergent expectations con- 
cerning the relationship between neuronal and psychophysical 
sensitivities to visual stimuli. Consider, for example, an ob- 
server attempting to discriminate a weak signal within a noisy 
visual display. Because of the variety of stimulus selectivities 
evident among neurons, some of the signals available within 
the visual cortex will carry little or no information about the 
particular stimulus being viewed. If the neuronal machinery that 
forms the perceptual judgement is influenced by neurons that 
are insensitive as well as by neurons that are sensitive to the 
signal being discriminated, psychophysical judgements would 
be substantially degraded compared to those based only on the 
activity of the most sensitive neurons (e.g., Pelli, 1985). On the 
other hand, psychophysical judgements could actually be im- 
proved relative to the most sensitive neurons if noise arising 
within the CNS were averaged out by pooling information across 
a selected population of sensitive neurons (e.g., Pirenne, 1943; 
Tolhurst et al., 1983). Empirical evidence concerning the rela- 
tive sensitivities of neurons and psychophysical observers is 
therefore critical to our understanding of the mechanisms by 
which neural activity in the cerebral cortex mediates perceptual 
decisions. 

The idea of relating central neuronal activity to sensory ex- 
perience was first explored in a quantitative fashion by Werner 
and Mountcastle (1963), who enunciated some fundamental 
principles for the analysis of neuronal discharge in a psycho- 
physical context. More recently, the relationship between the 
sensitivity of visual cortical neurons and psychophysical judge- 
ment has been actively investigated by several laboratories. Psy- 
chophysical and neuronal performance has been compared in 
the domains of contrast sensitivity, orientation sensitivity, spa- 
tial frequency sensitivity, position (or phase) sensitivity, and 
acuity (Tolhurst et al., 1983; Parker and Hawken, 1985; Barlow 
et al., 1987; Bradley et al., 1987; Hawken and Parker, 1990; 
Vogels and Orban, 1990; Zohary, 1992). The general finding of 
these studies was that the sensitivities of most cortical neurons 
fell considerably short of psychophysical sensitivity. Typically, 
only the “best” neurons yielded performance that approached 
psychophysical levels. Most of these studies were limited, how- 
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ever, in that the comparison between psychophysical and neural 
performance was based on data obtained at different times, 
under different conditions, and often in different species. 

We have now compared the capacity of single cortical neurons 
for signaling motion direction with the capacity of trained rhesus 
monkeys to discriminate motion direction psychophysically. We 
felt that this comparison would be most incisive if the neuronal 
and psychophysical performance were measured simultaneously 
in the same animal, and in the context of a discrimination task 
well matched to the physiological properties of the neuron being 
studied. We therefore recorded the responses of directionally 
selective neurons while rhesus monkeys discriminated the di- 
rection of near-threshold motion signals in a stochastic visual 
display. For each neuron, the visual discriminanda were ad- 
justed to match the preferences of the neuron under study, so 
that the physiological and psychophysical data sets were ob- 
tained under conditions in which the neuron’s activity was most 
likely to be relevant to the animal’s perceptual decision. The 
physiological recordings were carried out in visual area MT (V5), 
an extrastriate area that contains a preponderance of direction- 
ally selective neurons (Dubner and Zeki, 197 1; Zeki, 1974). We 
have shown previously that neural activity in MT contributes 
importantly to psychophysical performance on our direction 
discrimination task (Newsome and Pare, 1988; Salzman et al., 
1990, 1992). 

In contrast to previous studies, our results reveal that the 
discriminative capacities of most MT neurons are remarkably 
similar to the discriminative capacity of the seeing animal. The 
responses of single neurons can account not only for the absolute 
psychophysical threshold in a motion discrimination task, but 
also for the shape of the psychometric function that relates 
stimulus strength to visual performance. The results suggest that 
perceptual judgements in our psychophysical task are based on 
a relatively small number of independent neural signals present 
in the responses of MT neurons. The size of the neuronal pool 
carrying these signals is likely to depend critically upon the 
degree of intercorrelated firing among the pooled cells. 

We have briefly described some of these results elsewhere 
(Newsome et al., 1989a, 1990). 

Materials and Methods 
Subjects, surgery, and daily routine 
Three adult rhesus macaques (Macaca mulatta, two male and one fe- 
male) were used in this study. Prior to recording, a stainless steel device 
for stabilizing head position was surgically attached to the skull (Evarts, 
1966) and a scleral search coil for measuring eye movements was im- 
planted around one eye (Judge et al., 1980). Following several months 
of training on a direction discrimination task, a stainless steel cylinder 
was surgically implanted over occipital cortex, allowing a posterior elec- 
trode approach for electrophysiological recording in MT. Surgical pro- 
cedures were performed under aseptic conditions using either barbitu- 
rate or halothane anesthesia. Following recovery from surgery, the 
monkeys began daily training or recording sessions that lasted from 2 
to 6 hr. Each animal was comfortably seated in a primate chair with its 
head restrained during recording sessions, and was returned to its home 
cage following the session. The animal’s fluid intake was restricted dur- 
ing recording or training, and behavioral control was achieved using 
operant conditioning techniques, with water or juice as a positive re- 
ward. All procedures conformed to guidelines established by the NIH 
for the care and use of laboratory animals. 

Random dot stimuli 
We used a visual display designed to isolate motion-sensitive mecha- 
nisms by providing a controlled motion signal whose strength did not 
alter the average spatial or temporal structure of the stimulus; this 
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Figure I. A schematic diagram of the stochastic motion stimulus em- 
ployed in this study. Each stimulus was composed of a stream of ran- 
domly positioned dots plotted on a CRT monitor. The strength of the 
motion signal in the display was determined by the amount of “cor- 
relation” introduced as the dots were plotted. The leftpanez, for example, 
illustrates the 0% correlation state in which each dot position was chosen 
completely at random. This stimulus comprised “white noise” in the 
motion domain since all directions and speeds were equally present in 
the display. The center panel depicts the 50% correlation state in which 
half of the dots were positioned randomly (“noise” dots) while the 
remaining half were plotted with a fixed spatial and temporal offset with 
respect to previously plotted dots (“signal” dots). In this version of the 
display, a unidirectional motion signal coexisted with a masking motion 
noise. The right panel shows the 100% correlated state in which each 
dot carried an identical motion signal. This version of the display con- 
tained the strongest motion signal that could be presented with our set 
of stimuli. 

display is similar in concept to one used by Morgan and Ward (1980). 
The display was created on a large-screen CRT monitor (Hewlett-Pack- 
ard 132 1 B or XYtron A2 l-63; P4 phosphor, 0.2 cd/m* mean luminance) 
by a PDPl 1 computer that plotted a rapid sequential stream of bright 
dots, each 0.1” in diameter. In the absence of a coherent motion signal, 
the position ofeach dot was random, and the display appeared to contain 
a fluctuating pattern of spatiotemporal white noise. Because the dots 
were all uncorrelated with one another, the display contained a random 
mixture of directions and speeds in which all spatiotemporal combi- 
nations were equally probable. We imposed a coherent motion signal 
by plotting a specified proportion of the dots with a specific spatiotem- 
poral relation to previously displayed dots. Varying the spatial and 
temporal offset with which these “signal” dots were plotted allowed us 
to control the direction and speed of the coherent signal. When enough 
signal dots were added, the display appeared to contain a global motion 
flow superimposed upon the randomly fluctuating background motion. 
The proportion of signal dots, p, is the independent variable that controls 
the strength of the motion signal; we refer to this value as the correlation. 
The speed of the signal is determined by the ratio of the spatial and 
temporal offsets, Ax/At. In the present experiments, we fixed At at 45 
msec, a near-optimal value for psychophysical performance in monkeys 
and humans (Morgan and Ward, 1980; Newsome and Pare, 1988); the 
magnitude of Ax was varied from neuron to neuron between 0.02” and 
1.3” to provide speeds between 0.4 and 28.4 degrees/set. The density 
of the dots was determined by the rate at which they were plotted and 
the area of the screen. In these experiments the rate was always 6.67 
kHz and the unmasked area was 400 degreeG, resulting in a density of 
16.7 dots/degree*/sec. Psychophysical measurements in humans show 
that motion sensitivity is unaffected by density for a wide range around 
this value (Downing and Movshon, 1989). 

Although each dot was plotted sequentially and was present only for 
the 150 psec persistence of the P4 phosphor, the visual persistence of 
each dot was much longer, perhaps 100 msec, and created the impression 
of a display containing several hundred dots at any moment. 

Under most conditions the direction of motion could not be estab- 
lished by inspecting the path of any particular signal dot. The probability 
that any dot would be renewed as a signal dot is given by the correlation 
p; the “lifetimes” of the dots are geometrically distributed, and the 
probability that a particular dot will “live” through N presentations is 
@+I. Thus, for correlation values less than about 0.5, few dots had a 
lifetime in excess of 150 msec. For values in the typical threshold range 
(below 0. l), the chance of any signal dot surviving more than two lives 
was vanishingly small. Thus, the motion content of the display could 
only be extracted by integrating brief local motion signals over time 
and space (Downing and Movshon, 1989). 

Schematic drawings of this stimulus for various correlation values 
are shown in Figure 1. At 0% correlation, shown in Figure 1 (left), there 
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were no signal dots and the resulting display was pure noise, with equal 
amounts of motion in all directions and over a wide range of speeds. 
At intermediate correlation levels (Fig. 1, center), some dots carried 
signal while others provided noise by virtue of random pairings in space 
and time between noise dots. If  the correlation was increased to 100% 
(Fig. 1, right), every dot was a signal dot, and the display was a rigidly 
translating random dot field with no noise. 

The values used to determine the locations of the dots and to choose 
any particular dot as a signal dot were drawn from a pseudorandom m- 
sequence computed by special hardware using a 3 1 -bit shift register. I f  
the shift register was “seeded” with a particular value, it created the 
same sequence of values and thus the same display for any fixed choice 
of p, Ax, and At. For most experiments (160 of 216 neurons), the shift 
register was seeded with a different value on each trial, and the precise 
pattern of dots in space and time was unique for each repetition. In the 
remaining 56 experiments, however, this within-stimulus variance was 
eliminated by seeding the shift register with the same value on every 
trial. For 31 of these 56 neurons, data were obtained only without 
stimulus variance. For the other 25 neurons, trials containing stimulus 
variance were randomly interleaved with trials containing no stimulus 
variance. We found no effect of stimulus variance on any of the phys- 
iological or psychophysical measurements reported in this article, and 
we therefore treat the 2 16 neurons in our sample as a homogeneous 
group for the purposes of data analysis. 

Electrophysiological recording 

Initial mapping penetrations were made with glass-coated platinum- 
iridium microelectrodes with impedances between 0.5 and 1 .O MO (at 
1 kHz). MT was identified on the basis of its characteristic location 
within the superior temporal sulcus, its preponderance of responsive, 
directionally selective neurons, and its characteristic topography. After 
locating MT, we secured a plastic guide tube support grid inside the 
recordina cvlinder (Crist et al.. 1988). The grid permitted stainless steel 
guide tubes- to be inserted into the cortex at 1 mm intervals across the 
entire recording cylinder, and single guide tubes could be left in place 
between experiments for multiple days of recording. A snugly fitting, 
antibiotic-coated pin was inserted into the guide tube between experi- 
ments to isolate the brain from the environment within the recording 
cylinder. Guide tubes were usually inserted to within 2-5 mm of MT, 
and we recorded through these guide tubes using stainless steel or tung- 
sten microelectrodes (0.5-2 MQ impedance at 1 kHz) insulated with 
varnish or Parylene (Frederick Haer Inc., Micro Probe Inc.). We in- 
creased the randomness of electrode sampling by bending each electrode 
slightly so that its exact path through the cortex after emerging from 
the guide tube varied from day to day. Using this system, we could 
record from single MT neurons for durations up to 3 hr, although 20- 
60 min was much more typical. 

Behavioral control and data acquisition were accomplished using a 
PDPl 1 minicomputer running software for real-time experiments de- 
veloped at the Laboratory for Sensorimotor Research of the National 
Eye Institute (Hays et al., 1982). The signal from the microelectrode 
was amplified and action potentials from single neurons were isolated 
using a time-amplitude window discriminator (Bak Electronics). The 
window discriminator produced TTL pulses corresponding to single 
action potentials whose times of arrival were recorded and stored by the 
computer. Unit activity could be monitored visually by raster displays 
compiled by the computer or by an audio monitor driven by the elec- 
trode signal. Eye movement signals were measured using a scleral search 
coil system (C-N-C Engineering) and were transmitted to the computer 
as x- and y-position voltages. These signals were used to enforce be- 
havioral contingencies (see below) and to present an on-line visual dis- 
play of the monkey’s eye position. A second PDPl 1, under control of 
the first, was used to compute and display the random dot patterns 
described above. 

In each daily session, we searched for single units while the monkey 
fixated a spot of light projected from a laser or LED light source. Typ- 
ically, the search stimulus was a moving bar from a hand-held slit 
retinoscope or a moving random dot pattern centered over the receptive 
field of the multiunit activity. We observed considerable heterogeneity 
in the responses of MT neurons to these search stimuli. Many MT 
neurons responded well to both stimuli, but we frequently encountered 
neurons that responded much better to one than to the other. After 
isolating the signal of a single MT neuron, we mapped its receptive field 
(minimum response field) using a moving bar whenever possible, and 
we then placed over the screen a circular aperture whose size and lo- 

cation matched the receptive field. We attempted to match the size of 
the aperture to the size of the receptive field for two reasons: (1) to 
ensure that the psychophysical observer and the single neuron had equal 
opportunity to integrate motion signals over space, and (2) to ensure 
that stimulus-specific effects from regions remote from the receptive 
field would not affect the single-unit data (Allman et al., 1985a,b). For 
neurons whose receptive field boundaries could not be precisely estab- 
lished with bars, we adjusted the size and/or location of the aperture to 
maximize the neuron’s response to random dot stimuli. We then de- 
termined the neuron’s preferred direction and preferred speed using 
random dot stimuli. I f  the neuron was tightly tuned for direction, the 
preferred-null axis could be reliably identified by qualitative judgements 
of neural responses on an auditory monitor. I f  the neuron was broadly 
tuned or inconsistent in its response, identification of the preferred-null 
axis was made by examining raster displays of neural activity from a 
computer-controlled direction series. Estimates of preferred speed were 
always made by listening to neural activity on the audio monitor. 

Behavioral uaradiams and data collection 

After determining the preferred direction and speed for a neuron, we 
began collection of quantitative data. The data reported in this article 
were obtained in three types of experiments. 

Direction tuning series. The goal of this experiment was to measure 
quantitatively the direction tuning properties ofthe neuron. The monkey 
was rewarded simply for maintaining fixation within an electronically 
defined window around the fixation point. In most experiments, the 
window permitted eye movements up to 1.2” from the fixation point, 
although-mean eye position was much closer to the fixation point for 
the lame maioritv of fixation intervals. While the monkey fixated, 100% 
correlated random dot patterns near the optimal speed were presented 
in eight randomly interleaved directions at intervals of 45”. Between 5 
and 10 repetitions of each stimulus were obtained, depending upon the 
reliability of the neuron’s responses. 

Combined threshold series. This experiment was the primary source 
of data reported in this article; the experimental goal was to measure 
neuronal and psychophysical thresholds for discriminating opposite di- 
rections of motion. Within a single block of trials, motion signals over 
a range of correlations were presented in random order both in the 
neuron’s preferred direction and in the null direction. The speed of the 
motion signal was held constant at the neuron’s preferred speed. The 
range of correlation levels was chosen to span psychophysical threshold 
and typically included 0% correlation (pure noise) as well. In early 
experiments the sampled correlation values differed by a factor of the 
square root of two (1.4 1 ), but we soon realized that this provided need- 
lessly fine resolution of the correlation-response function, and subse- 
quently we used values spaced by factors of 2. A block of trials consisted 
of 15 trials in both the preferred and null directions at each of 6-10 
correlation levels. 

The structure of an individual trial is illustrated in Figure 2. Figure 
2A shows the spatial arrangement of the fixation point, receptive field, 
stimulus aperture, and target LEDs. Figure 2B illustrates the sequence 
of events in time. Each trial began with the onset of a fixation point 
(FP). After the monkey established fixation, a random dot pattern con- 
taining a specified motion signal appeared within the stimulus display 
aperture (Fig. 2B, Stimulus). The monkey viewed the stimulus for 2 
set, during which time it was required to maintain fixation within a 
criterion distance (typically 1.25O) of the fixation point. Thus, the mon- 
key judged the direction of motion by attending to a stimulus located 
within the receptive field of the neuron. At the end of the inspection 
interval, the fixation point and the random dot pattern were extin- 
guished, and two LEDs appeared, corresponding to the two possible 
directions of stimulus motion, preferred and null (Fig. 2A, Pref LED 
and Null LED). The monkey reported the direction of the correlated 
motion signal by making a saccadic eye movement to the corresponding 
LED. In the example of Figure 2A, the monkey indicated the presence 
of upward motion during the viewing interval by making a saccade to 
the “Pref’ LED. Similarly, the monkey indicated the presence of down- 
ward motion by making a saccade to the “Null” LED. The monkey was 
required to indicate its decision within 2.1 set following onset of the 
target LEDs. Correct decisions were rewarded with a drop of water or 
juice; incorrect decisions were punished by a brief time-out interval 
between trials. The monkey was rewarded randomly on half of the trials 
that contained no motion signal (0% correlation). 

Eye movements were measured throughout the experiment using the 
scleral search coil technique. If  the monkey broke fixation at an inap- 
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vote the bulk of experimental time to the combined threshold series. 
In comparing neuronal thresholds measured under these two conditions 
(e.g., Fig. 12), we used only a single block of data from the combined 
threshold series so that the two threshold estimates were based on similar 
amounts of data. To minimize the effects of long-term fluctuations in 
neuronal responsiveness, we used the block of data from the combined 
threshold series that was nearest in time to the block of data obtained 
in the physiological threshold series. All other thresholds reported in 
this article are based on the complete set of data obtained for each 
neuron in the combined threshold series. 

A Pref LED 

a 

FP + Stimulus aperture 

0 

Null LED 

6 

Fixation Point 1 

Stimulus 

Target LEDs 

Eye Position 

Figure 2. A schematic description of the psychophysical paradigm 
employed in this study. A, Spatial layout of the fixation point (FP), 
receptive field (shaded circle), visual display aperture (outside circle), 
and target LEDs (Prefand Null). The spatial arrangement of aperture 
location and preferred-null motion axis was varied across experiments 
to match the receptive field properties of the neuron under study. B, 
Temporal sequence of events during an individual trial. A trial began 
with the appearance of a fixation point. After the monkey achieved 
fixation (Eye position), the visual stimulus appeared within the display 
aperture and remained on for 2 sec. At the end of the display interval, 
the fixation point and visual stimulus were extinguished and the monkey 
indicated its judgement of motion direction by making a saccadic eye 
movement to one of the two target LEDs. 

propriate time, the trial was terminated and the data discarded. Simi- 
larly, the data were discarded if the monkey failed to make a saccade 
to one of the two target LEDs within the specified period of time. Failures 
to make a saccade occurred very rarely since the monkey always had a 
50% chance of obtaining a reward simply by guessing. 

We successfully completed at least half a block of the combined 
threshold series (seven trials per condition) on all 2 16 neurons whose 
results contribute to our analysis; a full block was completed for 198 of 
these neurons. If  time and isolation permitted, we continued to collect 
data for up to six repetitions (90 trials per stimulus) of the threshold 
series. 

Physiological threshold series. The goal of this experiment was to 
determine whether neuronal thresholds were influenced by the monkey’s 
use of the visual stimulus. In this experiment, the monkey was rewarded 
simply for maintaining fixation during the 2 set presentation of the 
visual stimulus; it was not required to make a decision concerning the 
direction of motion in the visual stimulus. The monkey was cued to 
the type of experiment being conducted within a given block by the 
color of the fixation point (yellow for the combined threshold series; 
red for the physiological threshold series) and by the lack of visible 
saccade targets during the physiological threshold series. The monkey 
never made saccades to “expected” target locations in the absence of 
visible targets during the physiological threshold series. Other proce- 
dural aspects of the measurements such as stimulus conditions, ran- 
domization of stimulus order, and so on, were identical for the two 
types of blocks. 

We obtained data in the physiological threshold series from 86 neu- 
rons in two monkeys. For each of the 86 neurons, we gathered only one 
block of trials using the physiological threshold series, choosing to de- 

Animal training 

The animals were trained using operant conditioning techniques with 
water or juice being the reward for desired behavior. Following surgical 
preparation, each animal was trained on a sequence of tasks leading up 
to the two-choice task illustrated in Figure 2. This sequence included 
(1) fixation, (2) fixation followed by a saccade to a single target, (3) 
saccade to a single target in the presence of random dot patterns, and 
(4) choosing between two saccade targets based on the direction of 
motion in the random dot pattern. Two weeks were generally required 
for the animal to learn the two-choice task for a single stimulus config- 
uration; strong motion signals (100% correlation) were employed during 
this initial training period. The monkeys then learned to perform the 
task at psychophysical threshold. Working the animals down to a stable 
threshold was a lengthy process, requiring about 4 weeks. After threshold 
performance was established for the initial set of conditions, the monkey 
was taught to generalize the task over a number of dimensions including 
variations in aperture size, aperture location, dot speed, and axis of 
motion for the direction discrimination. This generalization process was 
even more lengthy, requiring another 3-5 months of training because 
threshold nerformance with one set of conditions did not transfer easily 
to other sets of conditions. Psychophysical thresholds inevitably rose 
when the conditions were changed during training, and it was necessary 
to reestablish asvmntotic threshold nerformance. Condition-specific 
training effects of this nature (including topographic location and di- 
rection of motion) have been reported for human subjects (e.g., Ball 
and Sekuler, 1982, 1987), but were more pronounced in our monkeys. 
At the end of the 4-6 month training period, however, the monkeys 
could generate psychophysical thresholds comparable to human thresh- 
olds under a sufficiently wide range of conditions that it was possible 
to tailor psychophysical discriminanda to the receptive field properties 
of virtually any MT neuron encountered during our electrophysiological 
recordings. 

In the early stages of training on the two-choice task, the monkeys 
frequently developed a spatial position habit, making saccadic eye 
movements predominantly to one of the two saccade targets. To dis- 
courage this strategy, we included “correction trials” in all of our two- 
choice psychophysical paradigms (Mishkin and Weiskrantz, 1958; Cow- 
ey and Weiskrantz, 1968; Merigan, 1980; Newsome and Pare, 1988; 
Pastemak et al., 1989). Correction trials consisted of a series of trials 
in which motion was ‘presented repeatedly in the neglected direction. 
Correction trials began if a monkey made incorrect choices on three 
consecutive nresentations of motion in one direction and continued 
until the monkey chose the neglected direction correctly. Correction 
trials occurred infrequently after the animals were well trained, data 
collected on correction trials was not included in the analyses of psy- 
chophysical or neuronal performance. 

Neuronal data base 

The results presented in this article are based on quantitative data ob- 
tained from 2 16 neurons in three monkeys. The responses of 569 neu- 
rons were screened during these experiments, but the majority of the 
neurons were eliminated from the final data base because isolation was 
not maintained lona enough to characterize neuronal and psychophys- 
ical responses in thecombmed threshold series (see above). A minority 
of the neurons were eliminated, however, because they failed to meet 
one of two additional inclusion criteria: (1) adequate responsiveness to 
random dot stimuli, or (2) direction sele&ity to random dot stimuli. 
In practice these criteria’ were not particularly’stringent. We attempted 
to record from all resnonsive neurons reeardless of the amplitude of the 
response, but for obvious reasons we c&cklv abandoned the occasional 
neuron that was completely unresponsive to random dot stimuli. 

The criterion of direction selectivitv was imnosed because the central 
goal of these experiments was to compare neu;onal and psychophysical 



11 It II 
Directionality index 

Figure 3. The distribution of direction indices for the 216 neurons 
studied during these experiments. We used the conventional direction 
index, 1 - N/P, where N is the response of the neuron to null direction 
motion and P is the response to preferred direction motion. Values of 
the index near zero indicate poor direction selectivity, while values near 
or greater than unity indicate strong direction selectivity. The distri- 
bution is centered about 1 .O, indicating a preponderance of highly di- 
rection selective neurons. 

thresholds for discriminating motion direction. Again, however, this 
criterion was sufficiently inclusive that very few neurons were eliminated 
because of it. In practice, a neuron was considered directional if the 
distribution of response amplitudes evoked by preferred direction mo- 
tion (100% correlated stimuli) did not overlap with the distribution 
evoked by null direction motion. This judgement was generally made 
on line by the experimenter, based either on qualitative evaluation of 
the audio signal or on visual inspection of raster displays. Note that 
many directionally biased neurons were admitted by this criterion: both 
preferred and null direction responses could be excitatory as long as the 
distributions of their magnitudes did not overlap. We computed a con- 
ventional index of directionality for each of the 2 16 neurons in our data 
base. and the distribution of indices is shown in Figure 3. This distri- 
bution strongly resembles those obtained in several-labs from random 
samples of MT neurons (Baker et al., 198 1; Maunsell and Van Essen, 
1983b; Albright, 1984); only a handful of neurons at the extreme non- 
directional end of the distribution were excluded from our sample. 

Table 1 provides a breakdown of the data base on an animal-by- 
animal basis. The combined sample was distributed reasonably evenly 
across the three animals. We attempted to record from a similar range 
of eccentricities in each animal so as to facilitate interanimal compar- 
isons. The geometric mean eccentricity of the receptive field centers was 
10.3” in monkey E (range, Cl-17.1”) 6.8” in monkey J (range, 1.4- 
16.4”), and 7.6” in monkey W (range, 1.3-31.4”). Despite the general 
similarity of these ranges, a one-way ANOVA revealed significant dif- 
ferences in receptive field eccentricity among the three animals (p < 
0.0001). Eccentricities were indistinguishable between monkey J and 
monkey W (test of contrasts, p > 0.05) but were significantly greater 
in monkey E (p < 0.05). 

Since we always tailored the psychophysical discrimination task to 
match the properties of the neuron under study, considerable variability 
occurred from experiment to experiment in the size of the stimulus 
aperture and in the speed of the correlated motion signal. Within the 
sample of 216 neurons, aperture sizes ranged from 2.5” to 20” in di- 
ameter, and preferred speeds ranged from 0.4 degrees/set to 28.4 de- 
grees/sec. Both receptive field size and preferred speed were positively 
correlated with eccentricity. 

Histology 
During recording experiments MT was identified on the basis of reliable 
physiological criteria as described above. One of the three monkeys 
employed in the present study is still alive and being used in related 
experiments, but histological analysis has been performed on the brains 
of the other two animals. The two animals were killed by an overdose 
of barbiturate (sodium pentothol) and perfused transcardially with nor- 
mal saline followed by 10% formalin fixative. The brains were removed, 
blocked, and equilibrated in 30% sucrose. Frozen sections were cut in 
the sag&al plane at 48 pm thickness. Alternate series (at 500 pm in- 
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Table 1. Breakdown of neuronal data base for the experiments 
reported in this article 

Guide Penetra- Cells Cells 
Monkey tubes tions screened included 

E 6 42 94 52 
J 22 142 258 77 
W 20 153 217 87 

tervals) were stained for cell bodies with cresyl violet and for myelinated 
fibers using a modification of the Gallyas (1979) reduced silver method. 
While the tracks of most penetrations made over a period of several 
months were impossible to reconstruct, the region from which we re- 
corded was evident from scars left by the guide tubes and from occa- 
sional electrode tracks observed within the posterior bank of the superior 
temporal sulcus. In both monkeys, the region thus identified corre- 
sponded well to the location of MT as identified in the myelin-stained 
sections (Allman and Kaas, 197 1; Ungerleider and Mishkin, 1979; Van 
Essen et al., 198 1). 

Results 

Analysis of psychophysicar data. Figure 4 illustrates typical psy- 
chophysical data obtained during a combined threshold series. 
The data are displayed as a psychometric function in which the 
proportion of correct decisions is plotted against the correlation 
level of the motion signal. In general, the correlation levels were 
chosen so that the monkey performed perfectly for the strongest 
motion signals but performed at chance (50% correct) for the 
weakest signals. We used a maximum-likelihood method (Wat- 
son, 1979) to fit these data with functions of the form 

p = 1 - 0.5 exp[-(c/a)@], (1) 

where p is the probability of a correct decision, c is the corre- 
lation of the motion signal, 01 is the correlation level supporting 
“threshold” performance (82% correct), and @ is the slope of 
the function. This function is derived from the integral of the 
Weibull distribution, and was first applied to psychophysical 
data in this manner by Quick (1974). Figure 4 illustrates such 
a curve fitted to the psychophysical data obtained in one of our 
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Figure 4. A typical psychometric function obtained during study of a 
single MT neuron. The abscissa shows the strength of the motion signal, 
and the ordinate indicates the monkey’s performance. Each psycho- 
metric function was fit with sigmoidal functions of the form given in 
Equations 1 and 2. For this experiment, psychophysical threshold (a) 
was 6.1% correlation; the unitless slope parameter (/3) for the psycho- 
metric function was 1.17. 
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Figure 5. Analysis of physiological data. A, This three-dimensional plot illustrates frequency histograms of responses obtained from a single MT 
neuron at five different correlation levels. The horizontal axis shows the amplitude of the neuronal response, and the vertical axis indicates the 
number of trials on which a particular response was obtained. The depth axis shows the correlation of motion signal used to elicit the response 
distributions. Open bars depict responses obtained for motion in the neuron’s preferred direction, while solid bars illustrate responses for null 
direction motion. For this neuron, each distribution is based on 60 trials. B, ROCs for the five pairs of preferred-null response distributions 
illustrated in A. Each point on an ROC depicts the proportion of trials on which the preferred direction response exceeded a criterion level plotted 
against the proportion of trials on which the null direction response exceeded criterion. Each ROC was generated by increasing the criterion level 
from 0 to 120 spikes in one-spike increments. Increased separation of the preferred and null response distributions in A leads to an increased 
deflection of the ROC away from the diagonal. C, A neurometric function that describes the sensitivity of an MT neuron to motion signals of 
increasing strength. The curve shows the performance of a simple decision model that bases judgements of motion direction on responses like those 
illustrated in A. The proportion of correct choices made by the model is plotted against the strength of the motion signal. The proportion of correct 
choices at a particular correlation level is simply the normalized area under the corresponding ROC curve in B. For this neuron, data were obtained 
at seven correlation levels; response distributions and ROC curves are illustrated for five of these levels in A and B. The neurometric function was 
fitted with sigmoidal curves of the form given in Equation 1. In this experiment, neuronal threshold (a) was 4.41 correlation and the unitless siope 
parameter for the neurometric function (p) was 1.30. 
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at roughly equal rates as the criterion response increased from 
1 to 100 impulses/trial. In general, the curvature of the ROC 
away from the diagonal indicates the separation of the preferred 
and null response distributions (Bamber, 1975). 

Green and Swets (1966) showed formally that the normalized 
area under the ROC corresponds to the performance expected 
of an ideal observer in a two-alternative, forced-choice psycho- 
physical paradigm like the one employed in the present study. 
Again, one can intuit that this is reasonable. At 12.8% corre- 
lation, 99% of the area of the unit square in Figure 5B falls 
beneath the ROC, corresponding to the near-perfect perfor- 
mance we would expect based on the response distributions for 
12.8% correlation in Figure 5.4. In contrast, only 51% of the 
unit square falls beneath the ROC for 0.8% correlation, corre- 
sponding as expected to random performance. 

For each correlation level tested, we used this method to 
compute the probability that the decision rule would yield a 
correct response, and the results are shown in Figure 5C. These 
data capture the sensitivity of the neuron to directional signals 
in the same manner that the psychometric function captures 
perceptual sensitivity to directional signals. As for the psycho- 
metric data, we fitted the neurometric data with smooth curves 
of the form given by Equation 1. This function provided an 
excellent description of the neurometric data; the fit could be 
rejected for only 2 of the 2 16 neurometric functions in our data 
set (x2 test, p < 0.05). Application of Equation 2 resulted in a 
significantly improved fit for only one neuron. For the example 
in Figure 5C, the threshold parameter, (Y, was 4.4% correlation, 
and the slope parameter, & was 1.30. For each neurometric 
function, these parameters can be compared to the equivalent 
parameters obtained from the corresponding psychometric 
function. 

1 10 100 1 10 100 

Correlation (%) 

Figure 6. Psychometric and neurometric functions obtained in six 
experiments. The open symbols and broken lines depict psychometric 
data, while the solid symbols and solid lines represent neurometric data. 
The six examples illustrate the range of relationships present in our data. 
A, Results of the experiment illustrated in Figures 4 and 5. Psycho- 
physical and neuronal data were statistically indistinguishable in this 
experiment. Thresholds and slope parameters are given in the captions 
for Figures 4 and 5. B, A second experiment in which psychometric and 
neurometric data were statistically indistinguishable. Psychometric 01 = 
17.8% correlation, p = 1.20; neurometric o( = 23.0% correlation, (3 = 
1.31. C, An experiment in which psychophysical threshold was sub- 
stantially lower than neuronal threshold. Psychometric 01 = 3.7% cor- 
relation, p = 1.68; neurometric (Y = 14.8% correlation, @ = 1.49. D, An 
experiment in which neuronal threshold was substantially lower than 
psychophysical threshold. Psychometric (Y = 13.0% correlation, (3 = 
2.15; neurometric LY = 4.7% correlation, fl= 1.58. E, An experiment in 
which thresholds were similar but slopes were dissimilar. Psychometric 
LY = 3.9% correlation, B = 1.36; neurometric 01 = 4.0% correlation, p = 
0.79. F, An experiment in which threshold and slope were dissimilar. 
Psychometric (Y = 3.1% correlation, (3 = 0.91; neurometric LY = 27.0% 
correlation, 0 = 1.81. 

to 120 impulses/trial, the proportion of preferred direction re- 
sponses exceeding criterion also fell toward zero. Thus, the ROC 
for 12.8% correlation fell along the upper and left margins of 
the unit square in Figure 5B (triangles). In contrast, the ROC 
for 0.8% correlation fell near the diagonal line bisecting the unit 
square (open circles); since the preferred and null response dis- 
tributions were very similar at 0.8% correlation, the proportion 
of preferred and null direction responses exceeding criterion fell 

Comparison of psychometric and neurometric functions. Fig- 
ure 6A shows the psychometric and neurometric functions ob- 
tained from the experiment illustrated in Figures 4 and 5. The 
two functions are remarkably similar both in their location along 
the abscissa and in their overall shape. The apparent similarity 
of the two functions was reflected in a close correspondence 
between the threshold parameters, o(, and the slope parameters, 
p, obtained from the Weibull fits (Eq. 1) to the two data sets. 
The neurometric threshold of 4.4% correlation compared fa- 
vorably to the psychometric threshold of 6.1% correlation, and 
the slope parameters were similar as well (neurometric p = 1.30; 
psychometric p = 1.17). This similarity of psychometric and 
neurometric data was a common feature of our data, and Figure 
6B illustrates a second example. Although the absolute threshold 
levels were higher under the conditions of this experiment, the 
neurometric and psychometric data sets were again quite similar 
(neuronal: CY = 23.0%, p = 1.3 1; psychophysical: (Y = 17.8%, p 
= 1.20). Higher absolute thresholds typically occurred when the 
properties of the neuron under study required a psychophysi- 
tally nonoptimal presentation of the discriminanda (e.g., un- 
usually small receptive fields, large eccentricities, or high speeds). 
The remaining panels in Figure 6 exemplify the range of vari- 
ation in our data. Neuronal and psychophysical thresholds could 
be strikingly dissimilar, with either the neuron (Fig. 60) or the 
monkey (Fig. 6CJ’) being more sensitive. The slope parameters 
could also appear dissimilar (Fig. 6E,F), but significant differ- 
ences in slope were observed less frequently than significant 
differences in threshold (see below). 

A particularly surprising aspect of our data was the existence 
of MT neurons that were substantially more sensitive to motion 
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signals in the visual display than was the monkey psychophys- 
ically. In the experiment of Figure 60, for example, the neuronal 
threshold (4.7% correlation) was considerably lower than the 
psychophysical threshold (13.0% correlation). This result could 
obtain trivially if the monkey’s performance were deteriorating 
near the end of a recording session due to water satiation, or if 
the monkey’s performance were suboptimal due to a lack of 
training under the specific psychophysical conditions of the ex- 
periment. The first explanation is ruled out by the fact that our 
monkeys’ performance in these experiments was highly reliable, 
as indicated both by their asymptotic performance levels at high 
correlation levels (near 100% correct) and by the steepness of 
their psychometric functions (see Fig. 60). Indolence is generally 
reflected by deterioration in both of these features of the psy- 
chometric data. The second explanation seems unlikely since 
our monkeys’ psychophysical thresholds were usually similar to 
the thresholds of human observers across the range ofconditions 
tested in these experiments. We therefore believe that neurons 
such as the one illustrated in Figure 60 are genuinely more 
sensitive to the motion signals than is the visual system overall 
as reflected in psychophysical performance. Another way of 
thinking about this result is that the monkey could improve its 
performance considerably were it able to monitor signals from 
a neuron like the one in Figure 60 (and its antineuron partner) 
and count action potentials with the accuracy of our computer. 

For each experiment, we assessed the similarity of the neu- 
rometric and psychometric functions with a statistical test for 
the homogeneity of the two data sets. We performed maximum 
likelihood fits of separate Weibull functions to the neurometric 
and psychometric data, and also fit the best single function 
jointly to the two data sets. The likelihoods (L) obtained from 
these two conditions were transformed by 

X=-21n 
L(data 1 single curve) 

L(data 1 independent curves) ’ (3) 

so that X is distributed as x2 with 2 degrees of freedom (see Hoe1 
et al., 1971). If h does not exceed the criterion value (for p = 
0.05), we conclude that a single function fits the two data sets 
no worse than two separate functions. 

For 109 of 2 16 cells (5 lo/o), this method revealed no significant 
difference between Weibull fits to psychometric and neurometric 
data. This result might arise artifactually if the data from either 
the neuron or psychophysics were not well fit by the Weibull 
function. However, for only 11 of these 109 cells could the fit 
to either behavioral or neural data be rejected. We also com- 
pared the psychophysical data to neurometric predictions of 
performance using a different method that did not rely on fitting 
the data to a particular function; we normalized the binomially 
distributed decision values using the arcsin-square-root trans- 
formation (Johnson and Kotz, 1969), and computed a conven- 
tional x2 test of homogeneity. We compared the number of 
correct decisions observed behaviorally to the number predicted 
from single-unit recording, where 

Predicted correct = (N/2) (Area under ROC). (4) 

The estimate uses half the number of trials (N/2) because the 
ROC computation assumes two independent measures of unit 
response (e.g., neuron and antineuron as described above). This 
statistic identified only two additional neurons for which neu- 
rometric predictions differed significantly from psychophysical 
performance. We therefore conclude that neurometric and psy- 

Threshold ratio (neuron/behavior) 

Figure 7. Relative sensitivity of single MT neurons and animal ob- 
servers. The frequency histogram illustrates the ratio of neuronal thresh- 
old to psychophysical threshold for the 2 16 experiments in our sample. 
Ratios less than unity indicate that the neuron was more sensitive than 
the monkey; ratios above unity indicate the converse. 

chometric data were genuinely indistinguishable in roughly half 
(109 of 2 16) of our experiments. 

For the remaining 107 cells (49%), we found a significant 
difference between the Weibull fits to the psychometric and 
neurometric data. For these cells, we wished to know whether 
the discrepancy was due to a difference in the threshold or the 
slope of the functions characterizing the two data sets. We again 
compared Weibull fits to the neural and behavioral data under 
the null hypothesis that the data are described by a single curve, 
versus the alternative of separate fits for neural and behavioral 
data, but we further elaborated the test so that three conditions 
were compared: (1) assuming a common threshold parameter 
(cy) in the two fits, (2) assuming a common slope parameter (p), 
or (3) allowing slope and threshold to vary freely in the two fits. 
If a significant difference between neurometric and psychometric 
fits was obtained when the slope was constrained, we attributed 
the difference to the thresholds. Similarly, a significant difference 
obtained when the threshold was constrained indicated that the 
disparity lay in the slopes. Employing this approach, we found 
that most of the discrepancies (78 of 107 cells) were due to 
differences in the threshold (e.g., Fig. 6C,D,F). In only 10 neu- 
rons could the difference be ascribed to the slope; for the re- 
maining 19 neurons, the discrepancy between neuron and be- 
havior was not due to differences in either the slope or the 
threshold alone. 

The similarity of neurometric and psychometric functions is 
represented graphically in Figures 7 and 8. Figure 7 is a fre- 
quency histogram of threshold ratios that summarizes the com- 
parison of neuronal and psychophysical thresholds for all 2 16 
experiments. Ratios near unity resulted from experiments such 
as those in Figure 6, A, B, and E, where neuronal and psycho- 
physical thresholds were very similar. Ratios below unity signify 
experiments like that in Figure 60, in which the neuron was 
more sensitive than was the monkey psychophysically; ratios 
above unity represent experiments in which psychophysical 
judgement was more sensitive (e.g., Fig. 6C,F). The data in 
Figure 7 are distributed roughly normally on the logarithmic 
scale, and include a wide range of threshold ratios. The most 
striking feature of the distribution, however, is that the ratios 
were centered very near unity: the geometric mean of the dis- 
tribution was 1.19. Across the entire set of data, therefore, av- 
erage neuronal sensitivity was surprisingly similar to average 
psychophysical sensitivity. 
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Slope ratio (neuron/behavior) 

Figure 8. Relative slopes of neurometric and psychometric functions. 
The frequency histogram illustrates the ratio of neurometric slope to 
psychometric slope for the 2 16 experiments in our sample. Ratios less 
than unity indicate that the psychometric slope was steeper than the 
neurometric slope; ratios above unity indicate the converse. 

We next conducted a one-way ANOVA to determine whether 
the distribution of threshold ratio differed among the three an- 
imals. The analysis indeed revealed a significant difference (p 
< O.OOOS), and the difference withstood an analysis of covari- 
ante that controlled for the effects of several potentially con- 
founding independent variables: aperture eccentricity, aperture 
size, and motion speed (p < 0.0001). A test of contrasts showed 
that the threshold ratios for monkey J differed significantly from 
those of both monkey W and monkey E (p < O.OOOl), but the 
threshold ratios of the latter two animals were not significantly 
different from each other (p > 0.05). The interanimal differ- 
ences, though significant, were small: the geometric mean of the 
threshold ratio was 0.89 in monkey J, 1.21 in monkey E, and 
1.5 1 in monkey W. We conclude, therefore, that a close cor- 
respondence of neuronal threshold to psychophysical threshold 
was a characteristic feature of MT neurons for all three monkeys 
under the conditions of our experiment. 

Figure 8 shows the distribution of slope ratios obtained from 
the 2 16 experiments in our sample. Like the threshold ratios, 
the slope ratios were logarithmically distributed with a geo- 
metric mean very near unity (0.995). There is less scatter in this 
distribution than in the distribution of threshold ratios in Figure 
7, consistent with the statistical analysis presented above that 
showed that the hypothesis of common thresholds could be 
rejected far more frequently than the hypothesis of common 
slopes. A one-way ANOVA revealed no significant difference 
among animals 01 = 0.70). Thus, the similarity in shape of the 
neurometric and psychometric functions, as illustrated in Figure 
6A-D, was typical of our results as a whole. 

How well does neuronal threshold predict psychophysical 
threshold? The data in Figure 7 show that for the majority of 
neurons in our sample, psychophysical and derived neuronal 
thresholds are similar. Thus, knowledge of neuronal threshold 
is frequently an accurate predictor of psychophysical threshold. 
However, the histogram in Figure 7 intentionally obscures other 
aspects of the data such as absolute threshold levels and the 
extent to which departures of threshold from the mean are cor- 
related for neuronal and psychophysical data. We therefore asked 
two more refined questions: (1) do there exist interanimal dif- 
ferences in psychophysical sensitivity that are predicted by neu- 
ronal sensitivity, and (2) does there exist a correlation between 
neuronal sensitivity and psychophysical sensitivity on an ex- 

periment-by-experiment basis? The answer to both of these 
questions is “yes,” although the latter effect is quite modest. 

During the course of these experiments, it was our subjective 
impression that the three monkeys differed in their psycho- 
physical sensitivities to the stochastic motion signals in our 
visual stimuli. This impression was confirmed by a one-way 
ANOVA of the 216 psychophysical thresholds in our data set 
(p < 0.0001). The interanimal threshold difference also with- 
stood an analysis of covariance that controlled for the effects of 
other independent variables that may have varied between mon- 
keys: aperture eccentricity, aperture size, and the speed of the 
motion signal (p < 0.0001). Interestingly, neuronal thresholds 
in the 216 experiments of our study also differed between ani- 
mals (analysis of covariance, p < 0.02), and the ordinal rela- 
tionship of mean neuronal threshold for the three animals was 
the same as that for mean psychophysical threshold. 

This relationship is summarized in Figure 9A, which illus- 
trates mean psychophysical threshold as a function of mean 
neuronal threshold for the three animals. The broken line in 
Figure 9A is the regression of mean psychophysical threshold 
onto mean neuronal threshold. This is a maximum likelihood 
fit based on the geometric mean values of psychophysical (Y and 
neuronal (Y along with their measured uncertainties and co- 
variance, assuming a bivariate lognormal distribution. The slope 
of this three-point regression is 2.08: This value differs signifi- 
cantly from unity by a likelihood ratio test (as in Eq. 3) in which 
the fit was compared to a second maximum likelihood regression 
with slope constrained to unity (p < 0.000 1). We were somewhat 
surprised that the slope of the regression line differed from unity, 
although this finding is consistent with our observation in the 
preceding section that small but significant differences exist 
among the three animals in the mean ratio of neuronal to psy- 
chophysical threshold. The consistent ordinal relationship be- 
tween mean neuronal and psychophysical threshold for the three 
animals supports the notion that psychophysical performance 
on our task is limited by signals like those carried by MT neu- 
rons. 

Figure 9B shows the relationship between the geometric means 
of neuronal and psychophysical slope parameters for the three 
monkeys. Again, the ordinal relationship in the slope parameter, 
p, was the same for the two data sets, even though the inter- 
animal differences in neuronal 6 and psychophysical @ missed 
statistical significance (analysis of covariance, p = 0.058 for 
neuronal 6, p = 0.120 for psychophysical p). A regression line 
was fit to the three points using the same method as for Figure 
9A. The regression line had a slope of 0.59, but this slope was 
not significantly different from unity by the maximum likeli- 
hood test employed above (p > 0.05). Again, the data are con- 
sistent with the notion that interanimal differences in psycho- 
physical performance result from interanimal differences in 
physiological properties like those we observed in MT neurons. 

We next inquired whether any correlation exists between neu- 
ronal threshold and psychophysical threshold on an cell-by-cell 
basis. Since several independent variables that influence psy- 
chophysical threshold differed among the three animals, we ad- 
dressed this question by means of a hierarchically structured 
analysis of covariance. In the first covariance model, the 216 
psychophysical thresholds were analyzed as a function of mon- 
key identity, aperture size, aperture eccentricity, and speed of 
the correlated motion signal. The analysis revealed that each of 
these independent variables had a significant effect on psycho- 
physical threshold, and the whole model captured about 44% 
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Figure 9. A comparison of average neuronal and psychophysical per- 
formance across animals. A, The geometric mean of neuronal threshold 
is plotted against the geometric mean of psychophysical threshold for 
each of the three animals in the study. The vertical error bars indicate 
SEM for neuronal threshold, while the horizontal error bars show SEM 
for psychophysical threshold. The broken line is the best-fitting regres- 
sion through the data points. B, The geometric mean of neurometric 
slope is plotted against the geometric mean of psychometric slope. Error 
bars and the regression line are as described in A. 

of the variance in psychophysical cx (rz, the amount of variance 
accounted for, = 0.438). Adding neuronal threshold to the model 
as a coregressor revealed a significant predictive effect of neu- 
ronal threshold (p < O.Ol), but the effect was small, accounting 
for only an additional 2% of the variance in psychophysical 
threshold (r* = 0.458). Thus, experiment-to-experiment varia- 
tions in neuronal threshold were not highly correlated with vari- 
ations in psychophysical threshold, even though the means were 
strikingly similar (e.g., Fig. 7). 

Figure 10 amplifies this point by showing the relationship of 
neuronal to psychophysical threshold in richer detail. The scat- 
terplot depicts the actual neuronal and psychophysical thresh- 
olds measured in each of the 2 16 experiments in our sample. 
The solid circles indicate experiments in which the neurometric 
and psychometric functions were statistically indistinguishable 
as described earlier; the open circles show experiments in which 
the two data sets were demonstrably different. The broken di- 

Neuronal threshold (%) 
Figure 10. A comparison of absolute neuronal and psychophysical 
threshold for the 2 16 experiments in our sample. Solid circles indicate 
experiments in which neuronal and psychophysical threshold were sta- 
tistically indistinguishable; open circles illustrate experiments in which 
the two measures were significantly different. The broken diagonal is 
the line on which all points would fall if neuronal threshold predicted 
psychophysical threshold perfectly. The frequency histogram at the up- 
per right was formed by summing across the scatterplot within diago- 
nally oriented bins, The resulting histogram is a scaled replica of the 
distribution of threshold ratios depicted in Figure 7. 

agonal line depicts the line of equality on which all points would 
fall if neuronal threshold perfectly predicted psychophysical 
threshold. Summing within a diagonally arranged set of bins 
leads to the frequency histogram in the upper right comer of 
Figure 10; this is simply a scaled replica of the distribution of 
threshold ratios shown in Figure 7. Despite the symmetrical 
distribution of the ratios about unity, the scatterplot reveals 
only a modest correlation between the two measures (r = 0.29), 
and most of this correlation is accounted for by the interanimal 
differences illustrated in Figure 9A. Thus, psychophysical and 
neuronal thresholds are not strongly correlated on an cell-by- 
cell basis, although they are closely related on the average. The 
absence of a strong cell-to-cell correlation is not surprising since 
neuronal sensitivity to motion direction varies widely (even 
within MT) whereas a monkey’s psychophysical sensitivity is 
relatively constant for any given set of stimulus conditions. 

Efect of integration time on neuronal and psychophysical 
thresholds. The comparison of neuronal and psychophysical 
thresholds summarized in Figure 7 is based on experiments in 
which the monkey was required to view the random dot stimulus 
for 2 full seconds before indicating its judgement of motion 
direction. A potential flaw in the analysis results from the un- 
known time interval over which the monkey integrated infor- 
mation in reaching its decision. Temporal integration can in- 
fluence both neuronal and psychophysical thresholds, and the 
comparison captured in Figure 7 is reasonable only if the in- 
tegration interval is similar for both sets of data. For the phys- 
iological data presented thus far, the integration interval was 
always 2 set since construction of the ROCs was always based 
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Figure I I. An analysis of integration times for neuronal and psycho- 
physical data. A, Threshold as a function of integration time for eight 
representative MT neurons. Integration times on the abscissa are mea- 
sured from the onset of the visual stimulus. For each neuron, all data 
points were based on an analysis of a single experiment in which the 
visual stimulus remained on for 2 sec. B, Psychophysical threshold as 
a function of integration time for two human (open symbols) and two 
monkey (solid symbols) observers. Each data point represents the mean 
of at least 10 threshold measurements. Thresholds were measured using 
a staircase procedure (Newsome and Pare, 1988). Unlike the neuronal 
data illustrated in A, psychophysical thresholds for each integration time 
were measured independently in separate blocks of experiments. All 
thresholds were measured using a 10” diameter aperture centered on 
the horizontal meridian 7” to the left of the fixation point. The axis of 
motion was up versus down, and the speed of the motion signal was 
3.6 degrees/set. 

on the cumulative number of spikes occurring during the entire 
viewing interval. It would be problematic for the analysis in 
Figure 7, however, if the monkeys reached psychophysical de- 
cisions by attending to the visual display for only a small fraction 
of the 2 set viewing interval. We therefore assessed the effect 
of integration time on both physiological and psychophysical 
results. 

To examine the effects of integration time on neuronal thresh- 
old, we repeated the ROC analysis several times for each neuron, 
counting the number of spikes that occurred during progres- 
sively longer temporal intervals ranging from 100 msec follow- 
ing stimulus onset to the full 2 sec. This procedure generated a 
family of neurometric functions for each neuron, from which 
neuronal thresholds (a) were computed using best-fitting solu- 
tions to Equation 1. Figure 11A illustrates the results of this 
analysis for eight example neurons. These eight neurons illus- 
trate the full range of neuronal sensitivities in our sample, from 
very low-threshold neurons (e.g., the lowest curve in Fig. 11A; 
LY = 2.3% correlation at 2 set) to very high-threshold neurons 
(e.g., the highest curve in Fig. 1 IA; (Y = 45.6% correlation at 2 
set). The results were very consistent: neuronal thresholds de- 
creased for progressively longer integration times. This result is 
expected as a simple consequence of the fact that noise resulting 
from irregularity in a neuron’s firing pattern becomes less pro- 
nounced with longer measurement times. As noise is reduced, 
estimates of the mean firing rate across trials become more 
consistent (i.e., response distributions like those illustrated in 
Fig. 54 become less variable), and neuronal thresholds conse- 
quently fall. 

Figure 11B illustrates the effect of integration time on psy- 
chophysical threshold. These experiments were performed as 
controls following completion of the physiological recording 
experiments. The subjects were two humans (open symbols) and 

two monkeys (solid symbols) that were used in the physiological 
experiments (monkey E and monkey J). The third monkey had 
been killed by the time these psychophysical measurements were 
made. Each data point in the figure represents the mean of at 
least 10 threshold measurements for that condition. All thresh- 
olds in Figure 11B were obtained using blocked stimulus pre- 
sentations, with integration time held constant during each block. 
One of the monkeys (monkey E) generated thresholds that were 
essentially the same as those of the two human subjects, while 
the other monkey (monkey J) yielded higher thresholds, partic- 
ularly for short viewing intervals. Both monkey and human 
subjects practiced extensively at each integration interval to 
ensure that the psychophysical thresholds in Figure 11B rep- 
resented asymptotic performance. The data were obtained under 
psychophysical conditions that were similar to the best condi- 
tions encountered during the physiological experiments reported 
in this study (see Fig. 11 caption). Thus, psychophysical thresh- 
olds for the 2 set viewing interval (3-6% correlation) were com- 
parable to the best psychophysical thresholds obtained during 
the physiological recording experiments illustrated in Figure 10. 

The most important result in Figure 11B is that psychophys- 
ical performance improved with increased viewing time for all 
four subjects. As noted above, thresholds illustrated for the 
longest viewing time (2 set) in Figure 1lB were typical of those 
observed for the same viewing time during the prior physio- 
logical recording experiments. In other words, training for short 
viewing times did not seem to change performance for long 
viewing times. The data indicate that the monkeys, like human 
subjects, improved their performance by availing themselves of 
the long integration time offered by the 2 set viewing interval 
(Downing and Movshon, 1989). We therefore conclude that our 
use of the total spike count during the full 2 set viewing interval 
provides a legitimate basis for comparing neuronal and psy- 
chophysical thresholds. 

Influence of behavior on neuronal thresholds. For 86 neurons 
in two monkeys, we measured neuronal thresholds in the phys- 
iological threshold series as well as in the combined threshold 
series. In the physiological threshold series, the monkey was 
rewarded simply for maintaining fixation on the fixation point; 
the random dot stimulus in the receptive field was therefore 
irrelevant to the animal’s behavior. In the combined threshold 
series, the monkey was required to attend to the random dot 
stimulus (while maintaining fixation) and report the direction 
of correlated motion in order to obtain a reward. As described 
in Materials and Methods, the monkey could easily distinguish 
the two blocks of trials by the color of the fixation point and by 
the absence of saccade targets during the physiological threshold 
series. By comparing neuronal thresholds measured under the 
two conditions, we aimed to determine whether the monkey’s 
use of the visual stimulus influenced neuronal threshold. For 
both conditions thresholds were calculated using the procedure 
illustrated in Figure 5. 

Figure 12 depicts the outcome of this comparison. For each 
neuron, the threshold measured in the “choice” condition (com- 
bined threshold series) is plotted against the threshold measured 
in the “fixation” condition (physiological threshold series). The 
two measurements were highly correlated (r = 0.85) and a paired 
t test revealed no difference between the logarithmically trans- 
formed thresholds obtained under the two conditions (p = 0.5 1). 
While we cannot completely rule out the possibility that the 
monkey continued to perform the discrimination covertly dur- 
ing the physiological threshold series, there was no overt sign 
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of decision-making activity such as eye movements to expected 
target locations. The thresholds of MT neurons therefore appear 
to be unaffected by the monkey’s use of the visual stimulus. 
This result suggests that MT neurons faithfully encode the di- 
rection of motion in the stochastic display whether or not that 
information is currently ofbehavioral importance to the animal. 

Discussion 
We set out to determine the relative sensitivities of single cor- 
tical neurons and psychophysical observers to near-threshold 
motion signals. The surprising outcome is that the responses of 
a typical MT neuron can provide an accurate account of a mon- 
key’s psychophysical performance, including both the absolute 
position and the slope of the psychometric function relating 
performance to the strength of the motion signal. For half of 
the neurons in our study, the neurometric function derived from 
single-unit data was statistically indistinguishable from the psy- 
chometric function measured on the same set of trials. For most 
of the other neurons, the difference between neurometric and 
psychometric data could be attributed primarily to differences 
in threshold, although some neurometric functions differed in 
shape from the corresponding psychometric function. When 
neuronal and psychophysical thresholds differed, there was no 
consistent tendency for one or the other to be lower; when the 
slopes of the two functions differed, it was equally likely that 
the neuronal or psychophysical function would have the steeper 
slope. Thus, the distributions of threshold ratio and slope ratio 
illustrated in Figures 7 and 8 were both centered near unity. 

It is important to be certain that this agreement is not arti- 
factual. One possibility is that our chosen measurement time of 
2 set might inflate neuronal performance, but the analysis il- 
lustrated in Figure 11 shows that monkey and human observers 
integrate information over the full 2 set viewing interval to reach 
decisions in our task. Another difficulty would arise if our mon- 
keys were under imperfect behavioral control and were therefore 
performing at less than the best possible level, but we have 
presented in the Results our reasons for believing that our an- 
imals were fully trained and properly motivated throughout our 
experiments. A final possibility is that both neuronal and psy- 
chophysical performance was limited by the noise intrinsic to 
our stimulus, and not by neural computations. In most exper- 
iments the precise pattern of signal and noise dots was different 
on each trial, and the resulting variance might explain the vari- 
ance in performance that is captured by the neurometric and 
psychometric functions. To explore the effects of this stimulus 
variance on neuronal response, we studied a subset of neurons 
under conditions in which precisely identical patterns of signal 
and noise dots were presented for each trial of a given stimulus 
condition. Were neuronal performance limited by the stimulus 
variance, we would expect a reduction in the variance of neu- 
ronal responses when stimulus variance is eliminated. In fact, 
this manipulation did not change neuronal response variance 
or indeed any other aspect of neuronal or psychophysical per- 
formance that we could measure (K. H. B&ten, M. Shadlen, J. 
A. Movshon, and W. T. Newsome, unpublished observations). 
We therefore conclude that trial-to-trial variance in the visual 
stimulus had little or no influence on the results presented in 
this article. 

Under our conditions, then, the performance of most neurons 
closely approximated the performance of the behaving monkey. 
This result is in contrast to a number of reports that individual 
neuron performance does not generally approach psychophys- 
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Figure 12. A comparison of neuronal thresholds measured in different 
behavioral states. The abscissa illustrates neuronal thresholds measured 
when the monkey was required to discriminate the direction of motion 
correctly in order to obtain a reward. The ordinate shows neuronal 
thresholds measured when the monkey was required only to fixate in 
order to obtain a reward. Both sets of data were obtained for 86 neurons 
in two monkeys. The diagonal is the line of unity slope; all data points 
would fall on this line if thresholds were identical in the two behavioral 
states. 

ically measured levels. We believe that this apparent discrep- 
ancy is largely due to procedural differences between our study 
and earlier ones. In the present experiments, neuronal and psy- 
chophysical thresholds were measured under precisely identical 
conditions-in the same animal, on the same set of trials, and 
using the same visual stimuli. More importantly, we tailored 
the visual stimulus in each experiment to match the receptive 
field characteristics of the neuron under study-in eccentricity, 
size, preferred direction, and preferred speed. In most prior 
studies, neuronal thresholds were compared to psychophysical 
thresholds measured under very different conditions, frequently 
coming from different laboratories or different species. In the 
one case in which both sets of measurements were made in the 
same animal (Vogels and Orban, 1990), the psychophysical dis- 
crimination was not tailored to the receptive fields being studied. 
In the experiment whose results are most similar to ours, Haw- 
ken and Parker (1990) compared monkey neuronal and human 
psychophysical thresholds for contrast detection. They tailored 
the psychophysical stimuli to match the receptive fields of their 
neurons, and found a substantial minority of striate neurons 
whose performance roughly matched psychophysical perfor- 
mance under corresponding conditions. This suggests that much 
of the apparent discrepancy between our results and those of 
prior studies can be accounted for by a failure of previous studies 
to match stimulus conditions to receptive field properties. It is 
also likely, however, that genuine differences exist across per- 
ceptual tasks in the relation of neuronal to psychophysical sen- 
sitivity. Simple detection and discrimination tasks like those 
used in this study and by Hawken and Parker might well be 
based on small numbers of neural signals. Other more subtle or 
complex discriminations for which no reliable single neuron 
signals exist, however, are likely to create situations in which 
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Figure 13. Simulated psychophysical performance for directional 
judgements based on the pooled responses of neurons recorded in this 
study. A, Simulated threshold as a function of pool size. The responses 
of neurons within each pool are assumed to be independent, and the 
output of a particular pool is the linear sum of the responses of the 
neurons in the pool. Data points in this and the following figures are 
geometric mean thresholds derived from a few thousand simulations. 
The arrow indicates the mean psychophysical threshold actually ob- 
served during our experiments. B, The slope of the simulated psycho- 
metric functions as a function of pool size. Data are from the same 
simulations illustrated in A. The arrow shows the mean psychometric 
function slope observed during our experiments. 

lated the activity of a randomly chosen subset of the 2 16 neurons 
we studied by drawing randomly from synthetic response dis- 
tributions based on analysis of the original neuronal data. We 
compiled these responses into separate “neuron” and “antineu- 
ron” pools, drawn respectively from the preferred direction and 
null direction response distributions, and used the difference 
between the pooled responses to determine a “decision” for each 
trial. By repeating this procedure for a suitable range of stimulus 
conditions, we simulated a complete psychophysical experi- 
ment. We then compiled the simulated decisions into psycho- 
metric functions, and fit them with smooth curves of the form 
given by Equation 1. In each simulation, we computed perfor- 
mance for pools containing from 1 to 1024 neurons; for each 
pool size, we generated several thousand psychometric func- 
tions, each based on a different random selection of cells from 
our sample of 2 16. We took the geometric mean of the slopes 
and thresholds derived from these functions to characterize the 
performance of the model for each set of conditions. 

Our simulation procedure is based on the neuron-antineuron 
concept that we used to compute single neuron thresholds, in 
that it assumes that decisions in our task are based on a com- 
parison of activity in two mechanisms with opposite preferred 
directions. Indeed, the simulation procedure reduces to the sim- 
ple neuron-antineuron comparison when the pool contains one 
signal. For larger pool sizes, however, the simulation differs in 
that the comparison and the decision are effected only after 
signals from multiple neurons are pooled into larger aggregates. 

Figure 13, A and B, shows the results of the simplest simu- 
lation, in which we calculated the pooled signals by summing 
the responses of the neurons in the pool; the decision on each 
trial was given to the pool with the larger response. The curve 
in Figure 13A shows that the mean simulated threshold fell 
dramatically as the neuron and antineuron pools were made 

no neuron approaches psychophysical performance levels. In- larger. This improvement is expected because combining signals 
formational demands vary substantially among psychophysical across multiple noisy sources permits more reliable discrimi- 
tasks, and it seems certain that organisms can adaptively pool nation of weak signals (Tolhurst et al., 1983; Watson, 1990, 
the outputs of cortical neurons in different ways to meet those 1992). The arrow in Figure 13A shows the mean psychophysical 
demands. threshold actually generated by our monkeys during these ex- 

Under conditions like ours, we believe that the relationships periments. As expected, the agreement between simulated and 
between neurometric and psychometric data captured in Figures observed performance is best for a pool size of one neuron. 
7 and 8 are genuine. This implies that a monkey could perform Here, the model should simulate our actual data analysis, and 
the discrimination task with the observed sensitivity. were it we know from Figure 7 that mean psychophysical threshold 
capable of monitoring a single pair of MT cells in a neuron- very nearly equals mean neuronal threshold. For pools as small 
antineuron configuration. This seems perplexing, because many as 16 neurons, simulated threshold falls to one-quarter of the 
directionally selective neurons in MT presumably carry signals observed value. The solid curve in Figure 13B shows that the 
relevant to the task, and it is not obvious why a monkey should mean simulated slope parameter remained roughly constant with 
be unable to take advantage of this pool of neurons to improve increasing pool size. Furthermore, the simulated slopes agreed 
its psychophysical performance. Even if one assumes that only well with the mean slopes that characterized the monkeys’ actual 
a small region of MT contains neurons whose receptive field performance (arrow). 
properties are well matched in all respects to the demands of a Because these simulations produce satisfactory agreement with 
particular task configuration, the number of available neurons our data only when the pool size is near 1, we could draw the 
might be on the order of hundreds if not thousands. To explore simple conclusion that psychophysical performance in our par- 
this issue, we conducted a series of simulations to learn how a adigm must be based upon small numbers of neuronal signals. 
monkey would perform were it able to pool signals from many We must, however, explore three critical assumptions in the 
neurons of the kind recorded during our study. The outcome of simulations: (1) independence: the responses of the neurons con- 
this exercise depends, of course, upon exactly which neurons tributing to the pool are uncorrelated, (2) linear summation: the 
are pooled and the manner in which their signals are combined, response of each pool is the sum of the responses of the con- 
so we explored the effect of several different pooling rules on stituent neurons; (3) precision: responses are counted and com- 
the simulated performance of neuronal populations of a plau- pared with absolute precision. Relaxing any of these assump- 
sible range of sizes. tions importantly affects simulated performance, and we wished 

Monte Carlo simulations. The details of our simulation pro- to determine how many neurons are required to account for 
cedure are described in the Appendix. On each trial, we simu- observed performance as each assumption is relaxed. 
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Figure 14. Simulated psychophysical performance as a function of 
pool size, relaxing three important assumptions in the model. In each 
panel, the horizontal line at I.0 indicates the mean observed psycho- 
physical threshold, to which all model thresholds were normalized. A, 
Simulated psychophysical thresholds assuming four different levels of 
correlated firing within the neuron and antineuron pools. The solid line 
reproduces simulated threshold for the no correlation condition, as il- 
lustrated in Figure 13A. The broken lines, from bottom to top, represent 
simulated threshold for increasing correlation coefficients: r = 0.25, r 
= 0.50, and r = 0.75. B, Simulated thresholds when responses are pooled 
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There are many reasons to believe that the assumption of 
statistical independence among neuronal responses is unrea- 
sonable. Nearby cortical neurons are richly interconnected and 
share many common inputs, and robust correlations among 
neuronal activity have been reported in a number of cortical 
areas (e.g., Gerstein et al., 1978; Abeles, 1982, Ts’o and Gilbert, 
1988; Fetz et al., 199 1). Figure 14A illustrates the performance 
of the model when the assumption of independence is relaxed. 
In this simulation, varying amounts of intercorrelation were 
imposed on all responses within each pool; no intercorrelation 
was introduced between the neuron and antineuron pools. In 
this and the remaining panels of Figure 14, the simulated thresh- 
olds are normalized to the average values obtained in our psy- 
chophysical experiments; an arrow and horizontal line mark the 
value of 1 at which the simulation’s result would match the 
observed data. The bold solid line reproduces the performance 
expected for complete independence shown in Figure 13A. The 
broken lines show how performance changed as we introduced 
increasing amounts of correlated firing within the neuron and 
antineuron pools (r = 0.25,0.50, and 0.75). Increasing the degree 
of intercorrelation sharply diminishes the beneficial effect of 
pooling on performance. Intuitively, the simplest way to un- 
derstand these effects is to recognize that intercorrelation among 
the members of a pool effectively reduces the number of in- 
dependent signals in the pool, and correspondingly attenuates 
the effect of pool size. Inspection of the curves in Figure 14A 
shows that the intercorrelation we simulated imposes an as- 
ymptotic limit on performance, even as pool sizes grow very 
large. Inspection of the curves in Figure 14A shows that the 
intercorrelation we simulated imposes an asymptotic limit on 
performance. With an intercorrelation of 0.25, for example, 
arbitrarily large pool sizes yield simulated thresholds no lower 
than 36% of observed threshold. (Note that this same improve- 
ment can be obtained for pool sizes as small as four to six 
neurons if their responses are independent [solid curve]). Even 
with this asymptotic limit, simulated thresholds remain con- 
siderably lower than observed thresholds for reasonable levels 
of intercorrelation. Thus, small numbers of neurons still account 
best for observed performance unless an improbably high level 
of intercorrelation is postulated. 

The idea that neuronal signals in a pool are summed linearly 
is also questionable. A number of psychophysical considerations 
(e.g., Pelli, 1985) suggest that larger signals make a dispropor- 
tionate contribution to perceptual judgements, and we decided 
to simulate this by nonlinearly summing the responses of mem- 
bers of each pool. In this simulation, the pooled signal is com- 
puted as the square root of the sum of squared responses from 
each member of the pool; this is equivalent to the magnitude 
of the vector sum of orthogonal signals. The four curves in 
Figure 14B represent expected performance for the same set of 
intercorrelations used for Figure 14A, using this quadratic sum- 
mation rule. This rule also attenuates the effect of pool size on 
threshold, but considerable improvement is still evident for 
modest pool sizes. The effect is to extend modestly the range of 

t 

according to the square root summation rule. The curves illustrate the 
same four correlation levels employed in A. C, Simulated thresholds 
assuming varying levels of calculation imprecision. The solid line re- 
produces simulated performance shown in Figure 13A for perfect count- 
ing precision. From bottom to top, the broken curves illustrate simulated 
performance for increasing amounts of imprecision: c = 0.04,0.08, and 
0.16. 
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Figure 15. Simulated performance 
when decisions are presumed to be in- 
fluenced by neurons less sensitive than 
those recorded in the present study. A, 
Simulated thresholds based on the ex- 
panded data set including insensitive 
cells. Pooling and decision rules were 
identical to those employed in Figure 
14A. The various curves illustrate dif- 
ferent levels of response correlation, 
employing the same conventions as in 
Figure 14A. B, Slope of the simulated 
psychometric functions whose thresh- 
olds are illustrated in A. C, Simulated 
thresholds when less sensitive neurons 
are included in the data set and calcu- 
lation imprecision is added. The vari- 
ous curves illustrate performance for 
different levels of imprecision as in Fig- 
ure 14C. Responses are assumed to he 
independent, and pooling is by linear 
summation. D, Slope of the simulated 
psychometric functions whose thresh- 
olds are shown in C. Simulated thresh- 
olds were normalized as in Figure 14. 
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pool sizes compatible with observed psychophysical perfor- 
mance. 

It might be argued that the monkey’s cortex is less accurate 
at computing small differences between the activity of neurons 
or neuron pools than are our computers. Figure 14C explores 
the effect of relaxing the assumption of perfect computational 
accuracy. We suppose that the decision mechanism cannot count 
spikes precisely, and we therefore assume that decisions based 
on small differences between the activity of the neuron and 
antineuron pools are inherently unreliable. We simulated this 
unreliability by taking all cases in which a decision was based 
on a response difference less than a small proportion, 6, of the 
total response, and substituting a random “guess” for the com- 
puted decision. This has the effect of disrupting “low-confi- 
dence” decisions based on small differences between the re- 
sponses of the two neuronal pools, but leaving unaffected “high- 
confidence” decisions based on large differences. 

The effect of varying t from 0 to 0.16 are explored in Figure 
14C. For simplicity, only the conditions that linearly sum the 
responses of statistically independent neurons (as in Fig. 13) are 
shown. As expected, introducing imprecision elevates threshold 
slightly, and attenuates the effect of pool size on simulated 
threshold. The effect is generally similar to the effects of inter- 
correlation and nonlinear summation shown in Figure 14, A 
and B, and does not improve the agreement between our data 
and the simulated performance of large neuron pools. We there- 
fore conclude that our model can tolerate modest amounts of 
calculation imprecision without requiring large neuronal pools 
to subserve performance. 

The results of these simulations suggest that the inference of 
small pool size is quite robust with respect to the three as- 
sumptions outlined above. No substantial increase in the ac- 
ceptable range of pool sizes can be gained by relaxing any of 
the three assumptions. Even if there were a high degree of cor- 
relation in the response variance of neurons within a pool, and 
if the individual responses were summed inefficiently, only pool 
sizes of approximately four to eight neurons are compatible with 
our observations (data not shown). Pools of this size remain 
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minute in comparison to the number of cortical neurons that 
carry signals of potential relevance to the task. 

So far we have considered simulations based on the actual 
responses of our neurons. Recall that our measurements were 
all obtained under conditions in which the discrimination was 
optimized for the neuron under study. Our simulations therefore 
incorporate the assumption that performance is based purely on 
the activity of neurons that prefer the particular direction, speed, 
and size of stimulus used. However, suppose that other neurons, 
responding better to other stimuli, also contribute to perceptual 
judgement. The responses of these neurons would be less robust 
and reliable than those we have used until now, and might have 
a markedly deleterious effect on performance. To incorporate 
such neurons into our analysis, we simulated the inclusion of 
suboptimally activated neurons by randomly attenuating the 
responses of the neurons in the simulation to as little as 10% of 
the observed values (see Appendix for details). The value of 
10% is arbitrary, but simulates the inclusion of neurons whose 
preferred directions might differ from the true direction by up 
to about 60”, or whose preferred speeds might differ by a factor 
of 5-10. 

Figure 154 illustrates simulated thresholds when decisions 
are based on responses from this expanded sample of “cells,” 
using pooling and decision rules otherwise identical to those in 
Figure 14A, in which signals of a controlled degree of intercor- 
relation are combined linearly. Notice that the simulated thresh- 
old for a one-neuron pool is now more than twice that actually 
observed. As pool size increases, simulated threshold declines 
toward the value observed in our experiments, with the best 
match between simulated and observed thresholds occurring for 
pool sizes near 4 when response variance is completely uncor- 
related within a pool. When the pooled neurons are intercor- 
related, threshold falls asymptotically until the pools grow to 
around 100 neurons. For suitable choices of intercorrelation 
(here, around 0.5) neuronal pools of essentially any size larger 
than 50 are compatible with our observations. Had we chosen 
a different distribution of random attenuations, then this as- 
ymptotic agreement would be obtained with a different level of 
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intercorrelation. It is possible that these simulated thresholds 
might be associated with unrealistic psychometric function 
shapes, but Figure 15B shows that the slopes of the simulated 
functions are unaffected by this manipulation. 

Figure 15, C and D, shows the final simulation, in which we 
both expanded the neuron pool to include insensitive neurons 
and included the effects of calculation imprecision (as in Fig. 
14C above). For high degrees of calculation imprecision, the 
simulated thresholds of large neuron pools are in good agree- 
ment with our data (Fig. 1X’), but the slopes ofthe psychometric 
functions become too steep to be consistent (Fig. 15D). It must 
be noted that this steepening of the simulated psychometric 
function is a consequence of the particular way in which we 
conceive of calculation imprecision. Imprecision could also be 
modeled by the simple addition of noise to the signals that 
emerge from the pooling stage. The latter procedure raises 
threshold without changing slope, a pattern of effects that is 
essentially the same as that observed following incorporation 
of less sensitive neurons into the pools (see above). The data 
from this manipulation are therefore not shown. 

The simulations in Figure 15 suggest that our findings can be 
made consistent with the use of large neuron pools if those pools 
include large numbers of neurons whose preferences poorly match 
the stimulus. Moreover, the inclusion of these neurons restricts 
our ability to relax the assumption of calculation precision, 
because under these circumstances large amounts of imprecision 
may cause the slope of the psychometric function to grow too 
steep. 

Together, the simulation results in Figures 13-15 provide 
useful insights concerning the possible relationship of neuronal 
responses to psychophysical judgement. They allow us to define 
more precisely the conditions under which different-sized pools 
can plausibly account for the psychophysical data reported in 
this article. The hypothesis of a small pool size is most consistent 
with our data as long as decisions are based purely on optimally 
stimulated neurons. If suboptimally stimulated neurons are in- 
cluded, however, pools of essentially any size become compat- 
ible with observed psychophysical sensitivity, but only if the 
responses of the pooled neurons are partially correlated (Y = 
0.25-0.75; Fig. 15A,B) and if neuronal calculations are reason- 
ably precise (Fig. 15C,D). Thus, our simulations indicate that 
a meaningful estimate of the number of neurons contributing 
signals to the decision process is critically dependent on the 
degree to which their responses are intercorrelated. This inter- 
correlation can be determined experimentally, and we have be- 
gun to make such measurements under conditions identical to 
those employed in the present study. 

Perhaps the strongest conclusion permitted by our data is that 
psychophysical decisions in our paradigm depend upon a small 
number of independent neural signals, irrespective of pool size. 
If pool size is large and responses are partially correlated, the 
e$&ztive number of neural signals is small because the responses 
of the pooled neurons are largely redundant. If, on the other 
hand, responses are predominantly uncorrelated, performance 
is likely to depend upon a small number of signals carried by a 
correspondingly small number of neurons. Other observations 
made in this laboratory are consistent with this conclusion. For 
example, we have found that the responses of single neurons in 
MT can be reliably correlated with psychophysical decisions 
made by the monkey on a trial-to-trial basis, even when iden- 
tical, near-threshold stimuli elicit the variable judgements (Brit- 
ten et al., 1988; Newsome et al., 1989b). This rather startling 

observation-that some portion of the variance in the psycho- 
physical decision process is reflected in the response variance 
of single sensory neurons-is consistent with the conclusion that 
decisions are based on small numbers of neural signals. Inter- 
estingly, the phenomenon is neutral with respect to the issue of 
pool size: it is consistent with the hypothesis of small pools of 
independent neurons, but it is also present in our simulations 
of performance based on large pools of partially intercorrelated 
neurons. These data will be presented in detail in a forthcoming 
publication. 

Concluding remarks. In an ongoing series of studies, we have 
employed a variety of techniques to investigate the role of visual 
area MT in mediating psychophysical judgements of motion 
direction. Lesion studies indicate that MT is necessary for op- 
timal performance on our task (Newsome and Pare, 1988) the 
present single-unit study demonstrates that the information en- 
coded by MT neurons is sufficient to account for psychophysical 
performance on the task, and microstimulation studies show 
that psychophysical judgements can be modified in a predictable 
manner by altering the activity of directional neurons in MT 
(Salzman et al., 1992). Together, these results demonstrate that 
neural signals in MT play an intimate role in a simple perceptual 
discrimination of motion direction. Ultimately, though, a com- 
plete neurophysiological account of performance on this task 
will require understanding how signals in MT are integrated 
with activity in areas upstream and downstream from MT. It 
is well known that MT is but one locus on a cortical pathway 
that appears specialized for motion analysis, and it is therefore 
likely that the exquisite sensitivity of MT neurons results from 
the convergence of signals from areas upstream to MT. It will 
be of interest to determine whether the sensitivity of those up- 
stream neurons is similar to that of psychophysical observers 
when the demands of the task are matched to the properties of 
their individual receptive fields, or whether a close association 
between neuronal and psychophysical sensitivity emerges 
uniquely at the level of MT. Similarly, it will be interesting to 
determine whether microstimulation of upstream areas such as 
V 1 and V3 can influence performance on the direction discrim- 
ination task. 

In some ways, however, the most interesting questions lie 
downstream from MT. We have several times alluded to a “de- 
cision process” that evaluates the pooled signals emerging from 
“neuron” and “antineuron” channels in MT. We imagine the 
outcome of this evaluation to be a decision in favor of one or 
the other direction of motion, which may then inform the plan- 
ning of an eye movement to the corresponding target LED. The 
decision process, in other words, is the link between the sensory 
representation of motion direction and the execution of a spe- 
cific behavioral response. Decision processes are commonly in- 
voked in cognitive psychology to link perception to action, and 
our behavioral paradigm provides a compact model system for 
physiological investigation of such a mechanism. We presume 
that the neural circuits of interest lie somewhere between the 
sensory representation of motion in MT and overtly oculomotor 
structures such as the superior colliculus and frontal eye fields. 
Current physiological and anatomical data suggest the cortex of 
the inferior parietal lobe as a likely locus for such circuits. The 
ascending outputs of MT are directed primarily toward the in- 
ferior parietal lobe (Maunsell and Van Essen, 1983a; Ungerlei- 
der and Desimone, 1986) and recent physiological data suggest 
that neurons in this region participate in the planning of in- 
tended eye movements (Gnadt and Anderson, 1988; Barash et 
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al., 199 1; Duhamel et al., 1992). Learning the nature of neuronal 
signals in this cortex during performance of our task thus emerg- 
es as a particularly intriguing sequel to the present study. 

Appendix 

Here we describe the Monte Carlo methods used to simulate 
psychophysical performance from the responses of neurons like 
those we studied in MT. Performance was simulated for pool 
sizes ranging from 1 to 1024 neurons using several combinations 
of pooling and decision rules. For each pool size, N, we generated 
several thousand psychometric functions, each based on a ran- 
dom selection of N neurons from our data set of 216 cells. The 
geometric mean threshold and slope of these simulated func- 
tions provided estimates of the performance expected were de- 
cisions based on a pool of N neurons. 

Basic procedure. Each iteration of the model, representing a 
single simulated “experiment,” began with a new random se- 
lection of N cells (with replacement) and ended with a psycho- 
metric function parameterized by two constants reflecting 
threshold and slope, after Equation 1 above. During each iter- 
ation, we computed performance for 25 “trials” at each of 10 
different motion strengths (correlation levels). On each trial, two 
responses were generated stochastically for each cell, one rep- 
resenting a response to preferred direction motion and the other 
representing a response to null direction motion. Preferred di- 
rection picks contributed to a “neuron” pool of responses, while 
null direction picks contributed to an “antineuron” pool. The 
antineuron pool is taken to represent the activity of an equiv- 
alent set of N cells whose preferred direction is opposite to that 
of the neuron pool. Responses were combined within each pool 
according to a specified summation rule. The summed responses 
ofthe two pools were then compared, and a judgement of motion 
direction was generated according to a specified decision rule. 
Following the logic of the neuron-antineuron model laid out 
above, a decision in favor of the preferred direction was scored 
as correct. Data from the 250 simulated trials were compiled 
into a psychometric function depicting the proportion of correct 
responses as a function of motion strength. The psychometric 
function was fitted with a curve of the form given by Equation 
1 above (Quick, 1974; Watson, 1979), and the threshold and 
slope parameters were collected to complete the iteration. 

Several thousand iterations were performed for each com- 
bination of pooling rule, decision rule, and pool size. The geo- 
metric mean of the thresholds thus derived provided a single 
data point in Figures 13A, 14, and 15, A and C. Similarly, the 
mean slope parameter provided a single data point in Figures 
13B and 15, B and D. By varying the number of neurons con- 
tributing to each pool, we generated curves relating simulated 
psychophysical threshold (and slope) to pool size. For N = 1 
neuron, the stochastic model generates mean performance 
equivalent to the means of our actual observations. 

The curves depicting performance as a function of pool size 
in Figures 13-15 are affected systematically by the particular 
pooling and decision rules chosen as well as by assumptions 
concerning intercorrelation of responses within neuron pools 
and the precision of computations performed within the central 
nervous system. 

Generation of neuronal responses. On each trial, the response 
of each cell in the pool was generated stochastically from the 
mean response and associated variance expected for that cell at 
the specified stimulus strength. The expected mean responses 

and variances were based on actual physiological measurements 
made for each cell in the data base. The expected mean response 
of each neuron was determined from the best-fitting quadratic 
equation relating measured response to stimulus correlation (i.e., 
the correlation-response function): 

where 4 represents motion strength (in percentage of correlated 
dots) and a, b, and c are fitted constants. Our physiological data 
are fitted well by such equations (Britten, Shadlen, Movshon, 
and Newsome, unpublished observations), and the resulting 
functions permit us to interpolate simulated responses to stim- 
ulus correlations not included during the actual physiological 
recordings. Separate fits were employed for motion in the pre- 
ferred and null directions. Thus, for each neuron in our sample, 
an expected mean response could be calculated for any arbitrary 
stimulus correlation in either direction of motion. 

For each mean response level, an associated response variance 
was calculated according to the power law 

a’(X) = .98P6, 642) 

where K is the mean neuronal response. This law describes our 
data well under all stimulus conditions (Britten, Shadlen, Mov- 
shon, and Newsome, unpublished observations) and is similar 
to results obtained by other investigators (Dean, 198 1; Tolhurst 
et al., 1983; Vogels et al., 1989). 

In a separate set of simulations (Fig. 15), we modeled the 
effects of pooling among a larger population of neurons, in- 
cluding hypothesized cells that were less sensitive than those 
we recorded. To generate correlation-response functions for these 
less sensitive neurons, we assigned a random attenuation factor, 
G,, uniformly distributed from 0.1 to 1, to each neuron. The 
hypothesized correlation-response functions for the two direc- 
tions of motion are given by 

x null,i = hull,, + W,,,,,,~ + cnull,r42), i = 1, . . . , N. G43) 

A new attenuation factor was assigned to each neuron of the 
pool for each iteration of the model, that is, for each simulated 
psychometric function. Notice that the response to 0% corre- 
lation is not affected by the attenuation factor. Rather, it is the 
slope, or gain, of the correlation-response function that is mod- 
ified. Figure 15 illustrates simulations for random attenuation 
factors in the range of from 0.1 to 1. This procedure permits us 
to estimate performance as a function of pool size for pools that 
include neurons less sensitive than those we recorded. 

Correlation. We have no actual measurements of the degree 
of intercorrelation between the responses of MT neurons. Rath- 
er, response correlation was incorporated as a model assumption 
by forcing the stochastic responses from each of the N neurons 
within a pool to conform to a specified correlation coefficient, 
r(O,O.25,0.5, or 0.75). Thus, the specified correlation coefficient 
would capture the relationship displayed in a scatterplot of the 
responses of any pair of neurons in the pool. To impose this 
correlation in our simulations, we modified a standard numer- 
ical recipe for generating Poisson deviates so that responses 
could be generated randomly for each neuron, reflecting the 
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expected mean responses and associated variances as well as the 
specified intercorrelation. 

In the absence of correlation (r = 0), the response of a cell on 
a given trial is a random value drawn from a scaled Poisson 
distribution of the expected mean and variance. Let Xl@,,u~) 
represent a random variable with probability density approxi- 
mating the response distribution of the ith neuron. A random 
value from this distribution, denoted x,, is well approximated 
by multiplication of a constant times a Poisson deviate with 
mean and variance, CL: 

x, = (Y Poidev(p), 644) 

For each simulation, the same correlation coefficient, r, was 
imposed on the responses within “neuron” and “antineuron” 
pools. Since the neuron and antineuron pools are intended to 
represent separate and opposing pools of neurons, we imposed 
no correlation between the two pools. 

Pooling. On each trial, responses were generated stochastically 
from preferred direction response distributions ofNcells to form 
the “neuron” pool, and responses were generated from the null 
direction distributions of the same N cells to form the “anti- 
neuron” pool. These responses were combined within the two 
pools to generate a single pair of values upon which the psy- 
chophysical “decision” was based. The manner in which signals 
are combined within the nervous system is not known and was 
therefore incorporated as a model assumption. We used either 
the linear sum of N signals, 

We employed a routine for generating Poisson deviates de- 
scribed by Press et al. (1988). 

In addition, we required that the picks from any pair of neu- 
i=l r=, 

rons possess the correlation coefficient, r. This was accomplished or the magnitude of their vector sum, assuming mutual orthogo- 
by generating random picks for each neuron, conditional upon nality, 
the deviates of a common random dummy variable, Y@, a$) 
such that the correlation coefficient between each neuron, X,, R prer = $ x;ret, “‘3 [ 1 Ku,, = [ $ XL]“‘. 6412) 
and Y is 

p;,d = ti. (A6) The latter may be recognized as the expected sum of uncorre- 
lated random signals. Here, the term “uncorrelated” would refer 

For normally distributed random variables, these conditional to the temporal structure of the neural discharge, rather than 
distributions may be constructed as independent distributions its amplitude (number of spikes). It is possible for several neu- 
with revised mean and variance: rons to be highly correlated in their total response and yet pos- 

sess little correlation in the temporal structure of their discharge. 
4(52,, u’ I Y) = mw, a, 647) A linear mechanism might be expected to add these signals as 

where 
orthogonal vectors. 

We have also modeled nonlinear summation rules ofthe form 
mi = xi + Pi,d(“bd)@ - 7) 648) 

and R,rer = [i ~;rer,,l”~, Ruu = [g ~:u,,,;[“~, k > 2. 6413) 

sf = a:(1 - p:d). 649) 
Less efficient summation occurred as k increased, with rapid 

These relationships follow from the regression of X on Y. Notice convergence to a winner-take-all rule in which the pooled re- 
that the conditional picks from each neuron are generated in- sponses were dominated by the pair of neurons yielding the 
dependently, so the conditional covariance is zero. Again, for largest responses to preferred and null direction motion, re- 
normally distributed random variables, it can be shown that the spectively. 
actual (nonconditional) correlation coefficient between any pair Decision. On each trial, the pooled responses to opposing 
of random variables X,, is directions of motion were compared, and a psychophysical de- 

cision was rendered. The decision rule was to choose the direc- 

PW = pzd = r. (AlO) tion of motion favored by the pool that yielded the largest re- 

These relationships are proven for the normal case by Anderson 
(1958). It is natural to expect the more physiologically plausible 
scaled Poisson distributions to inherit these properties, and we 
have verified this numerically. The standard deviation of pi, is 
approximately 0.1 for r = 0, and shrinks to 0.04 for r = 0.75. 

Equations A4-A10 provide an algorithm for generating par- 
tially correlated random deviates from physiologically plausible 
distributions of known mean and variance. It is a convenient 
approach since it allows us to covary as many processes as 
needed by referencing a common pick from the dummy variable, 
Y, and calling a standard numerical recipe for computing Pois- 
son deviates. We employed this method to generate partially 
correlated response values from multiple neurons in the sim- 
ulations illustrated in Figures 14, A and B, and 15, A and B. 

sponse: 

choose PREF, 

choose NULL, 

GUESS. 6414) 

During actual psychophysical experiments, the direction of mo- 
tion varied randomly from trial to trial so that the monkey had 
no basis for anticipating the correct answer. Such precautions 
are unnecessary for modeling purposes, and we therefore pre- 
tended that motion was always in the preferred direction. There- 
fore a preferred decision was always correct, and a null decision 
was always incorrect. A guess had 50% probability of being 
correct, but this condition had little impact on the simulations 
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since the neuron and antineuron pools rarely yielded identical 
responses. 

Computational imprecision may be incorporated into the 
model by requiring that the difference between the pooled signals 
exceed some specified margin before a decision can be reliably 
projected. The decision rule thus becomes 

choose PREF, 

choose NULL, 

where 6 is the margin of imprecision. It is sensible to model this 
quantity as a fraction of the pooled signal, 

6 = E Max(Rpren Rd, Ostsl. (‘416) 

In order for a reliable decision to ensue, the larger of the pooled 
signals representing opposing directions must exceed the smaller 
by some fraction, c. This is a simple realization of the notion 
that the neural processes within the monkey’s visual system 
may be unable to count spikes with the accuracy of a digital 
computer. Physiologically, such imprecision may be thought of 
as the consequence of summing pooled responses with a leaky 
integrator. We allowed c to vary from 0% to 16% (see Figs. 14, 
15). 

We also examined an alternative model for decision impre- 
cision by simply adding zero-mean noise to the pooled response 
values. This procedure is equivalent to incorporating unusually 
variable neurons in the pooled response, and its effects are there- 
fore approximated by the simulations employing randomly at- 
tenuated neural sensitivities. 
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