Correlation between brain areas

Bijan Pesaran Center for Neural Science New York University

Neocortex is a mosaic of interconnected brain areas

Electrical signals in the brain

• Single/multiple cell \sim 1-100 cells

Eye movement task

.

un An ann an Anna an Anna an Anna an Anna

Eye movement task

Activity is spatially tuned for movements

Spiking and LFP activity

• Extracellular potential

Current summation determines the amplitude of LFP
– Spatial and temporal

- Current summation determines the amplitude of LFP (Mitzdorf, 1985)
- Spatial correlations
 - Laminar organization of cells
 - Pyramidal cells apical dendrites
- Temporal correlations
 - Synchronous activity
 - Sensitivity to different time scales

LFP reflects inputs and local processing Recorded spiking reflects outputs

(Towe and Harding, 1970) (Barto et al, 2003)

LFP reflects inputs and local processing Recorded spiking reflects outputs

Spiking

(Towe and Harding, 1970) (Barto et al, 2003)

Study interactions between brain areas

How do we analyze spike trains and field potentials together?

 Use spectral methods for a hybrid pointcontinuous process

Spectral intuition v_t Spectrum LFP Voltage $v_t = \underbrace{v_t}_{t} \underbrace{v_t}_{t}$

Periodogram – Single Trial

Multitaper estimateSingle Trial [5,9]

Multitaper estimate - Single Trial [5,9] Multitaper estimate - Nine Trials [5,9]

Multitaper estimate - 95% Chi2

Multitaper estimate - 95% Chi2 Multitaper estimate - 95% Jackknife

Example II: Spike rates, spectra and coherence

Example II: Spike rates, spectra and coherence

Cross-correlation fn

Multitaper coherence 9 trials, [8,15]

Example II: Spike rates, spectra and coherence

Does LFP reflect movement plans? How is spiking related to LFP?

Pesaran et al. (2002)

In LIP, gamma band LFP activity shows spatial tuning

Gamma band LFP tuning is similar to spike rate

Single electrode in Area LIP

Pesaran et al (2002)

LIP contains significant spike-field correlations

Pesaran et al (2002)

Spiking and field activity in area LIP are spatially tuned.

 Spike-field coherency may reflect cortical columns

Significant for clinical applications.

- Development of neural prosthetic devices
- Brain-computer interfaces

LFP tuning is widespread in cortex

Hans Scherberger: MIP

Brian Lee: MST/MT

Zoltan Nadasdy: V1

Spatial tuning exists at different frequencies and length scales

- Clinical applications
- What can this teach us about the brain?

Bottom-up and top-down attention

Buschman and Miller (2007)

Coherence between LIP and FF is modulated by type of attention

Buschman and Miller (2007)

A Top-down feedback from LIP to MT

Delayed match-to-sample task

в

Monkey depresses lever to initiate fixation point FP

Monkey releases lever when FP dims if S1 matches S2 or when FP disappears if S1 does not match S2

How are movement planning areas activated by decision making?

Time

Sensory processing

Motor processing

Cue onset

Movement onset

 Movement planning occurs across a multiple cortical areas

- Is there evidence for a between frontal and parietal cortex?
- Make simultaneous spike and field recordings in PMd and MIP.

• Free to choose where to reach

Instructed search task

 Instructed to circle, then square, then triangle

Instructed Free search search task н Example configuration

 Free to choose where to reach

н Instructed to circle, then square, then triangle

- Target configurations are the same
- Movements are the same
- Reward frequencies are the same

Movement sequences are variable during free search

• Freely-made choices lead to variable outcomes across trials

Example recording

PMd spiking transiently

Free search

Trial shuffling does not contain a preferred phase

Free search phase = -123° (p< 10^{-9}) Instructed search phase = -131° (p< 10^{-4})

MIP spiking transiently correlates with PMd

Time from Cue Onset (s)

Example recording

MIP spiking transiently correlates with PMd

MIP spike – PMd field phase histograms

Free search phase = -121° (p<0.01) Instructed search phase = -80° (p=0.1)

- Spike-field coherence is not widespread
 - 74/314 (23%) PMd spike MIP field
 - 43/187 (25%) MIP spike PMd fields
- Spatially clustered projections between areas
- Strongest between sites with similar preferred directions

Partial spike-field coherence

- We also observed spike-field coherence within PMd and MIP
- Correlations in LFP could explain long-range coherence

Partial spike-field coherence

 LFP activity did not explain MIP-PMd spike field coherence

Signal first flows from frontal to parietal

Then flows from parietal to frontal

Spike latency showed PMd was activated before PRR

- Correlated spiking across network could reflect integration of information needed to make choice.
- How well does correlated spiking predict the movement choice?

Correlated spiking predicts movement choices better

Time from Search Array Onset (s)

- Freely-made choices lead to variable outcomes across trials
- Does choice involve a functional interaction between frontal and parietal cortex? Is there a decision circuit in play?