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Abstract

Cultural trends and popularity cycles can be observed all around us, yet our theories of

social influence and identity expression do not explain what perpetuates these complex,

often unpredictable social dynamics. We propose a theory of social identity expression

based on the opposing, but not mutually exclusive, motives to conform and to be unique

among one’s neighbors in a social network. We find empirical evidence for both conformity

and uniqueness motives in an analysis of the popularity of given names. Generalizing

across forms of identity expression, we then model the social dynamics that arise from

these motives. We find that the dynamics typically enter random walks or stochastic limit

cycles rather than converging to a static equilibrium. The dynamics also exhibit

momentum, preserve diversity, and usually produce more conformity between neighbors, in

line with empirical stylized facts. We also prove that without social network structure or,

alternatively, without the uniqueness motive, reasonable adaptive dynamics would

necessarily converge to equilibrium. Thus, we show that nuanced psychological

assumptions (recognizing preferences for uniqueness along with conformity) and realistic

social network structure are both critical to our account of the emergence of complex,

unpredictable cultural trends.

Keywords: Conformity | Games on Social Networks | Popularity Cycles | Social

Dynamics | Uniqueness
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Hipsters and the Cool: A Game Theoretic Analysis of Identity Expression,

Trends and Fads

Popular cultural practices come into and out of fashion. Researchers have observed

boom-and-bust cycles of popularity in music, clothing styles, automobile designs, home

furnishings, given names, and even management practices (Abrahamson, 1991; Berger,

2008; Berger & Le Mens, 2009; Lieberson, 2000; Lieberson & Lynn, 2003; Reynolds, 1968;

Richardson & Kroeber, 1940; Shuker, 2016; Sproles, 1981; Zuckerman, 2012). Popularity

cycles appear to be driven by social influence, e.g., by people adopting the music that their

friends listen to or that they perceive as popular (Salganik et al., 2006; Salganik & Watts,

2008). At the individual level, people are constantly looking for new ways to express their

preferred social identities (Berger, 2008; Chan et al., 2012; Hetherington, 1998; Rentfrow &

Gosling, 2006). The resultant social dynamics do not typically converge to equilibrium.

What are the social forces that lead to such perpetual change and novelty?

Social pressure to conform is a powerful force when behavioral patterns across a

society shift in unison. Psychologists since Asch have recognized the remarkable strength

of the conformity motive, stemming from a fundamental goal to fit in as part of a social

group (Asch, 1955, 1956; Cialdini & Trost, 1998). The need to belong is a fundamental

driver of social behavior (Baumeister & Leary, 1995; Gere & MacDonald, 2010). This

social need makes people more sensitive to the behaviors of other people around them

(Pickett et al., 2004). People tend to feel uncomfortable about considering, holding, and

expressing beliefs that conflict with the prevailing views around them as well as about

behaving oddly, in ways that might expose oneself as an outsider to the group (Golman

et al., 2016; Rivis & Sheeran, 2003; Spears, 2020; Turner et al., 1987). Conformity helps

people gain social approval (Cialdini & Goldstein, 2004). For example, people wear similar

clothing styles as their peers in order to be socially accepted (Rose et al., 1994; Smucker &

Creekmore, 1972). Given the conformity motive alone, we might expect to observe

convergence to an equilibrium in which society becomes monolithic, yet instead we actually
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observe persistent diversity.

Opposing the motive to conform is a similarly universal human need for uniqueness

(Lynn & Snyder, 2002; Snyder & Fromkin, 1980). Standing out in some small way can help

a person individuate himself (Maslach et al., 1985; Rios Morrison & Wheeler, 2010). The

hipster striving to be cool departs from mainstream culture to assert individuality. While

the desire to differentiate oneself clearly works against the desire to blend in (Imhoff &

Erb, 2009), people simultaneously pursue assimilation and differentiation goals (Brewer,

1991; Chan et al., 2012; Hodges, 2017; Hornsey & Jetten, 2004). Chan et al. (2012)

demonstrate that people choose distinctive attributes on one dimension of identity while

conforming to prevailing behaviors on other dimensions of identity, thus aiming to be

identifiable, but not identical. Such idiosyncratic displays of non-conformity, or small

deviations from common patterns of identity expression, are judged positively (Bellezza

et al., 2014; Warren & Campbell, 2014). People reassert their uniqueness specifically when

mimicked by similar others (White & Argo, 2011). While there are certainly cultural

differences in the interplay of conformity and uniqueness motives (Kim & Markus, 1999),

both motives generally contribute to identity expression at some level, which may vary

according to culture and context (Blanton & Christie, 2003; Vignoles et al., 2000;

Yamagishi et al., 2008). Preferences for idiosyncratic behavioral patterns can preserve

diversity in equilibrium (Smaldino & Epstein, 2015). Still, the question remains why

behavioral patterns often do not remain in a stable equilibrium with everyone finding an

optimal balance between distinctiveness and conformity. Why instead do behavioral

patterns go through perpetual change, with particular behaviors cycling into and out of

fashion as cultural trends play out?

One explanation, tracing back to Simmel (1957), is that an upper class tries to

distinguish itself from the common folk while the common folk try to imitate them (see

also Leibenstein, 1950). Accordingly, conformity may be particularly high among the

middle class (Phillips & Zuckerman, 2001). In modern models of identity signaling,
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membership in one group may be preferable to membership in another, and people want to

strategically distinguish themselves from those in the less favorable group (Berger & Heath,

2007). The resulting dynamic of imitation and differentiation (or “chase-and-flight”) can

lead to fashion cycles (Bakshi et al., 2013; Pesendorfer, 1995; Tassier, 2004; Zhang et al.,

2018). Undoubtedly, there are contexts in which elites initiate fashions and everyone else

strives to imitate them, but empirical research shows that in many other contexts, groups

with lower or equal status also strive to differentiate themselves (Berger & Heath, 2008). A

dynamic of mutual differentiation, without imitation, cannot account for popularity cycles.

Other models of popularity cycles rely on people continually discovering new

behaviors, which spread through the population and then get discarded, either through

random imitation (Bentley et al., 2004; Bentley et al., 2007), or with a motive for

conformity or anti-conformity (Acerbi & Bentley, 2014), or with the co-evolution of

behavior and preferences (Acerbi et al., 2012). These models account for boom-and-bust

cycles of popularity, but do not attempt to explain the source of the new behaviors that

continually enter the model and keep the dynamics from converging to equilibrium.

This paper explores a new account of the dynamics of cultural trends and

popularity cycles. We show that along with conformity and uniqueness motives, a realistic

network of social interaction may be a critical ingredient for complex social dynamics to

emerge. Specifically, we show that reasonable adaptive dynamics that would necessarily

converge to a static equilibrium given random interactions in a well-mixed pool of people

instead typically enter random walks or stochastic limit cycles, and thus never converge,

when interactions are restricted to individuals’ local neighborhoods in their social

networks. The social dynamics cannot converge in some cases because as some people find

more preferred expressions of identity, they disrupt others who observe them, making these

other people dissatisfied with the identities they had previously been happy to express.

The social network structure determines who are the innovators and who are the followers.

Popularity cycles in the expression of social identities display a number of empirical
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regularities, beyond the simple observation that they do not converge to equilibrium. They

often preserve diversity, with different people expressing different identities (see Jetten &

Hornsey, 2014). A hallmark pattern of social influence, that friends or acquaintances tend

to behave similarly, holds for identity expression as well as other kinds of behaviors

(Christakis & Fowler, 2013). Notably, friends display more similar attitudes than strangers,

although they often assume they agree with each other while unaware that they actually

disagree (Goel et al., 2010). Commonalities in identity expression can extend across large

communities – for example, there are regional correlations in the frequencies of given

names across U.S. states (Barucca et al., 2015). Non-controversial behaviors often spread

most quickly through “weak ties” in loosely clustered networks (the strength of the weak

tie being its tendency to serve as a bridge between groups with otherwise limited contact),

whereas behaviors that require social reinforcement from multiple sources, e.g., innovative

health behaviors or participation in social movements, tend to spread more quickly through

more tightly clustered social networks, in a process of “complex contagion” (Centola, 2010;

Centola & Macy, 2007). As contagions spread, popularity cycles exhibit momentum –

changes in popularity tend to persist in the same direction over time (Gureckis &

Goldstone, 2009). Moreover, consistent with the motives we assume for our model, trends

of rising popularity may spill over to other similar, but not identical, expressions of

identity, while over-popularity actually decreases further adoption of particular expressions

of identity (Berger et al., 2012). Here we find that the social dynamics that emerge in our

model with social network structure exhibit momentum, preserve within-group diversity,

and usually produce more conformity between network neighbors.1

A natural theoretical approach for investigating social influence on decisions is to

use game theory. The conformity motive in isolation would create a Keynesian “beauty

contest,” in which what is cool (like what is beautiful) is just what everybody else believes

1 In contrast, chase-and-flight dynamics between stratified social classes do not preserve diversity within
the class that is trying to imitate the elite. And models that assume completely random drift cannot
account for the empirical pattern that popularity cycles exhibit momentum.
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is cool (Keynes, 1936). The uniqueness motive in isolation would create a “congestion

game,” in which the objective is simply to be distinct from as many other people as

possible (Rosenthal, 1973). Both games are known to be “potential games,” for which

convergence to a pure strategy Nash equilibrium is practically guaranteed (Monderer &

Shapley, 1996a, 1996b). When both motives co-exist and the game is played on a realistic

social network, however, the dynamics are more complex.

Cultural trends can be modeled more realistically as the dynamics of a game on a

social network because social influence is mediated by a social network (Mason et al.,

2007). Social influence on expressions of individual identity is transmitted whenever an

individual observes another person whom he would like to identify with, so the relevant

social network is defined by directed connections corresponding to observation. The

connected components of the social network may correspond to distinct social groups, each

with its own emergent subculture.

The desire for uniqueness within one’s own social group should not be conflated

with a desire for differentiation across groups (Chan et al., 2012). Our model features

in-group conformity and uniqueness motives; it could be augmented with a desire for

differentiation across groups, but for parsimony we assume that people care only about

their fit within their own groups.

We now proceed to explore three mathematical models of identity expression based

on dual motivations for conformity and uniqueness, looking to see if and when each model

may produce popularity cycles. The first model introduces a mathematical characterization

of these motivations, showing how they may co-exist with each other, but simplistically

assumes that everybody influences everybody else. Each subsequent model then

incorporates a more realistic (and more complex) set of assumptions about social influence.

The second model assumes that social influence is transmitted through a social network, so

that people care about conforming and being unique only among the people they can

observe. The third model assumes additionally that the social network itself evolves in
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tandem with expressed identities. Only the models with social networks (Models 2 and 3)

can account for popularity cycles.

Model 1: Social Influence and Identity Expression in a Well-Mixed Population

We model the expression of social identity as a game played by a population of N

individuals. Let us say there are m aspects of identity (or identity-relevant traits). Each

person i adopts an expression of identity xi = xi,1, ..., xi,m, where the choice of each

expressed trait xi,µ ∈ {a..b}d can be represented as a tuple of d integers from some interval.2

For example, in the case of choosing an outfit to wear, two traits could be the color of the

shirt and the color of the pants, and three integers between 0 and 255 might correspond to

shades of red, green, and blue that mix together to form any color in an RGB color system.

A person’s degree of conformity in the population depends on the (Euclidean)

distance between his expressed identity and the average (population mean) expression of

identity, ‖xi − x̄‖. A person’s degree of uniqueness in the population depends on the

number of others who express the exact same identity-relevant trait as him, averaged

across all traits. For individual i and trait µ, denote the number of others who adopt his

exact same expression of this trait as ni,µ(X), where X is the entire population’s profile of

expressed identities, and let ni(X) denote the average amount of shared traits (i.e.,

ni(X) = 1
m

∑
µ ni,µ(X)). Putting together the conformity and uniqueness motives, we

model person i’s utility given the profile of expressed identities as

ui(X) = −‖xi − x̄‖2 − λni(X) (1)

where λ is a parameter that describes the strength of the uniqueness motive relative to the

conformity motive. This utility function describes a person whose goal is to be similar to

everybody, yet the same as nobody. This preference leads people to differentiate themselves

2 The dimensionality d of the tuple and the boundaries of the interval a..b can certainly vary for different
traits, but we omit subscripts on these parameters specifying a particular trait to simplify the notation.
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on some dimension of identity while conforming on other dimensions, as observed

empirically (Chan et al., 2012).

We find empirical support for our proposed utility function by considering the

popularity of given names, examining data on just one of the many forms of identity

expression that we hope to encompass. We can embed given names in a vector space using

distributional semantics models that capture relationships between words (including given

names) according to their co-occurrence in a large corpus of text (see Bhatia, 2017).

Specifically, we use the fastText algorithm (Mikolov et al., 2018) trained on Common

Crawl data. This algorithm is based on co-occurrences of strings of characters, and thus

associates related variants of phonetically similar names (e.g., Jesse and Jessie) and can

handle rare names. We calculate the mean vector of American given names every year from

1880 to 2020 and then compute the Euclidean distance between each given name and this

mean (for each year).

We first examine the relationship between these distances to the mean and the

popularity of given names, measured as the percentage of babies receiving that name, in

each year. Figure 1 presents scatter plots showing these distances and popularities for all

names in the years 1900, 1950, and 2000 respectively. The scatter plots are overlaid on top

of heat maps showing the number of different names with distances and popularities in

subdivided intervals on these two dimensions, which helps us distinguish the number of

different names in the high-density areas of the scatter plot. In each of the three years

shown in the figure, most names have low-to-moderate distance from the mean and low

popularity, but the vast majority of the most popular names have even lower distances

from the mean. This pattern is consistent across all years. The correlation between the

distance of a name from the mean and the popularity of that name in a particular year,

averaged across all years, is −.13 (SD = .01). A t-test shows the overall correlation to be

significantly different from 0 (p < .001).

Next, for each name we examine the correlation between that name’s distance from
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Figure 1
Euclidean distance between each name’s vector representation and the mean name vector,
along with the popularity of these names (i.e., the percentage of babies receiving each name)
in the years 1900, 1950, and 2000. Background shading indicates the number of names in
each bin.

the mean and that name’s popularity over time. Figure 2 shows graphs of the distance

from the mean and the popularity over time for a representative name, “Wynona.” The

name grows in popularity during the beginning of the 20th century and then declines in

popularity during the middle of the century, when it has higher distance from the mean

than in the early years of the century. The correlation between the distance of “Wynona”

from the mean and the popularity of “Wynona” is −.25. The average of these correlations

across all names is −.29 (SD = .38), again significantly negative (p < .001). We thus see

that babies are given names that are closer to the mean more frequently, and that names

tend to become less popular when they are farther from the mean.

We also observe that new names enter into use over time (faster than old names

disappear), while the most popular names tend to decline in popularity over time, as

people look for unique names. For example, the most popular name in 1900 is given to

almost 4% of babies born that year, whereas the most popular name in 2000 is given to less

than 1% of babies that year, as shown in Figure 1.

To capture the dynamics of identity expression over time, we cannot assume that

everybody immediately maximizes their utility. Instead, over time people may change their
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Figure 2
Euclidean distance between the vector representation of “Wynona” and the mean name
vector, as well as the popularity of the name “Wynona” for each year the name was given.

expressions of identity to achieve higher utility. We need not fully prescribe this process,

but assume only that people make changes that increase their own utility, in accordance

with some better-reply dynamics (Friedman & Mezzetti, 2001; Monderer & Shapley, 1996b).

Definition 1 (Better-reply dynamics). At any given time t, one person i may consider

switching from xi to x′i; he switches if and only if ui(X ′) > ui(X); and for each person i

and any best response x∗i (to X(t)), the expected time until person i considers switching to

x∗i is finite.

The motivation for better-reply dynamics is that people are boundedly rational and

adaptive (Gigerenzer, 2000). They can see what the people around them are doing and can

search for something better (myopically), but they do not instantaneously react to changes

in other people’s behavior or anticipate these changes before they occur (Fiske & Taylor,

2013). Often they rely entirely on automatic, subconscious processing (Bargh &

Chartrand, 1999). Almost all commonly assumed adaptive learning dynamics are



HIPSTERS AND THE COOL 12

particular specifications of better-reply dynamics (Hofbauer & Sigmund, 2003).

Results: Social Dynamics in a Well-Mixed Population

Theorem 1. Suppose people derive utility from both their conformity and their uniqueness

in the population, as in Equation (1). Then any better-reply dynamics necessarily converge

to a pure strategy Nash equilibrium.

The proof is presented in the SM. It follows from Lemma 1 in the SM, which

identifies an exact potential function for this game. The existence of a potential function

for the game means that any time that an individual finds a more preferred expression of

identity, the shift in his own behavior necessarily moves the population as a whole toward a

Nash equilibrium. Convergence to equilibrium is guaranteed because the value of the

potential function can only increase as people adapt to each other, i.e., all changes are

toward an equilibrium.

Two examples of Nash equilibria, among many that exist, are shown in Figure 3.

These equilibrium distributions of identity expression are approximately symmetric around

a single centrally-located peak because chosen expressions of identity all need to yield

approximately the same utility in equilibrium – if any expression of identity generated

higher utility, other people would want to adopt it; if it generated lower utility, people

would give it up. (Minor deviations from perfect symmetry may arise from discrete-person

effects.) The distributions are composed of a lot of people clustered near the mean and

fewer people filling in around the periphery because the cost of being far from the mean

(non-conforming) needs to be balanced against the cost of being less unique when near the

mean.

Theorem 1 is a stark result that shows that our simple model makes a clearly

unrealistic prediction. It says that in a well-mixed population, in the long run we will not

see popularity cycles, perpetual change, or novelty. The fact that we do, in reality, observe

popularity cycles, perpetual change, and novelty suggests that we should consider a more
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Figure 3
Two Nash equilibria distributions of identity expression for populations of N = 100
individuals. We set λ = 1.5 for this illustration. (A): Expression of a single
one-dimensional trait over the domain {0..15}. (B): Expression of a single
two-dimensional trait over the domain {1..10}2. By symmetry, the distributions can be
shifted anywhere within these (or wider) domains, and many strategy profiles give rise to
the same population distributions. Even after accounting for these symmetries, these Nash
equilibria are not unique.

A B

realistic model. We now consider the social dynamics that result from assuming that

people care only about the expressed identities of their immediate neighbors in their social

network. Naturally, people can only be influenced by the other people they can observe,

and social influence thus must be mediated by the social network.

Model 2: Social Influence and Identity Expression in Social Networks

A social network is described by an adjacency matrix A where aij = 1 if person i

observes, and thus cares about, person j’s expressed identity (and equals 0 if not). Let

η(i) = {j : aij = 1} denote the set of people that person i observes, i.e., his neighbors.

Conformity among one’s neighbors depends on distance from one’s neighbors’

average identity, x̄η(i). Uniqueness among one’s neighbors depends on the average amount

of shared traits among one’s neighbors (or, more precisely, the average across the different

aspects of identity of the number of neighbors who express the same trait as oneself),

denoted ñi(X; η(i)). Thus, we now model person i’s utility given the profile of expressed
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identities X and his set of neighbors η(i) as

ui(X) = −‖xi − x̄η(i)‖2 − λ ñi(X; η(i)). (2)

Results: Social Dynamics in Social Networks

Theorem 2. Suppose people derive utility from both their conformity and their uniqueness

among their neighbors in a social network, as in Equation (2) with λ > 1 and m = 1. Then

there exists a social network (i.e., an adjacency matrix Â) such that no pure strategy Nash

equilibrium exists and, thus, better-reply dynamics never converge to an absorbing state.

Proof. By construction. We provide an example of a social network with N = 3 people

that illustrates the result. (Any larger social network that contains this network as an

out-component also suffices.) Let person 1 observe (only) person 2, person 2 observe (only)

person 3, and person 3 observe (only) person 1. That is, the network is a cycle graph with

length 3.

Observe that the best response correspondence for each person is as follows:

x∗1 ∈ {x : ‖x− x2‖2 = 1}

x∗2 ∈ {x : ‖x− x3‖2 = 1}

x∗3 ∈ {x : ‖x− x1‖2 = 1}.

Each person wants to be one unit of distance away from the person he is observing. If we

associate the parity of an expressed identity x with two colors (i.e., distinguish only

whether the sum of its integer coordinates is even or odd), then each person wants to have

the color different from the person he is observing. However, it is impossible for all three

people to simultaneously choose best responses because (at least) one pair of them will

always be the same color.3

3 This is the case for any odd-length cycle, due to a basic mathematical theorem about graph coloring.
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In contrast to the result for the well-mixed population, which is guaranteed to

converge to equilibrium, Theorem 2 says that there are social networks for which

convergence to equilibrium is impossible, because no equilibrium can exist. For the simple

cyclic network used to demonstrate the result, any individual finding his most preferred

expression of identity necessarily makes the person observing him want to find a different

expression of identity. Thus, with only local interactions in a social network, perpetually

changing identity expression and popularity cycles become possible.

This result is consistent with the computational patterns generated by Smaldino

et al.’s (2012) agent-based model of social identity dynamics arising from optimal

distinctiveness theory. Their model also features conformity and distinctiveness motives

(specified somewhat differently as opponent processes), and the incorporation of simple

(lattice) social network structure in some cases leads to non-convergence in that model as

well.

Observe that the uniqueness motive is critical for obtaining our result. If we were to

eliminate the uniqueness motive by setting λ = 0, then any homogeneous profile of

expressed identities (with xi identical for all i) would be a pure strategy Nash equilibrium,

regardless of the social network structure. Other models of conformity pressure with local

interactions on networks, but with no uniqueness motive, also generally converge to

equilibrium, although polarization is possible, with behavior varying between clusters, even

without the uniqueness motive (Axelrod, 1997; Centola et al., 2007; Nowak et al., 1990).

Here, the uniqueness motive along with the local interactions together allow for more

complex social dynamics.

Still, Theorem 2 only provides an existence result constructed with a highly stylized,

simplistic social network. It does not tell us whether complex social dynamics typically

emerge from our model when people are connected by realistic social networks. Real social

networks have community structure with high levels of triadic closure (i.e., clustering or

transitivity) – people associate mostly in small, tightly knit groups (Girvan & Newman,
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2002; Granovetter, 1973; Newman & Park, 2003). This community structure does not

typically include the kind of isolated cycle invoked in the proof of Theorem 2. We now use

computational modeling to explore the dynamics of our model on realistic social networks.

Realistic Social Networks

We used a variant of the Jin-Girvan-Newman algorithm (Jin et al., 2001) to create a

sample of 25 directed social networks with positive levels of clustering and community

structure and limited out-degree. The networks have N = 100 people, each of whom can

observe up to a maximum of zmax neighbors. Connections are formed and broken randomly,

with a tendency to begin observing specific individuals who currently either observe or are

observed by others who one is already observing. (Real social networks exhibit both

patterns of directed closure (Brzozowski & Romero, 2011).) This tendency for clustering

depends on a free parameter r. We varied r in {.01, .05, .1, .5, 1} and zmax in {3..7} to

create the 25 networks. (See Materials and Methods in the SM for additional details.)

Networks with higher zmax have more connections, and networks with higher r are more

tightly clustered.

For each of these social networks, we repeatedly computed better-reply dynamics,

specified with a simple random search for better replies based on the utility function in

Equation (2) with λ in {0.5, 1.5, 5.0}, to see how often the dynamics converged to

equilibrium within 1, 000, 000 time steps. (Different specifications of better-reply dynamics

could lead to different patterns of identity expression, but they all share the property that

their rest points are the Nash equilibria of the game, so our results should be robust across

this class of dynamics.) For robustness we considered three different specifications of the

space of possible identities: first, m = 1, d = 1, and {a..b} = {0..99}; second, m = 1, d = 2,

and {a..b} = {0..9}; and third, m = 2, d = 1, and {a..b} = {0..9}. (Higher dimensional

spaces for identity expression would be more realistic, but are too computationally

intensive to explore. We simply made the spaces large enough that everybody could express
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unique identities.) We repeated each computation 10 times, for a total of 2250 trials across

the 9 different parameter specifications and 25 networks. (See Materials and Methods in

the SM for additional details.) If the dynamics did not converge within 1, 000, 000 time

steps, we classified them as non-convergent (for that trial). (We believe the cutoff at

1, 000, 000 time steps provides ample time for convergence, because we first computed the

dynamics in the full, well-mixed population, for which Theorem 1 tells us that they must

converge, and found that across 90 trials, the dynamics always converged within 2000 time

steps. We discuss additional checks on the sufficiency of 1, 000, 000 time steps below.)

Computational Results: Frequency of Non-Convergence

The frequency of non-convergent trials varied with the parameters specifying the

game and the network formation process, with the value of λ in particular playing a critical

role. When λ = 0.5, the dynamics usually converged to equilibrium (68.53% of these 750

trials). Figure 4A shows the frequency of convergent trials for each of the 25 networks, for

each of the three specifications of the space of identities, with λ = 0.5. Darker shading

indicates higher frequencies of convergence. The frequency of convergence varies

non-monotonically with the maximum out-degree of the network zmax. For zmax = 3 or 4,

the dynamics almost always converge, whereas for zmax = 7, the dynamics usually do not

converge. Yet there is more convergence with zmax = 6 than with zmax = 5.

When λ = 1.5, the dynamics usually did not converge (only in 18% of these 750

trials). Figure 4B shows the frequency of convergent trials for each of the 25 networks, for

each of the three specifications of the space of identities, with λ = 1.5. Four of the

networks with zmax = 4 usually converged (specifically, those with r > .01). A few of the

other networks occasionally converged. Many never converged at all.

When λ = 5, the dynamics almost never converged. The only exception was the

network with zmax = 4 and r = 1, which converged in all 10 trials with m = 1 and d = 1.

However, none of the other 740 trials with λ = 5 converged. A stronger uniqueness motive
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(A) λ = 0.5

(B) λ = 1.5

Figure 4
Frequency of convergent trials for each network. Darker shading indicates higher frequencies
of convergence. The trials with λ = 5 are omitted because they almost never converged.

(larger λ) appears to make convergence much less likely.

The results presented here leave room for two arguments raising concern that

perhaps the dynamics would always eventually converge if they just had more time to

continue running. First, it is surprising to see so many parameter specifications for which

the dynamics sometimes converge and other times do not. We might have expected

non-convergent trials whenever there is no pure Nash equilibrium, but that whenever such

an equilibrium exists and convergence is possible, it would eventually occur. Perhaps it

just needs more time. However, even when a pure Nash equilibrium does exist, allowing the
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dynamics to converge in some trials, it is possible for the dynamics to enter a random walk

on an absorbing subspace, from which it is no longer possible to reach the equilibrium.

(That is, the dynamics could sometimes move away from an equilibrium and then be

unable to return to it.) This could explain the observed frequencies of convergence that are

positive but still less than 100%. Still, a second cause for concern is that larger values of λ

give the better-reply dynamics more possible states to explore when a neighbor adopts

one’s own identity. Thus, we should expect it to take longer to reach an equilibrium with

larger values of λ. If the dynamics usually converge with λ = 0.5, might they be on their

way, but not quite there yet, with larger values of λ?

A few additional pieces of data reassure us that most of the trials we have classified

as non-convergent are not artifacts of terminating the computation too quickly. First, for

each trial we examine the fraction of individuals that are satisfied with their current

identities every 1000 time steps during the trial. Convergence to equilibrium occurs if and

when everybody is satisfied. So, the trajectories of the percentage of satisfied individuals

also reveal the times to reach equilibrium, when convergence occurs. Figure 5 shows the

percentage of satisfied individuals over time for each trial with m = 1, d = 1, and varying

λ, for networks with r = 1. Figures SM3 and SM4 in the Supplemental Material show the

corresponding results with m = 1, d = 2 and with m = 2, d = 1 respectively. The results for

networks with r < 1 look similar and are omitted. Across the board, when the dynamics do

converge to equilibrium, they tend to do so quickly. Although the distribution of

convergence times does have a fat tail, it certainly appears that convergence becomes less

and less likely over time. Additionally, while the percentage of satisfied individuals appears

to bounce around randomly, for many of the parameter values it appears to be bounded

well below 100%.

The trajectories of the percentage of satisfied individuals suggest that the trials we

have deemed non-convergent really would never converge, but of course there can be no

guarantee. With N = 100 individuals choosing among 100 possible identities, it is simply
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Figure 5
Percentage of individuals satisfied over 1,000,000 time steps for each trial with
m = 1, d = 1, and varying λ, for networks with r = 1 and varying zmax.

not computationally feasible to check every possible scenario. However, with N = 8

individuals choosing among 8 possible identities, it is feasible to exhaustively search for

equilibria. We created an additional social network using the same algorithm with zmax = 3

and r = 1, but with N = 8. Once again, the better-reply dynamics with λ = 5 and m = 1,

d = 1, and {a..b} = {0..7} did not converge. We then exhaustively searched every profile of

identities on this space and verified that no pure Nash equilibrium exists. This guarantees

that the dynamics would never converge. This network does not contain an isolated

odd-cycle, which our proof of Theorem 2 relied on, but it provides another example that

shows that non-convergence is possible, and moreover can occur with realistic network

structure.

We interpret these results to mean that when the uniqueness motive is sufficiently

strong, the dynamics on realistic social networks usually will not converge. However, if the

uniqueness motive is too weak, individuals feel little pressure to differentiate themselves,

and they may settle into an equilibrium with overlapping identities.
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Computational Results: Conformity

We further explore the dynamics by observing the trajectories of identity expression

over the initial 10, 000 time steps. Clearly, because of the uniqueness motive, there will

always be some diversity of identity expression. As the uniqueness motive gets stronger,

i.e., as λ increases, we expect to observe less conformity. Sure enough, this is the case.

Figure 6 displays the distributions of the distances from individuals’ identities to the

average identity in the population and to the average identity of their neighbors in the

network, ‖xi − x̄‖ and ‖xi − x̄η(i)‖ respectively, measured at the 10, 000th time step, for

m = 1, d = 1, and varying λ, aggregating trials across the different networks.

Figures SM5 and SM6 in the Supplemental Materials show the corresponding results for

m = 1, d = 2 and for m = 2, d = 1 respectively.

Figure 6
Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 1, d = 1, and varying λ, aggregating trials
across the different networks.

We first compare the average distance to the population mean expressed identity

across different values of λ. The average distance to the population mean increased from
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0.59 (SD = 0.57) when λ = 0.5 to 0.99 (SD = 0.83) when λ = 1.5 to 1.45 (SD = 1.13) when

λ = 5. (All differences are statistically significant with p < .001 in t-tests.) We then

compare the average distance to one’s neighbors across different values of λ. The average

distance to one’s neighbors increased from 0.61 (SD = 0.26) when λ = 0.5 to 0.85

(SD = 0.58) when λ = 1.5 to 1.25 (SD = 0.86) when λ = 5.

We also check whether the expressed identities display the signature empirical

pattern associated with social influence: do individuals express identities that are more

similar to their network neighbors’ identities than to the average member of the population

as a whole? The differences between the distances to the population mean identity and to

the mean of one’s neighbors’ identities appear to be small in Figure 6, but they are all

statistically significant with p < .001 in paired t-tests. For λ = 1.5 and λ = 5, individuals

do indeed express identities that more closely resemble the people they observe than others

in the population. Yet for λ = 0.5, individuals are actually more similar to unobserved

others than to their network neighbors. There is little diversity across the entire population

in these trials.

Computational Results: Momentum and Contagion

Next we look for momentum in the dynamics. For simplicity, we restrict this

analysis to trials with m = 1 and d = 1. As a measure of momentum over time, we

compute σ100(t) = 1
100

∑100
t′=1 ∆x(t) ∗∆x(t+ t′), where ∆x(t) is the change in identity

expression of the individual who searched for a better reply at time step t. We take the

average momentum for a trial to be the average value of σ100(t) for 1000 ≤ t < 9900. (We

exclude the first 1000 time steps because they tend to be noisy.) Figure 7 shows the

average momentum on each network for varying λ, aggregated over 10 trials. We observe

that average momentum is always positive (M = .0096, SD = .31), indicating that changes

in identity expression tend to persist in the same direction over time.

Figure 7 also shows clear differences in the average momentum across the different



HIPSTERS AND THE COOL 23

Figure 7
Average momentum on each network for varying λ, with m = 1 and d = 1, aggregated over
10 trials. In all cases, the average momentum is positive. Darker shading indicates greater
momentum.

networks. Most prominently, we observe particularly strong momentum on the network

with r = 0.1 and zmax = 6. This finding is robust across multiple trials, not the result of a

single outlying trial, but appears to be specific to this particular network. (We created

another network with the same parameters, r = 0.1 and zmax = 6, to see if this result would

replicate. It did not. In the attempted replication, the average momentum aggregated over

30 trials across the same λ values was .006.) We examined the network’s properties

(available in the SM) hoping to explain why strong momentum develops on this network,

but the network does not appear to have unusual characteristics or structure.

We use multiple linear regression to assess how momentum depends on our

parameters r, zmax and λ. Table 1 reports the results. We find that average momentum is

increasing in λ and zmax. Intuitively, higher values of λ make individuals willing to make

larger shifts in their identity to remain unique, which generates stronger momentum.

Higher values of zmax mean that a single person’s change in identity affects more of the

other people in the network who observe that change, which also generates stronger

momentum.

We were particularly interested in how average momentum depends on r, because

this distinguishes a complex contagion from a simple contagion. Recall that a complex
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Table 1
Linear regression of average momentum.

Effect Estimate SE p

λ .0051 .0001 < .001
zmax .0007 .0001 < .001
r −.0001 .0001 .291
Constant −.002 .0005 < .001
Observations 6, 675, 000
R2 .0002
Adjusted R2 .0002
Residual Std. Error .3062 (df = 6, 674, 996)
F Statistic 430.8 (df = 3; 6, 674, 996) p < .001

contagion describes the case that substantial social reinforcement is necessary to change

behavior, whereas behavior spreads more easily in a simple contagion. Thus, clustering of

the social network provides pathways for social reinforcement that are critical for complex

contagions, but which are redundant and unnecessary for simple contagions (Centola &

Macy, 2007). So, in a simple contagion, there would be greater momentum when there is

less clustering (smaller r), whereas in a complex contagion, there would be greater

momentum when there is more clustering (larger r). Alas, we find no significant linear

trend here. Qualitatively, it appears that momentum is strongest for an intermediate level

of clustering, but this speculative finding might just reflect the observation of particularly

strong momentum on the single network with r = 0.1 and zmax = 6. At an intuitive level,

because social influence from multiple neighbors combines additively in our model (i.e.,

each neighbor shifting in a given direction adds steadily to the social pressure to shift in

that same direction), our social dynamics may be in a border zone between simple

contagion and complex contagion. When behavior choices are binary, additional neighbors

changing their behavior can either be substitutes for each other or complements with each

other in the production of social influence, corresponding to simple contagions and complex

contagions respectively, but in our model, expressions of identity may vary incrementally

along one or more dimensions. With additive social influence involving neither

substitutability nor complementarity among neighbors, our dynamics resist easy
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categorization as either simple or complex contagion.

Model 3: Co-Evolution of Identity Expression and Social Networks

Up to this point, we have considered identity expression on fixed social networks,

but social networks themselves evolve over time. There is ample empirical evidence that

people are more likely to form (and less likely to dissolve) all kinds of relationships with

people who are more similar to them – a pattern of social network dynamics known as

homophily (McPherson et al., 2001). By first forming the social networks and then

considering the dynamics of identity expression on these fixed networks, we could capture a

form of social influence, but we could not capture homophily. Yet empirical research

suggests that homophily in the formation of social connections has equal or even stronger

effects on patterns of similarity between friends compared to social influence (Cohen, 1977;

Kandel, 1978).4 We now consider integrating the dynamics of identity expression with the

dynamics of social network formation, to incorporate homophily.

Modeling the co-evolution of behavior and social network structure can give us

insight about how social influence and homophily interact and reinforce each other.

Together, they can generate surprising emergent patterns. For example, Centola et al.

(2007) have shown that homophily in forming and maintaining social connections on top of

conformity pressure transmitted through the social network can preserve cultural diversity

between social groups (see also Holme & Newman, 2006; Kozma & Barrat, 2008). Cultural

differences can then lead to different network structures (Muthukrishna & Schaller, 2020;

Smolla & Akçay, 2019). Models of the co-evolution of identity expression and social

network structure typically assume only a conformity motive. We depart from this existing

literature by introducing the additional motive for demonstrating uniqueness. The

uniqueness motive contributes to the emergence of popularity cycles here, as cultural

trends develop momentum and often do not converge to equilibrium.

4 Empirically disentangling social influence and homophily is challenging (see Aral et al., 2009; Levitan &
Visser, 2009; Shalizi & Thomas, 2011; Steglich et al., 2010).
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Our model of co-evolving identity expression and social networks relies on the same

utility function we used above, given in Equation 2. Now, at each time step an individual

can either consider a change in his own identity or a change in the network neighbors he

observes. (We assume each consideration is equally likely.) In the former case, the

individual randomly considers a new expression of identity. In the latter case, the

individual considers forming a new connection either to a randomly selected other person

or specifically to another person who already has a link (in either direction) with someone

he already has a connection to (i.e., with a tendency toward triadic closure), and if the

focal individual already had as many relationships as he could handle, he simultaneously

considers breaking an existing connection. (In reality, limits on the number of relationships

an individual can handle are likely to be somewhat more flexible, but this stylized model

parsimoniously captures the clustering and bounded out-degree that characterize social

networks.) Critically, the individual only accepts changes to his identity or to his social

network if they increase his utility. (An exception is made for the first network connection

that each individual considers forming, which is always accepted, because the utility

function is not well defined if the individual has no connections at all.) See Materials and

Methods in the SM for additional details about the process. The model effectively brings

together Jin et al.’s (2001) social network formation process with the preferences about

identity expression that we have proposed here, and incorporates homophily by only

allowing changes to one’s social network that increase utility. The assumed tendency

toward triadic closure may induce considerable additional homophily by reinforcing the

effects of homophily in initial network connections or social influence on multiple

neighbors, as empirically observed (Kossinets & Watts, 2009).

We investigate whether our earlier results are robust in this model of co-evolving

identities and social network ties. We ran 30 trials each with λ = 0.5, λ = 1.5, and λ = 5.

When λ = 0.5, 23% (7/30) of the trials converged to equilibrium. When λ = 1.5 or λ = 5,

none of the trials converged to equilibrium. These results are consistent with our earlier
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results for the fixed social networks.

We again compare the conformity among network neighbors to the conformity in

the population as a whole. Figure 8 shows the average distances to the population mean

identity and to one’s neighbors’ mean identity, measured at the end of the trial, for each λ,

aggregating across the 30 trials. We find that expressed identities are significantly more

similar to one’s neighbors’ identities than to the population mean identity in all three

cases. The differences here are much starker than than they were in the comparisons on the

fixed social networks because the social networks that endogenously form here are not

necessarily fully connected. When people sort themselves into non-overlapping social

groups, the distance between the groups’ mean identities tends to be larger than the

variance of identities within a group.

Figure 8
Average distance to the population mean identity and to one’s neighbors’ mean identity,
measured at the end of the trial, for each λ, aggregating across the 30 trials. The error bars
correspond to the standard errors for the means.

We again look for momentum in the dynamics. This time we simply compute the

percentage of successive changes to identities that are in the same direction over the

duration of each trial. Averaging across the trials, well above half (59%, 95% CI

[58.2%, 59.9%]) of shifts in identity are in the same direction as the previous one. When we
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restrict to changes in identity within the largest connected component of the network after

the first 10, 000 time steps, it jumps to almost always (99.4% of successive shifts, 95% CI

[99.37%, 99.45%]) going in the same direction. Thus, the finding of significant momentum

carries through from our earlier results for the fixed social networks.

Discussion

These results tell us that with local interactions on realistic social networks, the

interplay of conformity and sufficiently strong uniqueness motives produces social dynamics

for identity expression that are indeed typically non-convergent. People continually change

their expressed identities, and certain forms of expression come into and out of fashion in

unpredictable cycles. Popularity cycles are inherently unpredictable in the model because

people typically have multiple better replies (and even multiple best responses) to choose

from in the face of most profiles of their neighbors’ identity expression. The multiplicity of

paths the dynamics could take leaves room for idiosyncrasy.

Our findings help us understand the role of social networks and local interaction in

the dynamics of cultural trends. Popularity cycles, perpetual change, and novel expressions

of social identity should be expected when people observe their neighbors in realistic,

directed social networks and care about being unique as well as fitting in. While popularity

cycles are often attributed to chase-and-flight dynamics arising from asymmetric imitation

and differentiation, complex social dynamics of identity expression may also arise from our

alternative specification of conformity and uniqueness preferences and social network

structure.

Consider, for example, popularity cycles in given names, as seen in the rise and fall

in the popularity of the names “Jennifer” and, subsequently, “Jessica,” or the recent

popularity of “Emma” following that of “Emily” (Berger et al., 2012). These popularity

cycles do not appear to reflect chase-and-flight dynamics. We cannot identify a clearly

demarcated group chasing the trends, e.g., that wants to assimilate their kids with the
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other “Emily”s, or a group exhibiting flight, e.g., that opts for “Emma” instead of “Emily”

to avoid an undesirable association. Moreover, there would be no reason to choose a name

like “Emma,” that is so similar to “Emily,” if the only goal was differentiation. Rather, it

appears that parents are drawn to a trendy name, but look for a similar name that is more

unique. (They may be quite surprised when that name becomes so popular too). The

proposed account of popularity cycles driven by concurrent conformity and uniqueness

motives, with social influence transmitted through a social network, better fits this scenario.

Recognition of conformity and uniqueness as opposing, but not mutually exclusive,

motives is also part of optimal distinctiveness theory (Brewer, 1991; Leonardelli et al.,

2010). The theory posits that people form collective identities by choosing to associate

themselves with social groups. They can simultaneously pursue assimilation and

differentiation goals by viewing themselves as members of groups that provide both a sense

of belonging and a sense of distinctiveness. Their desired social identities may shift

according to their prioritization of these motives (Pickett et al., 2002). Optimal

distinctiveness theory deals with group affiliation and collective identities as fundamental

constructs. In contrast, our concept of social identity expression operates at the level of the

individual. In our view, collective identities emerge at the level of the group based on their

members’ individual identities. From the alternative, similarly valid perspective, we could

propose that individual identities emerge from a psychological process of finding

consonance between the collective identities of the many groups that an individual affiliates

with at any point in time. Connecting these perspectives requires deeper understanding of

how people choose to associate with or withdraw from social groups, and how this relates

to social network structure. While this integration remains beyond our present grasp, we

find it useful to have complementary theories aimed at different levels of social identity

(Postmes et al., 2005; Turner & Oakes, 1986).

We use game theory and computational modeling here to describe social dynamics

with mathematical precision. Social phenomena do not always reflect individual preferences
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(Schelling, 1971), but understanding individuals’ motives is critical to understanding social

dynamics. Mathematical modeling helps us understand the relationship between

psychological motives and aggregate social dynamics when interactions generate nontrivial

feedbacks. Our work here is part of a tradition of formal modeling of identity expression

and fashion (Acerbi et al., 2012; Miller et al., 1993; Smaldino et al., 2015; Smaldino &

Epstein, 2015; Smaldino et al., 2012; Strang & Macy, 2001; Tassier, 2004). This approach

yields us deep theoretical insight, and we hope it inspires more research leading to further

insights into social dynamics and identity expression.
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Supplemental Material A

Materials and Methods

Vector Representation of Names

We use a dataset from the Social Security Administration (SSA) reporting names

from Social Security card applications for births in the United States in each year from

1880 to 2020, excluding names occurring less than 5 times in a given year to maintain

individual privacy. The original dataset contained 100,364 unique names across all years.

In our analysis, we exclude names that appear in less than 25% of the years; that is, we

retain names that occur in at least 35 of the 141 years in the dataset. This leaves us with

17,180 unique names.

To embed the names in a vector space, we use a pre-trained model produced using

the fastText algorithm from Mikolov et al. (2018). The model uses 2 million word vectors

trained with subword information on Common Crawl data in the English language,

consisting of 600 billion tokens. Since fastText is based on co-occurrences of strings of

characters, the model can produce a vector for every name in the SSA dataset, including

those that do not explicitly appear in the Common Crawl data. The fastText model

represents each name as a 300-dimensional vector.

To calculate the mean name vector for each year, we average the name vectors

weighted by the number of babies receiving each name that year. We use the vector

representation for each name to calculate the Euclidean distance between that vector and

the mean vector for each year that the name appears in the dataset. We present results

using Euclidean distance for consistency with the general model proposed in this paper; we

get similar results using cosine distance in analyses presented in Figures SM1 and SM2. To

calculate popularity, we divide the number of babies given each name by the total number

of babies born in the year and included in the dataset. (That is, the denominator is missing

babies with names excluded from our dataset.) We convert proportions to percentages.
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The Social Networks

We borrow Jin, Girvan, and Newman’s Model II algorithm for growing undirected

social networks (Jin et al., 2001) and modify it to generate directed social networks with

N = 100 people, each of whom can observe up to a maximum of zmax neighbors. The

network is initialized with all 100 people and no connections. The following three steps are

then repeated 100 times:

1. Choose 3 pairs of individuals uniformly at random. For each pair i and j, if i

observes less than zmax people and does not already observe j, then i begins to

observe j; else, if j observes less than zmax people and does not already observe i,

then j begins to observe i.

2. Randomly select a fraction r of the triads i, j, and k such that i observes k and k

observes j or that i and j both observe k. If i observes less than zmax people and does

not already observe j, then i begins to observe j.

3. Randomly select and break 0.5% of connections (rounded up).

All 25 social networks, measures of their structural properties, and the Python source code

used to create them are made available on OSF and can be accessed at osf.io/s4t6r.

The Better-Reply Dynamics

Our computational model adopts a specification of the better-reply dynamics in

which at each time step, one randomly selected individual searches for (and upon discovery,

adopts) a better reply to the current population profile. Initial strategies are randomly

(uniformly) distributed. We check for convergence every 1000 time steps by checking

whether any individual can find a better reply. The Python source code and complete

output data are available on OSF and can be accessed at osf.io/s4t6r.

https://osf.io/s4t6r/
https://osf.io/s4t6r/
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Co-evolving Social Networks and Identities

We again assume there are N = 100 people. We consider the space of identities with

m = 1, d = 1, and {a..b} = {0..9}. We set the maximum number of neighbors that an

individual can handle (i.e., maximum out-degree) to be zmax = 5. In this model, in contrast

to the earlier model, each time step corresponds to a single individual considering a single

change (either to his identity or his network), rather than searching for (i.e., repeatedly

considering) such a change. We allow the dynamics to run for up to 2, 000, 000 time steps

before cutting them off and classifying them as non-convergent, and we check for

convergence every 1000 time steps.

Initially people have no network connections and strategies are randomly

distributed. At each time step, there is an equal 50% chance of considering a change in

identity or a change in the network. In the former case, a randomly selected individual

considers switching to a randomly selected new identity and does so only if the switch

increases his utility. In the latter case, the probability of considering a new connection

from person i to person j is proportional to 1 + 2000(τin + τout), where τin is the number of

triads in which i and j both observe some other individual k, and τout is the number of

triads in which i observes some other individual k, who then observes j. If person i already

has zmax connections to other people, then the potential connection to j is considered

jointly with breaking one of i’s existing connections. Person i goes through with the change

only if it would increase his utility or if he previously had no connections (i.e, undefined

utility). The Python source code and output data are made available on OSF and can be

accessed at osf.io/s4t6r.

https://osf.io/s4t6r/
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Supplemental Material B

Mathematical Appendix

Formal Definitions

We can express person i’s neighbors’ average identity as

x̄η(i) = 1
|η(i)|

∑
j∈η(i)

xj.

We can express the number of i’s neighbors who adopt the same expression of identity trait

µ as person i as

ñi,µ(X; η(i)) =
∑
j∈η(i)

δ(xi,µ, xj,µ),

where δ is the Kronecker delta function. Then

ñi(X; η(i)) = 1
m

∑
µ

ñi,µ(X; η(i))

is the average number of neighbors sharing one’s traits (across all the aspects of identity).

In a well-mixed population, we set η(i) = {j : j 6= i} to recover ni,µ(X) and ni(X) for all i.

Supplementary Results and Proofs

Lemma 1. In a well-mixed population with utility functions given in Equation (1), the

game has an exact potential function:

Φ(X) = −
N∑
i=1

N − 1
N
‖xi − x̄‖2 + 1

2λni(X).

Proof. Consider a change in the profile of identities X → X ′ resulting from person i alone

changing his identity xi → x′i, i.e., such that x′j = xj for all j 6= i. We need only show that

the change in the potential function equals the change in i’s utility:
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Φ(X ′)− Φ(X) = ui(X ′)− ui(X).

We express the change in the potential function as a sum of the changes in each

term:

Φ(X ′)− Φ(X) =
N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
+

N∑
j=1

1
2λ (nj(X)− nj(X ′)) .

We consider each of the two summations separately.

We expand the first sum:

N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
=

N − 1
N

(
‖xi − x̄‖2 − ‖x′i − x̄′‖2

)
+

∑
j 6=i

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
. (3)

We find it useful to express the average identity as x̄ = N−1
N
x̄−i + 1

N
xi. Plugging in to the

first term in Equation (3), we have:

‖xi − x̄‖2 − ‖x′i − x̄′‖2 =
(
N − 1
N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
.

Plugging in to the second term in Equation (3), expanding and canceling off common

terms, we have for any j 6= i:

‖xj − x̄‖2 − ‖x′j − x̄′‖2 =
1
N2

(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
+ 2
N

(xj − x̄−i) · (xi − x′i).

Observe that the last term here drops out when we sum over all j 6= i because∑
j 6=i(xj − x̄−i) = 0. The first term does not depend on j, so summing over all j 6= i just
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multiplies this term by a factor of (N − 1). Putting it all together, we find that

Equation (3) simplifies to:

N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)

=
(

(N − 1)3

N3 + (N − 1)2

N3

)(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
=
(
N − 1
N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
= ‖xi − x̄‖2 − ‖x′i − x̄′‖2. (4)

Now, returning to the second part of the change in the potential function, we can

use the formal definition of nj(X) to write:

N∑
j=1

1
2λ (nj(X)− nj(X ′)) = 1

2λ
1
m

∑
µ

N∑
j=1

∑
k 6=j

(
δ(xj,µ, xk,µ)− δ(x′j,µ, x′k,µ)

)
.

The terms cancel whenever j 6= i and k 6= i, so we are left with:

N∑
j=1

1
2λ (nj(X)− nj(X ′)) =

1
2λ

1
m

∑
µ

∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)
+
∑
k 6=i

(
δ(xi,µ, xk,µ)− δ(x′i,µ, x′k,µ)

)
= λ

1
m

∑
µ

∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)

= λ
1
m

∑
µ

(ni,µ(X)− ni,µ(X ′)) = λ (ni(X)− ni(X ′)) . (5)

Putting Equations (4) and (5) together, we have now shown that

Φ(X ′)− Φ(X) = ui(X ′)− ui(X).

Proof of Theorem 1

Theorem 1 follows from Lemma 1 by Monderer and Shapley’s 1996b argument.
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Supplemental Material C

Supplemental Figures

Figure SM1
Cosine distance between each name’s vector representation and the mean name vector,
along with the popularity of these names (i.e., the percentage of babies receiving each name)
in the years 1900, 1950, and 2000. Background shading indicates the number of names in
each bin.

Figure SM2
Cosine distance between the vector representation of “Wynona” and the mean name vector,
as well as the popularity of the name “Wynona” for each year the name was given.
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Figure SM3
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m = 1,
d = 2, and varying λ, for networks with r = 1 and varying zmax.

Figure SM4
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m = 2,
d = 1, and varying λ, for networks with r = 1 and varying zmax.
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Figure SM5
Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 1, d = 2, and varying λ, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.

Figure SM6
Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 2, d = 1, and varying λ, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.
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