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Abstract

Cultural trends and popularity cycles can be observed all around us, yet our theories of
social influence and identity expression do not explain what perpetuates these complex,
often unpredictable social dynamics. We propose a theory of social identity expression
based on the opposing, but not mutually exclusive, motives to conform and to be unique
among one’s neighbors in a social network. We find empirical evidence for both conformity
and uniqueness motives in an analysis of the popularity of given names. Generalizing
across forms of identity expression, we then model the social dynamics that arise from
these motives. We find that the dynamics typically enter random walks or stochastic limit
cycles rather than converging to a static equilibrium. The dynamics also exhibit
momentum, preserve diversity, and usually produce more conformity between neighbors, in
line with empirical stylized facts. We also prove that without social network structure or,
alternatively, without the uniqueness motive, reasonable adaptive dynamics would
necessarily converge to equilibrium. Thus, we show that nuanced psychological
assumptions (recognizing preferences for uniqueness along with conformity) and realistic
social network structure are both critical to our account of the emergence of complex,
unpredictable cultural trends.

Keywords: Conformity | Games on Social Networks | Popularity Cycles | Social

Dynamics | Uniqueness
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Hipsters and the Cool: A Game Theoretic Analysis of Identity Expression,
Trends and Fads

Popular cultural practices come into and out of fashion. Researchers have observed
boom-and-bust cycles of popularity in music, clothing styles, automobile designs, home
furnishings, given names, and even management practices (Abrahamson, [1991; Berger,
2008} Berger & Le Mens, 2009} Lieberson, [2000; Lieberson & Lynn, 2003; Reynolds, [1968;
Richardson & Kroeber, |1940; Shuker, [2016; Sproles, |1981; Zuckerman, [2012)). Popularity
cycles appear to be driven by social influence, e.g., by people adopting the music that their
friends listen to or that they perceive as popular (Salganik et al., 2006; Salganik & Watts,
2008). At the individual level, people are constantly looking for new ways to express their
preferred social identities (Berger, 2008; Chan et al., [2012; Hetherington, |1998; Rentfrow &
Gosling, 2006). The resultant social dynamics do not typically converge to equilibrium.
What are the social forces that lead to such perpetual change and novelty?

Social pressure to conform is a powerful force when behavioral patterns across a
society shift in unison. Psychologists since Asch have recognized the remarkable strength
of the conformity motive, stemming from a fundamental goal to fit in as part of a social
group (Asch, [1955], 1956 Cialdini & Trost, 1998]). The need to belong is a fundamental
driver of social behavior (Baumeister & Leary, (1995; Gere & MacDonald, 2010). This
social need makes people more sensitive to the behaviors of other people around them
(Pickett et al., |2004). People tend to feel uncomfortable about considering, holding, and
expressing beliefs that conflict with the prevailing views around them as well as about
behaving oddly, in ways that might expose oneself as an outsider to the group (Golman
et al., 2016 Rivis & Sheeran, 2003; Spears, 2020; Turner et al., [1987). Conformity helps
people gain social approval (Cialdini & Goldstein, 2004). For example, people wear similar
clothing styles as their peers in order to be socially accepted (Rose et al., [1994; Smucker &
Creekmore, [1972)). Given the conformity motive alone, we might expect to observe

convergence to an equilibrium in which society becomes monolithic, yet instead we actually
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observe persistent diversity.

Opposing the motive to conform is a similarly universal human need for uniqueness
(Lynn & Snyder, 2002; Snyder & Fromkin, |1980). Standing out in some small way can help
a person individuate himself (Maslach et al., |1985; Rios Morrison & Wheeler, [2010). The
hipster striving to be cool departs from mainstream culture to assert individuality. While
the desire to differentiate oneself clearly works against the desire to blend in (Imhoff &
Erb, 2009)), people simultaneously pursue assimilation and differentiation goals (Brewer,
1991} Chan et al., [2012; Hodges, 2017; Hornsey & Jetten, 2004)). Chan et al. (2012)
demonstrate that people choose distinctive attributes on one dimension of identity while
conforming to prevailing behaviors on other dimensions of identity, thus aiming to be
identifiable, but not identical. Such idiosyncratic displays of non-conformity, or small
deviations from common patterns of identity expression, are judged positively (Bellezza
et al., 2014 Warren & Campbell, 2014). People reassert their uniqueness specifically when
mimicked by similar others (White & Argo, 2011). While there are certainly cultural
differences in the interplay of conformity and uniqueness motives (Kim & Markus, (1999),
both motives generally contribute to identity expression at some level, which may vary
according to culture and context (Blanton & Christie, 2003; Vignoles et al., 2000}
Yamagishi et al., 2008]). Preferences for idiosyncratic behavioral patterns can preserve
diversity in equilibrium (Smaldino & Epstein, 2015). Still, the question remains why
behavioral patterns often do not remain in a stable equilibrium with everyone finding an
optimal balance between distinctiveness and conformity. Why instead do behavioral
patterns go through perpetual change, with particular behaviors cycling into and out of

fashion as cultural trends play out?

One explanation, tracing back to Simmel (1957), is that an upper class tries to
distinguish itself from the common folk while the common folk try to imitate them (see
also Leibenstein, [1950)). Accordingly, conformity may be particularly high among the

middle class (Phillips & Zuckerman, 2001). In modern models of identity signaling,



HIPSTERS AND THE COOL 5

membership in one group may be preferable to membership in another, and people want to
strategically distinguish themselves from those in the less favorable group (Berger & Heath,
2007)). The resulting dynamic of imitation and differentiation (or “chase-and-flight”) can
lead to fashion cycles (Bakshi et al., 2013; Pesendorfer, 1995; Tassier, 2004 Zhang et al.,
2018)). Undoubtedly, there are contexts in which elites initiate fashions and everyone else
strives to imitate them, but empirical research shows that in many other contexts, groups
with lower or equal status also strive to differentiate themselves (Berger & Heath, [2008)). A

dynamic of mutual differentiation, without imitation, cannot account for popularity cycles.

Other models of popularity cycles rely on people continually discovering new
behaviors, which spread through the population and then get discarded, either through
random imitation (Bentley et al., [2004; Bentley et al., 2007, or with a motive for
conformity or anti-conformity (Acerbi & Bentley, 2014)), or with the co-evolution of
behavior and preferences (Acerbi et al., [2012)). These models account for boom-and-bust
cycles of popularity, but do not attempt to explain the source of the new behaviors that

continually enter the model and keep the dynamics from converging to equilibrium.

This paper explores a new account of the dynamics of cultural trends and
popularity cycles. We show that along with conformity and uniqueness motives, a realistic
network of social interaction may be a critical ingredient for complex social dynamics to
emerge. Specifically, we show that reasonable adaptive dynamics that would necessarily
converge to a static equilibrium given random interactions in a well-mixed pool of people
instead typically enter random walks or stochastic limit cycles, and thus never converge,
when interactions are restricted to individuals’ local neighborhoods in their social
networks. The social dynamics cannot converge in some cases because as some people find
more preferred expressions of identity, they disrupt others who observe them, making these
other people dissatisfied with the identities they had previously been happy to express.

The social network structure determines who are the innovators and who are the followers.

Popularity cycles in the expression of social identities display a number of empirical
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regularities, beyond the simple observation that they do not converge to equilibrium. They
often preserve diversity, with different people expressing different identities (see Jetten &
Hornsey, [2014)). A hallmark pattern of social influence, that friends or acquaintances tend
to behave similarly, holds for identity expression as well as other kinds of behaviors
(Christakis & Fowler, [2013)). Notably, friends display more similar attitudes than strangers,
although they often assume they agree with each other while unaware that they actually
disagree (Goel et al., 2010). Commonalities in identity expression can extend across large
communities — for example, there are regional correlations in the frequencies of given
names across U.S. states (Barucca et al., [2015). Non-controversial behaviors often spread
most quickly through “weak ties” in loosely clustered networks (the strength of the weak
tie being its tendency to serve as a bridge between groups with otherwise limited contact),
whereas behaviors that require social reinforcement from multiple sources, e.g., innovative
health behaviors or participation in social movements, tend to spread more quickly through
more tightly clustered social networks, in a process of “complex contagion” (Centola, 2010
Centola & Macy, 2007). As contagions spread, popularity cycles exhibit momentum —
changes in popularity tend to persist in the same direction over time (Gureckis &
Goldstone, 2009). Moreover, consistent with the motives we assume for our model, trends
of rising popularity may spill over to other similar, but not identical, expressions of
identity, while over-popularity actually decreases further adoption of particular expressions
of identity (Berger et al., 2012). Here we find that the social dynamics that emerge in our
model with social network structure exhibit momentum, preserve within-group diversity,

and usually produce more conformity between network neighborsﬂ

A natural theoretical approach for investigating social influence on decisions is to
use game theory. The conformity motive in isolation would create a Keynesian “beauty

contest,” in which what is cool (like what is beautiful) is just what everybody else believes

I In contrast, chase-and-flight dynamics between stratified social classes do not preserve diversity within
the class that is trying to imitate the elite. And models that assume completely random drift cannot
account for the empirical pattern that popularity cycles exhibit momentum.
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is cool (Keynes, 1936). The uniqueness motive in isolation would create a “congestion
game,” in which the objective is simply to be distinct from as many other people as
possible (Rosenthal, [1973). Both games are known to be “potential games,” for which
convergence to a pure strategy Nash equilibrium is practically guaranteed (Monderer &
Shapley, [1996a), [1996b)). When both motives co-exist and the game is played on a realistic

social network, however, the dynamics are more complex.

Cultural trends can be modeled more realistically as the dynamics of a game on a
social network because social influence is mediated by a social network (Mason et al.,
2007). Social influence on expressions of individual identity is transmitted whenever an
individual observes another person whom he would like to identify with, so the relevant
social network is defined by directed connections corresponding to observation. The
connected components of the social network may correspond to distinct social groups, each

with its own emergent subculture.

The desire for uniqueness within one’s own social group should not be conflated
with a desire for differentiation across groups (Chan et al., [2012)). Our model features
in-group conformity and uniqueness motives; it could be augmented with a desire for
differentiation across groups, but for parsimony we assume that people care only about

their fit within their own groups.

We now proceed to explore three mathematical models of identity expression based
on dual motivations for conformity and uniqueness, looking to see if and when each model
may produce popularity cycles. The first model introduces a mathematical characterization
of these motivations, showing how they may co-exist with each other, but simplistically
assumes that everybody influences everybody else. Each subsequent model then
incorporates a more realistic (and more complex) set of assumptions about social influence.
The second model assumes that social influence is transmitted through a social network, so
that people care about conforming and being unique only among the people they can

observe. The third model assumes additionally that the social network itself evolves in
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tandem with expressed identities. Only the models with social networks (Models 2 and 3)

can account for popularity cycles.

Model 1: Social Influence and Identity Expression in a Well-Mixed Population

We model the expression of social identity as a game played by a population of N
individuals. Let us say there are m aspects of identity (or identity-relevant traits). Each
person ¢ adopts an expression of identity z; = x;1, ..., Z; m, Where the choice of each
expressed trait x; , € {a..b}? can be represented as a tuple of d integers from some interval.
For example, in the case of choosing an outfit to wear, two traits could be the color of the
shirt and the color of the pants, and three integers between 0 and 255 might correspond to

shades of red, green, and blue that mix together to form any color in an RGB color system.

A person’s degree of conformity in the population depends on the (Euclidean)
distance between his expressed identity and the average (population mean) expression of
identity, ||x; — Z||. A person’s degree of uniqueness in the population depends on the
number of others who express the exact same identity-relevant trait as him, averaged
across all traits. For individual ¢ and trait u, denote the number of others who adopt his
exact same expression of this trait as n; ,(X), where X is the entire population’s profile of
expressed identities, and let n;(X) denote the average amount of shared traits (i.e.,

1

ni(X) = -3, n;i,(X)). Putting together the conformity and uniqueness motives, we

T m

model person ¢’s utility given the profile of expressed identities as
wi(X) = —[lzi — z]* = Ani(X) (1)

where )\ is a parameter that describes the strength of the uniqueness motive relative to the
conformity motive. This utility function describes a person whose goal is to be similar to

everybody, yet the same as nobody. This preference leads people to differentiate themselves

2 The dimensionality d of the tuple and the boundaries of the interval a..b can certainly vary for different
traits, but we omit subscripts on these parameters specifying a particular trait to simplify the notation.
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on some dimension of identity while conforming on other dimensions, as observed

empirically (Chan et al., [2012).

We find empirical support for our proposed utility function by considering the
popularity of given names, examining data on just one of the many forms of identity
expression that we hope to encompass. We can embed given names in a vector space using
distributional semantics models that capture relationships between words (including given
names) according to their co-occurrence in a large corpus of text (see Bhatia, 2017)).
Specifically, we use the fastText algorithm (Mikolov et al., 2018)) trained on Common
Crawl data. This algorithm is based on co-occurrences of strings of characters, and thus
associates related variants of phonetically similar names (e.g., Jesse and Jessie) and can
handle rare names. We calculate the mean vector of American given names every year from
1880 to 2020 and then compute the Euclidean distance between each given name and this

mean (for each year).

We first examine the relationship between these distances to the mean and the
popularity of given names, measured as the percentage of babies receiving that name, in
each year. Figure [I] presents scatter plots showing these distances and popularities for all
names in the years 1900, 1950, and 2000 respectively. The scatter plots are overlaid on top
of heat maps showing the number of different names with distances and popularities in
subdivided intervals on these two dimensions, which helps us distinguish the number of
different names in the high-density areas of the scatter plot. In each of the three years
shown in the figure, most names have low-to-moderate distance from the mean and low
popularity, but the vast majority of the most popular names have even lower distances
from the mean. This pattern is consistent across all years. The correlation between the
distance of a name from the mean and the popularity of that name in a particular year,
averaged across all years, is —.13 (SD = .01). A t-test shows the overall correlation to be

significantly different from 0 (p < .001).

Next, for each name we examine the correlation between that name’s distance from
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Figure 1

FEuclidean distance between each name’s vector representation and the mean name vector,
along with the popularity of these names (i.e., the percentage of babies receiving each name)

in the years 1900, 1950, and 2000. Background shading indicates the number of names in
each bin.

the mean and that name’s popularity over time. Figure [2| shows graphs of the distance
from the mean and the popularity over time for a representative name, “Wynona.” The
name grows in popularity during the beginning of the 20th century and then declines in
popularity during the middle of the century, when it has higher distance from the mean
than in the early years of the century. The correlation between the distance of “Wynona”
from the mean and the popularity of “Wynona” is —.25. The average of these correlations
across all names is —.29 (SD = .38), again significantly negative (p < .001). We thus see
that babies are given names that are closer to the mean more frequently, and that names

tend to become less popular when they are farther from the mean.

We also observe that new names enter into use over time (faster than old names
disappear), while the most popular names tend to decline in popularity over time, as
people look for unique names. For example, the most popular name in 1900 is given to
almost 4% of babies born that year, whereas the most popular name in 2000 is given to less

than 1% of babies that year, as shown in Figure[l]

To capture the dynamics of identity expression over time, we cannot assume that

everybody immediately maximizes their utility. Instead, over time people may change their
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Figure 2
Fuclidean distance between the vector representation of “Wynona” and the mean name
vector, as well as the popularity of the name “Wynona” for each year the name was given.

expressions of identity to achieve higher utility. We need not fully prescribe this process,
but assume only that people make changes that increase their own utility, in accordance

with some better-reply dynamics (Friedman & Mezzetti, 2001 Monderer & Shapley, |1996b)).

Definition 1 (Better-reply dynamics). At any given time t, one person i may consider
switching from x; to f; he switches if and only if u;(X') > u;(X); and for each person i
and any best response x} (to X(t)), the expected time until person i considers switching to

. - .
x; s finite.

The motivation for better-reply dynamics is that people are boundedly rational and
adaptive (Gigerenzer, 2000). They can see what the people around them are doing and can
search for something better (myopically), but they do not instantaneously react to changes
in other people’s behavior or anticipate these changes before they occur (Fiske & Taylor,
2013). Often they rely entirely on automatic, subconscious processing (Bargh &

Chartrand, 1999). Almost all commonly assumed adaptive learning dynamics are
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particular specifications of better-reply dynamics (Hofbauer & Sigmund, 2003)).

Results: Social Dynamics in a Well-Mixed Population

Theorem 1. Suppose people derive utility from both their conformity and their uniqueness
in the population, as in Equation . Then any better-reply dynamics necessarily converge

to a pure strateqy Nash equilibrium.

The proof is presented in the SM. It follows from Lemma 1 in the SM, which
identifies an exact potential function for this game. The existence of a potential function
for the game means that any time that an individual finds a more preferred expression of
identity, the shift in his own behavior necessarily moves the population as a whole toward a
Nash equilibrium. Convergence to equilibrium is guaranteed because the value of the
potential function can only increase as people adapt to each other, i.e.; all changes are
toward an equilibrium.

Two examples of Nash equilibria, among many that exist, are shown in Figure
These equilibrium distributions of identity expression are approximately symmetric around
a single centrally-located peak because chosen expressions of identity all need to yield
approximately the same utility in equilibrium — if any expression of identity generated
higher utility, other people would want to adopt it; if it generated lower utility, people
would give it up. (Minor deviations from perfect symmetry may arise from discrete-person
effects.) The distributions are composed of a lot of people clustered near the mean and
fewer people filling in around the periphery because the cost of being far from the mean
(non-conforming) needs to be balanced against the cost of being less unique when near the
mean.

Theorem [1|is a stark result that shows that our simple model makes a clearly
unrealistic prediction. It says that in a well-mixed population, in the long run we will not
see popularity cycles, perpetual change, or novelty. The fact that we do, in reality, observe

popularity cycles, perpetual change, and novelty suggests that we should consider a more
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Figure 3

Two Nash equilibria distributions of identity expression for populations of N = 100
individuals. We set A = 1.5 for this illustration. (A): Expression of a single
one-dimensional trait over the domain {0..15}. (B): Expression of a single
two-dimensional trait over the domain {1..10}2. By symmetry, the distributions can be
shifted anywhere within these (or wider) domains, and many strategy profiles give rise to
the same population distributions. Fven after accounting for these symmetries, these Nash
equilibria are not unique.

realistic model. We now consider the social dynamics that result from assuming that
people care only about the expressed identities of their immediate neighbors in their social
network. Naturally, people can only be influenced by the other people they can observe,

and social influence thus must be mediated by the social network.

Model 2: Social Influence and Identity Expression in Social Networks

A social network is described by an adjacency matrix A where a;; = 1 if person i
observes, and thus cares about, person j’s expressed identity (and equals 0 if not). Let
n(i) = {j : a;; = 1} denote the set of people that person ¢ observes, i.e., his neighbors.

Conformity among one’s neighbors depends on distance from one’s neighbors’
average identity, Z,.;). Uniqueness among one’s neighbors depends on the average amount
of shared traits among one’s neighbors (or, more precisely, the average across the different
aspects of identity of the number of neighbors who express the same trait as oneself),

denoted 7;(X;7(7)). Thus, we now model person i’s utility given the profile of expressed
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identities X and his set of neighbors 7(7) as

wa(X) =~ = By 2 = A (X (0). 2)

Results: Social Dynamics in Social Networks

Theorem 2. Suppose people derive utility from both their conformity and their uniqueness
among their neighbors in a social network, as in Equation (@ with A > 1 and m = 1. Then
there exists a social network (i.e., an adjacency matriz 121) such that no pure strateqy Nash

equilibrium exists and, thus, better-reply dynamics never converge to an absorbing state.

Proof. By construction. We provide an example of a social network with N = 3 people
that illustrates the result. (Any larger social network that contains this network as an
out-component also suffices.) Let person 1 observe (only) person 2, person 2 observe (only)
person 3, and person 3 observe (only) person 1. That is, the network is a cycle graph with
length 3.

Observe that the best response correspondence for each person is as follows:

x] €{x: Hx—x2]|2 =1}
x5 €{w: HZE—JJ3H2 =1}

vi€{r: ||z —m|? =1}

Each person wants to be one unit of distance away from the person he is observing. If we
associate the parity of an expressed identity x with two colors (i.e., distinguish only
whether the sum of its integer coordinates is even or odd), then each person wants to have
the color different from the person he is observing. However, it is impossible for all three
people to simultaneously choose best responses because (at least) one pair of them will

always be the same color ] O

3 This is the case for any odd-length cycle, due to a basic mathematical theorem about graph coloring.
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In contrast to the result for the well-mixed population, which is guaranteed to
converge to equilibrium, Theorem [2| says that there are social networks for which
convergence to equilibrium is impossible, because no equilibrium can exist. For the simple
cyclic network used to demonstrate the result, any individual finding his most preferred
expression of identity necessarily makes the person observing him want to find a different
expression of identity. Thus, with only local interactions in a social network, perpetually

changing identity expression and popularity cycles become possible.

This result is consistent with the computational patterns generated by Smaldino
et al.’s (2012) agent-based model of social identity dynamics arising from optimal
distinctiveness theory. Their model also features conformity and distinctiveness motives
(specified somewhat differently as opponent processes), and the incorporation of simple
(lattice) social network structure in some cases leads to non-convergence in that model as

well.

Observe that the uniqueness motive is critical for obtaining our result. If we were to
eliminate the uniqueness motive by setting A = 0, then any homogeneous profile of
expressed identities (with z; identical for all i) would be a pure strategy Nash equilibrium,
regardless of the social network structure. Other models of conformity pressure with local
interactions on networks, but with no uniqueness motive, also generally converge to
equilibrium, although polarization is possible, with behavior varying between clusters, even
without the uniqueness motive (Axelrod, |1997; Centola et al., [2007; Nowak et al., [1990).
Here, the uniqueness motive along with the local interactions together allow for more

complex social dynamics.

Still, Theorem [2| only provides an existence result constructed with a highly stylized,
simplistic social network. It does not tell us whether complex social dynamics typically
emerge from our model when people are connected by realistic social networks. Real social
networks have community structure with high levels of triadic closure (i.e., clustering or

transitivity) — people associate mostly in small, tightly knit groups (Girvan & Newman,



HIPSTERS AND THE COOL 16

2002; Granovetter, 1973; Newman & Park, 2003)). This community structure does not
typically include the kind of isolated cycle invoked in the proof of Theorem [2, We now use

computational modeling to explore the dynamics of our model on realistic social networks.

Realistic Social Networks

We used a variant of the Jin-Girvan-Newman algorithm (Jin et al., [2001) to create a
sample of 25 directed social networks with positive levels of clustering and community
structure and limited out-degree. The networks have N = 100 people, each of whom can
observe up to a maximum of z,,,, neighbors. Connections are formed and broken randomly,
with a tendency to begin observing specific individuals who currently either observe or are
observed by others who one is already observing. (Real social networks exhibit both
patterns of directed closure (Brzozowski & Romero, 2011)).) This tendency for clustering
depends on a free parameter r. We varied r in {.01,.05,.1,.5,1} and zp.x in {3..7} to
create the 25 networks. (See Materials and Methods in the SM for additional details.)
Networks with higher 2., have more connections, and networks with higher r are more

tightly clustered.

For each of these social networks, we repeatedly computed better-reply dynamics,
specified with a simple random search for better replies based on the utility function in
Equation with A in {0.5,1.5,5.0}, to see how often the dynamics converged to
equilibrium within 1,000,000 time steps. (Different specifications of better-reply dynamics
could lead to different patterns of identity expression, but they all share the property that
their rest points are the Nash equilibria of the game, so our results should be robust across
this class of dynamics.) For robustness we considered three different specifications of the
space of possible identities: first, m =1, d = 1, and {a..b} = {0..99}; second, m = 1, d = 2,
and {a..b} ={0..9}; and third, m =2, d = 1, and {a..b} = {0..9}. (Higher dimensional
spaces for identity expression would be more realistic, but are too computationally

intensive to explore. We simply made the spaces large enough that everybody could express
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unique identities.) We repeated each computation 10 times, for a total of 2250 trials across
the 9 different parameter specifications and 25 networks. (See Materials and Methods in
the SM for additional details.) If the dynamics did not converge within 1,000,000 time
steps, we classified them as non-convergent (for that trial). (We believe the cutoff at
1,000, 000 time steps provides ample time for convergence, because we first computed the
dynamics in the full, well-mixed population, for which Theorem [I| tells us that they must
converge, and found that across 90 trials, the dynamics always converged within 2000 time

steps. We discuss additional checks on the sufficiency of 1,000,000 time steps below.)

Computational Results: Frequency of Non-Convergence

The frequency of non-convergent trials varied with the parameters specifying the
game and the network formation process, with the value of A in particular playing a critical
role. When A = 0.5, the dynamics usually converged to equilibrium (68.53% of these 750
trials). Figure shows the frequency of convergent trials for each of the 25 networks, for
each of the three specifications of the space of identities, with A = 0.5. Darker shading
indicates higher frequencies of convergence. The frequency of convergence varies
non-monotonically with the maximum out-degree of the network z,,.c. For 2., = 3 or 4,
the dynamics almost always converge, whereas for z,x = 7, the dynamics usually do not
converge. Yet there is more convergence with 2., = 6 than with z,,, = 5.

When A = 1.5, the dynamics usually did not converge (only in 18% of these 750
trials). Figure shows the frequency of convergent trials for each of the 25 networks, for
each of the three specifications of the space of identities, with A = 1.5. Four of the
networks with zy,., = 4 usually converged (specifically, those with r > .01). A few of the
other networks occasionally converged. Many never converged at all.

When A = 5, the dynamics almost never converged. The only exception was the
network with z,.« = 4 and r = 1, which converged in all 10 trials with m =1 and d = 1.

However, none of the other 740 trials with A\ = 5 converged. A stronger uniqueness motive
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Figure 4

Frequency of convergent trials for each network. Darker shading indicates higher frequencies
of convergence. The trials with A =5 are omitted because they almost never converged.

(larger \) appears to make convergence much less likely.

The results presented here leave room for two arguments raising concern that
perhaps the dynamics would always eventually converge if they just had more time to
continue running. First, it is surprising to see so many parameter specifications for which
the dynamics sometimes converge and other times do not. We might have expected
non-convergent trials whenever there is no pure Nash equilibrium, but that whenever such
an equilibrium exists and convergence is possible, it would eventually occur. Perhaps it

just needs more time. However, even when a pure Nash equilibrium does exist, allowing the
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dynamics to converge in some trials, it is possible for the dynamics to enter a random walk
on an absorbing subspace, from which it is no longer possible to reach the equilibrium.
(That is, the dynamics could sometimes move away from an equilibrium and then be
unable to return to it.) This could explain the observed frequencies of convergence that are
positive but still less than 100%. Still, a second cause for concern is that larger values of A
give the better-reply dynamics more possible states to explore when a neighbor adopts
one’s own identity. Thus, we should expect it to take longer to reach an equilibrium with
larger values of \. If the dynamics usually converge with A = 0.5, might they be on their

way, but not quite there yet, with larger values of \?

A few additional pieces of data reassure us that most of the trials we have classified
as non-convergent are not artifacts of terminating the computation too quickly. First, for
each trial we examine the fraction of individuals that are satisfied with their current
identities every 1000 time steps during the trial. Convergence to equilibrium occurs if and
when everybody is satisfied. So, the trajectories of the percentage of satisfied individuals
also reveal the times to reach equilibrium, when convergence occurs. Figure 5[ shows the
percentage of satisfied individuals over time for each trial with m =1, d = 1, and varying

A, for networks with r = 1. Figures [SM3| and [SM4] in the Supplemental Material show the

corresponding results with m = 1,d = 2 and with m = 2,d = 1 respectively. The results for
networks with » < 1 look similar and are omitted. Across the board, when the dynamics do
converge to equilibrium, they tend to do so quickly. Although the distribution of
convergence times does have a fat tail, it certainly appears that convergence becomes less
and less likely over time. Additionally, while the percentage of satisfied individuals appears
to bounce around randomly, for many of the parameter values it appears to be bounded

well below 100%.

The trajectories of the percentage of satisfied individuals suggest that the trials we
have deemed non-convergent really would never converge, but of course there can be no

guarantee. With N = 100 individuals choosing among 100 possible identities, it is simply
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Figure 5
Percentage of individuals satisfied over 1,000,000 time steps for each trial with
m=1,d =1, and varying X\, for networks with r = 1 and varying zmax-

not computationally feasible to check every possible scenario. However, with N = 8
individuals choosing among 8 possible identities, it is feasible to exhaustively search for
equilibria. We created an additional social network using the same algorithm with 2., = 3
and r = 1, but with V. = 8. Once again, the better-reply dynamics with A =5 and m =1,
d =1, and {a..b} = {0..7} did not converge. We then exhaustively searched every profile of
identities on this space and verified that no pure Nash equilibrium exists. This guarantees
that the dynamics would never converge. This network does not contain an isolated
odd-cycle, which our proof of Theorem [2| relied on, but it provides another example that
shows that non-convergence is possible, and moreover can occur with realistic network

structure.

We interpret these results to mean that when the uniqueness motive is sufficiently
strong, the dynamics on realistic social networks usually will not converge. However, if the
uniqueness motive is too weak, individuals feel little pressure to differentiate themselves,

and they may settle into an equilibrium with overlapping identities.
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Computational Results: Conformity

We further explore the dynamics by observing the trajectories of identity expression
over the initial 10,000 time steps. Clearly, because of the uniqueness motive, there will
always be some diversity of identity expression. As the uniqueness motive gets stronger,
i.e., as A increases, we expect to observe less conformity. Sure enough, this is the case.
Figure [6] displays the distributions of the distances from individuals’ identities to the
average identity in the population and to the average identity of their neighbors in the
network, ||z; — z|| and ||z; — Z, ;|| respectively, measured at the 10,000th time step, for
m =1, d =1, and varying \, aggregating trials across the different networks.

Figures [SMp| and [SM6] in the Supplemental Materials show the corresponding results for

m =1, d=2 and for m = 2, d = 1 respectively.
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Figure 6

Bozx plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10,000th time step, for m =1, d =1, and varying X\, aggregating trials
across the different networks.

We first compare the average distance to the population mean expressed identity

across different values of A\. The average distance to the population mean increased from
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0.59 (SD = 0.57) when A = 0.5 to 0.99 (SD = 0.83) when A = 1.5 to 1.45 (SD = 1.13) when
A = 5. (All differences are statistically significant with p < .001 in t-tests.) We then
compare the average distance to one’s neighbors across different values of A. The average
distance to one’s neighbors increased from 0.61 (SD = 0.26) when A = 0.5 to 0.85

(SD = 0.58) when A = 1.5 to 1.25 (SD = 0.86) when A\ = 5.

We also check whether the expressed identities display the signature empirical
pattern associated with social influence: do individuals express identities that are more
similar to their network neighbors’ identities than to the average member of the population
as a whole? The differences between the distances to the population mean identity and to
the mean of one’s neighbors’ identities appear to be small in Figure [6] but they are all
statistically significant with p < .001 in paired t-tests. For A = 1.5 and A = 5, individuals
do indeed express identities that more closely resemble the people they observe than others
in the population. Yet for A = 0.5, individuals are actually more similar to unobserved
others than to their network neighbors. There is little diversity across the entire population

in these trials.

Computational Results: Momentum and Contagion

Next we look for momentum in the dynamics. For simplicity, we restrict this
analysis to trials with m = 1 and d = 1. As a measure of momentum over time, we
compute o190(t) = 15 Spoy Az (t) * Az(t + t'), where Az (t) is the change in identity
expression of the individual who searched for a better reply at time step t. We take the
average momentum for a trial to be the average value of g109(t) for 1000 < ¢ < 9900. (We
exclude the first 1000 time steps because they tend to be noisy.) Figure [7| shows the
average momentum on each network for varying A, aggregated over 10 trials. We observe
that average momentum is always positive (M = .0096, SD = .31), indicating that changes
in identity expression tend to persist in the same direction over time.

Figure [7] also shows clear differences in the average momentum across the different
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Figure 7

Average momentum on each network for varying \, with m =1 and d = 1, aggregated over

10 trials. In all cases, the average momentum is positive. Darker shading indicates greater
momentum.

networks. Most prominently, we observe particularly strong momentum on the network
with » = 0.1 and 2z, = 6. This finding is robust across multiple trials, not the result of a
single outlying trial, but appears to be specific to this particular network. (We created
another network with the same parameters, r = 0.1 and 2., = 6, to see if this result would
replicate. It did not. In the attempted replication, the average momentum aggregated over
30 trials across the same A values was .006.) We examined the network’s properties
(available in the SM) hoping to explain why strong momentum develops on this network,

but the network does not appear to have unusual characteristics or structure.

We use multiple linear regression to assess how momentum depends on our
parameters r, zy.x and A. Table [l reports the results. We find that average momentum is
increasing in A and z... Intuitively, higher values of A make individuals willing to make
larger shifts in their identity to remain unique, which generates stronger momentum.
Higher values of z,,,, mean that a single person’s change in identity affects more of the

other people in the network who observe that change, which also generates stronger

momentum.

We were particularly interested in how average momentum depends on 7, because

this distinguishes a complex contagion from a simple contagion. Recall that a complex
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Table 1
Linear regression of average momentum.

Effect Estimate SE D

A .0051 .0001 < .001
Zmax .0007 .0001 < .001
r —.0001 .0001 291
Constant —.002 .0005 < .001
Observations 6,675,000

R? .0002

Adjusted R? .0002

Residual Std. Error .3062 (df = 6,674, 996)

F Statistic 430.8 (df =3; 6,674,996) p < .001

contagion describes the case that substantial social reinforcement is necessary to change
behavior, whereas behavior spreads more easily in a simple contagion. Thus, clustering of
the social network provides pathways for social reinforcement that are critical for complex
contagions, but which are redundant and unnecessary for simple contagions (Centola &
Macy, 2007). So, in a simple contagion, there would be greater momentum when there is
less clustering (smaller ), whereas in a complex contagion, there would be greater
momentum when there is more clustering (larger r). Alas, we find no significant linear
trend here. Qualitatively, it appears that momentum is strongest for an intermediate level
of clustering, but this speculative finding might just reflect the observation of particularly
strong momentum on the single network with r = 0.1 and z,.c = 6. At an intuitive level,
because social influence from multiple neighbors combines additively in our model (i.e.,
each neighbor shifting in a given direction adds steadily to the social pressure to shift in
that same direction), our social dynamics may be in a border zone between simple
contagion and complex contagion. When behavior choices are binary, additional neighbors
changing their behavior can either be substitutes for each other or complements with each
other in the production of social influence, corresponding to simple contagions and complex
contagions respectively, but in our model, expressions of identity may vary incrementally
along one or more dimensions. With additive social influence involving neither

substitutability nor complementarity among neighbors, our dynamics resist easy
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categorization as either simple or complex contagion.

Model 3: Co-Evolution of Identity Expression and Social Networks

Up to this point, we have considered identity expression on fixed social networks,
but social networks themselves evolve over time. There is ample empirical evidence that
people are more likely to form (and less likely to dissolve) all kinds of relationships with
people who are more similar to them — a pattern of social network dynamics known as
homophily (McPherson et al., 2001). By first forming the social networks and then
considering the dynamics of identity expression on these fixed networks, we could capture a
form of social influence, but we could not capture homophily. Yet empirical research
suggests that homophily in the formation of social connections has equal or even stronger
effects on patterns of similarity between friends compared to social influence (Cohen, [1977;
Kandel, 1978)f_f] We now consider integrating the dynamics of identity expression with the
dynamics of social network formation, to incorporate homophily.

Modeling the co-evolution of behavior and social network structure can give us
insight about how social influence and homophily interact and reinforce each other.
Together, they can generate surprising emergent patterns. For example, Centola et al.
(2007) have shown that homophily in forming and maintaining social connections on top of
conformity pressure transmitted through the social network can preserve cultural diversity
between social groups (see also Holme & Newman, [2006; Kozma & Barrat, 2008)). Cultural
differences can then lead to different network structures (Muthukrishna & Schaller, 2020
Smolla & Akgay, 2019). Models of the co-evolution of identity expression and social
network structure typically assume only a conformity motive. We depart from this existing
literature by introducing the additional motive for demonstrating uniqueness. The
uniqueness motive contributes to the emergence of popularity cycles here, as cultural

trends develop momentum and often do not converge to equilibrium.

4 Empirically disentangling social influence and homophily is challenging (see Aral et al., 2009; Levitan &
Visser, 2009; Shalizi & Thomas, 2011} Steglich et al., [2010).
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Our model of co-evolving identity expression and social networks relies on the same
utility function we used above, given in Equation [2] Now, at each time step an individual
can either consider a change in his own identity or a change in the network neighbors he
observes. (We assume each consideration is equally likely.) In the former case, the
individual randomly considers a new expression of identity. In the latter case, the
individual considers forming a new connection either to a randomly selected other person
or specifically to another person who already has a link (in either direction) with someone
he already has a connection to (i.e., with a tendency toward triadic closure), and if the
focal individual already had as many relationships as he could handle, he simultaneously
considers breaking an existing connection. (In reality, limits on the number of relationships
an individual can handle are likely to be somewhat more flexible, but this stylized model
parsimoniously captures the clustering and bounded out-degree that characterize social
networks.) Critically, the individual only accepts changes to his identity or to his social
network if they increase his utility. (An exception is made for the first network connection
that each individual considers forming, which is always accepted, because the utility
function is not well defined if the individual has no connections at all.) See Materials and
Methods in the SM for additional details about the process. The model effectively brings
together Jin et al.’s (2001)) social network formation process with the preferences about
identity expression that we have proposed here, and incorporates homophily by only
allowing changes to one’s social network that increase utility. The assumed tendency
toward triadic closure may induce considerable additional homophily by reinforcing the
effects of homophily in initial network connections or social influence on multiple

neighbors, as empirically observed (Kossinets & Watts, [2009)).

We investigate whether our earlier results are robust in this model of co-evolving
identities and social network ties. We ran 30 trials each with A = 0.5, A = 1.5, and A = 5.
When A = 0.5, 23% (7/30) of the trials converged to equilibrium. When A = 1.5 or A = 5,

none of the trials converged to equilibrium. These results are consistent with our earlier
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results for the fixed social networks.

We again compare the conformity among network neighbors to the conformity in
the population as a whole. Figure [§| shows the average distances to the population mean
identity and to one’s neighbors’ mean identity, measured at the end of the trial, for each A,
aggregating across the 30 trials. We find that expressed identities are significantly more
similar to one’s neighbors’ identities than to the population mean identity in all three
cases. The differences here are much starker than than they were in the comparisons on the
fixed social networks because the social networks that endogenously form here are not
necessarily fully connected. When people sort themselves into non-overlapping social
groups, the distance between the groups’ mean identities tends to be larger than the

variance of identities within a group.
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Figure 8

Average distance to the population mean identity and to one’s neighbors’ mean identity,
measured at the end of the trial, for each X\, aggregating across the 30 trials. The error bars
correspond to the standard errors for the means.

We again look for momentum in the dynamics. This time we simply compute the
percentage of successive changes to identities that are in the same direction over the
duration of each trial. Averaging across the trials, well above half (59%, 95% CI

[58.2%, 59.9%)]) of shifts in identity are in the same direction as the previous one. When we
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restrict to changes in identity within the largest connected component of the network after
the first 10,000 time steps, it jumps to almost always (99.4% of successive shifts, 95% CI
[99.37%,99.45%]) going in the same direction. Thus, the finding of significant momentum

carries through from our earlier results for the fixed social networks.

Discussion

These results tell us that with local interactions on realistic social networks, the
interplay of conformity and sufficiently strong uniqueness motives produces social dynamics
for identity expression that are indeed typically non-convergent. People continually change
their expressed identities, and certain forms of expression come into and out of fashion in
unpredictable cycles. Popularity cycles are inherently unpredictable in the model because
people typically have multiple better replies (and even multiple best responses) to choose
from in the face of most profiles of their neighbors’ identity expression. The multiplicity of
paths the dynamics could take leaves room for idiosyncrasy.

Our findings help us understand the role of social networks and local interaction in
the dynamics of cultural trends. Popularity cycles, perpetual change, and novel expressions
of social identity should be expected when people observe their neighbors in realistic,
directed social networks and care about being unique as well as fitting in. While popularity
cycles are often attributed to chase-and-flight dynamics arising from asymmetric imitation
and differentiation, complex social dynamics of identity expression may also arise from our
alternative specification of conformity and uniqueness preferences and social network
structure.

Consider, for example, popularity cycles in given names, as seen in the rise and fall
in the popularity of the names “Jennifer” and, subsequently, “Jessica,” or the recent
popularity of “Emma” following that of “Emily” (Berger et al., 2012)). These popularity
cycles do not appear to reflect chase-and-flight dynamics. We cannot identify a clearly

demarcated group chasing the trends, e.g., that wants to assimilate their kids with the
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other “Emily”s, or a group exhibiting flight, e.g., that opts for “Emma” instead of “Emily”
to avoid an undesirable association. Moreover, there would be no reason to choose a name
like “Emma,” that is so similar to “Emily,” if the only goal was differentiation. Rather, it
appears that parents are drawn to a trendy name, but look for a similar name that is more
unique. (They may be quite surprised when that name becomes so popular too). The
proposed account of popularity cycles driven by concurrent conformity and uniqueness

motives, with social influence transmitted through a social network, better fits this scenario.

Recognition of conformity and uniqueness as opposing, but not mutually exclusive,
motives is also part of optimal distinctiveness theory (Brewer, 1991} Leonardelli et al.,
2010). The theory posits that people form collective identities by choosing to associate
themselves with social groups. They can simultaneously pursue assimilation and
differentiation goals by viewing themselves as members of groups that provide both a sense
of belonging and a sense of distinctiveness. Their desired social identities may shift
according to their prioritization of these motives (Pickett et al., [2002)). Optimal
distinctiveness theory deals with group affiliation and collective identities as fundamental
constructs. In contrast, our concept of social identity expression operates at the level of the
individual. In our view, collective identities emerge at the level of the group based on their
members’ individual identities. From the alternative, similarly valid perspective, we could
propose that individual identities emerge from a psychological process of finding
consonance between the collective identities of the many groups that an individual affiliates
with at any point in time. Connecting these perspectives requires deeper understanding of
how people choose to associate with or withdraw from social groups, and how this relates
to social network structure. While this integration remains beyond our present grasp, we
find it useful to have complementary theories aimed at different levels of social identity

(Postmes et al., 2005; Turner & Oakes, [1986)).

We use game theory and computational modeling here to describe social dynamics

with mathematical precision. Social phenomena do not always reflect individual preferences
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(Schelling, (1971)), but understanding individuals’ motives is critical to understanding social
dynamics. Mathematical modeling helps us understand the relationship between
psychological motives and aggregate social dynamics when interactions generate nontrivial
feedbacks. Our work here is part of a tradition of formal modeling of identity expression
and fashion (Acerbi et al., 2012} Miller et al., 1993; Smaldino et al., 2015; Smaldino &
Epstein, 2015; Smaldino et al., 2012; Strang & Macy, 2001} Tassier, [2004). This approach
yields us deep theoretical insight, and we hope it inspires more research leading to further

insights into social dynamics and identity expression.
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Supplemental Material A

Materials and Methods

Vector Representation of Names

We use a dataset from the Social Security Administration (SSA) reporting names
from Social Security card applications for births in the United States in each year from
1880 to 2020, excluding names occurring less than 5 times in a given year to maintain
individual privacy. The original dataset contained 100,364 unique names across all years.
In our analysis, we exclude names that appear in less than 25% of the years; that is, we
retain names that occur in at least 35 of the 141 years in the dataset. This leaves us with

17,180 unique names.

To embed the names in a vector space, we use a pre-trained model produced using
the fastText algorithm from Mikolov et al. (2018). The model uses 2 million word vectors
trained with subword information on Common Crawl data in the English language,
consisting of 600 billion tokens. Since fastText is based on co-occurrences of strings of
characters, the model can produce a vector for every name in the SSA dataset, including
those that do not explicitly appear in the Common Crawl data. The fastText model

represents each name as a 300-dimensional vector.

To calculate the mean name vector for each year, we average the name vectors
weighted by the number of babies receiving each name that year. We use the vector
representation for each name to calculate the Euclidean distance between that vector and
the mean vector for each year that the name appears in the dataset. We present results
using Euclidean distance for consistency with the general model proposed in this paper; we

get similar results using cosine distance in analyses presented in Figures [SM1] and [SM2| To

calculate popularity, we divide the number of babies given each name by the total number
of babies born in the year and included in the dataset. (That is, the denominator is missing

babies with names excluded from our dataset.) We convert proportions to percentages.
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The Social Networks

We borrow Jin, Girvan, and Newman’s Model II algorithm for growing undirected
social networks (Jin et al., 2001)) and modify it to generate directed social networks with
N = 100 people, each of whom can observe up to a maximum of z,,,, neighbors. The
network is initialized with all 100 people and no connections. The following three steps are

then repeated 100 times:

1. Choose 3 pairs of individuals uniformly at random. For each pair ¢ and 7, if ¢
observes less than z,,,, people and does not already observe j, then i begins to
observe j; else, if j observes less than z,,,, people and does not already observe i,

then j begins to observe 1.

2. Randomly select a fraction r of the triads 7, 7, and k£ such that ¢ observes k and k
observes j or that ¢ and 7 both observe k. If i observes less than z,,,, people and does

not already observe j, then ¢ begins to observe j.

3. Randomly select and break 0.5% of connections (rounded up).

All 25 social networks, measures of their structural properties, and the Python source code

used to create them are made available on OSF and can be accessed at osf.io/s4t6r.

The Better-Reply Dynamics

Our computational model adopts a specification of the better-reply dynamics in
which at each time step, one randomly selected individual searches for (and upon discovery,
adopts) a better reply to the current population profile. Initial strategies are randomly
(uniformly) distributed. We check for convergence every 1000 time steps by checking
whether any individual can find a better reply. The Python source code and complete

output data are available on OSF and can be accessed at osf.io/s4t6r.


https://osf.io/s4t6r/
https://osf.io/s4t6r/
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Co-evolving Social Networks and Identities

We again assume there are N = 100 people. We consider the space of identities with
m=1,d=1, and {a..b} = {0..9}. We set the maximum number of neighbors that an
individual can handle (i.e., maximum out-degree) to be zyax = 5. In this model, in contrast
to the earlier model, each time step corresponds to a single individual considering a single
change (either to his identity or his network), rather than searching for (i.e., repeatedly
considering) such a change. We allow the dynamics to run for up to 2,000, 000 time steps
before cutting them off and classifying them as non-convergent, and we check for
convergence every 1000 time steps.

Initially people have no network connections and strategies are randomly
distributed. At each time step, there is an equal 50% chance of considering a change in
identity or a change in the network. In the former case, a randomly selected individual
considers switching to a randomly selected new identity and does so only if the switch
increases his utility. In the latter case, the probability of considering a new connection
from person i to person j is proportional to 1 + 2000(7, + Tout), Where 73, is the number of
triads in which ¢ and j both observe some other individual &k, and 7,y is the number of
triads in which 7 observes some other individual k, who then observes j. If person ¢ already
has 2z, connections to other people, then the potential connection to j is considered
jointly with breaking one of ¢’s existing connections. Person i goes through with the change
only if it would increase his utility or if he previously had no connections (i.e, undefined
utility). The Python source code and output data are made available on OSF and can be

accessed at osf.io/s4t6r.
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Supplemental Material B
Mathematical Appendix

Formal Definitions
We can express person ¢’s neighbors’ average identity as

_ 1
CRATGIP I
We can express the number of ¢’s neighbors who adopt the same expression of identity trait

[ as person % as

ﬁi,u(X;n(i)) = Z 5(7;1'#7%]}/1)’

JEN()

where ¢ is the Kronecker delta function. Then

7 (X:n(i)) = ;Zm,AX;n(i))

w
is the average number of neighbors sharing one’s traits (across all the aspects of identity).

In a well-mixed population, we set n(i) = {j : j # i} to recover n; ,(X) and n;(X) for all 7.

Supplementary Results and Proofs

Lemma 1. In a well-mized population with utility functions given in Equation , the

game has an exact potential function:

N -1 _ 1
i=1

Proof. Consider a change in the profile of identities X — X’ resulting from person i alone
changing his identity x; — i, i.e., such that 2 = z; for all j # i. We need only show that

the change in the potential function equals the change in ¢’s utility:
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B(X) — B(X) = wi(X') — uy(X).

We express the change in the potential function as a sum of the changes in each

term:

> 2 (e =217 = 1 = 1) + 3 53 () = my ().

J=1
We consider each of the two summations separately.

We expand the first sum:

N
S (e ol - ) =
T (e =2l et~ 217) +
§N§lm@—w%w¢—wm.@>
We find it useful to express the average identity as x = %j_i + ﬁxz Plugging in to the

first term in Equation , we have:

_ _ N —1\° . .
s =22 = lla} = ) = (=) (s = il = flat = 2.

Plugging in to the second term in Equation , expanding and canceling off common

terms, we have for any j # i:

v — 2" = |2 — 2/|* =
1 = 2 / = 2 2 = /
~2 (||l’z' — Tq|” = i — 2] ) + N(l’j —Z) - (3 — 7).

N2

Observe that the last term here drops out when we sum over all j # ¢ because

> jzi(x; —x_;) = 0. The first term does not depend on j, so summing over all j # i just
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multiplies this term by a factor of (N — 1). Putting it all together, we find that

Equation simplifies to:

NN -1 _ _
>~ (e = 2I° = lla; — 7'I1°)

j=1
(N=1)* (N —1) ) ]
= (M O (b= = - )

N —1\? _ _
— (55—) Qs = il = = 3-a1?)

= [l — z)* = [l=f = 2|I*. (4)

Now, returning to the second part of the change in the potential function, we can

use the formal definition of n;(X) to write:
N1 PR S Q. .
> % (n;(X) —n; (X)) = T IS (5(%',m Thpu) = 0(Z s l‘k,y)) :
i=1 w =1 kA

The terms cancel whenever j = ¢ and k # 7, so we are left with:

J#i hti

=A— ZZ( Tjps Tiop) 5(1‘;’#,%’#))

1Y ];éz

:)‘Ezmi,u(){)_ni,u(){/)) = A(ni(X) —ni(X) . (5)

;)\12<Z(6(9&M,xi,u) 5(&) 0 2,)) + 3 (8(gs ) 6<x;,u,x§f,u)))

Putting Equations and together, we have now shown that
O(X') — D(X) = u(X) — uy(X). O

Proof of Theorem

Theorem [I] follows from Lemma [T by Monderer and Shapley’s [1996b argument. [
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Supplemental Material C

Supplemental Figures
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Figure SM1
Cosine distance between each name’s vector representation and the mean name vector,

along with the popularity of these names (i.e., the percentage of babies receiving each name)
in the years 1900, 1950, and 2000. Background shading indicates the number of names in
each bin.
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Figure SM2
Cosine distance between the vector representation of “Wynona” and the mean name vector,
as well as the popularity of the name “Wynona” for each year the name was given.
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Figure SM3
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m =1,

d =2, and varying X\, for networks with r = 1 and varying zmax-
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Figure SM4
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m = 2,

d =1, and varying X\, for networks with r = 1 and varying zmax.
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Figure SM5

Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10,000th time step, for m =1, d = 2, and varying X\, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.
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Figure SM6

Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10,000th time step, for m = 2, d = 1, and varying X\, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.
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