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the scientist’s perspective

P(spikes | stim)



the organism’s perspective

P(stim | spikes)

The organism receives sensory responses, and must 
make judgements about the stimulus, remember it, 
or act on it.



• basic SDT

• likelihood from populations



(next week: Movshon lecture)



ML decoding

For neurons with homogeneous tuning curves f_k(x) 
and independent Poisson spiking, ML gives:

∂

∂x
log p(Nk|x) =

∑

k

Nk

∂

∂x
log fk(x) = 0



In the special case of Gaussian tuning curves,  ML 
estimate is simply a sum of the peak locations of 
each tuning curve, weighted by the number of spikes

x̂ =

∑
k
Nkxk∑
Nk



In the special case of von Mises tuning curves 
(exponential of cosine),  ML estimate is angle of a 
vector computed as the weighted sum of unit vectors 
in the peak direction of each tuning curve,  weighted 
by the number of spikes

θ̂ = !
∑

k

Nkuk



“vector” decoding 
[Kalaska, Caminiti 

Georgopoulous, 
1983]

A sum of 
vectors, 
weighted by 
firing rate, 
predicts arm 
movement... 



Visual motion
• Physiology:  “motion pathway” heavily studied; 

arguably the strongest extrastriate success story

• Perception: Human motion perception heavily 
studied.   Humans are adept at tasks which 
require motion processing.

• Provides a rich source of visual information for 
prediction, depth perception, material properties, 
etc [Gibson, 1950]



Optic flow

[Gibson, 1950]



“Aperture Problem”
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Fig. 1. Three different motions that produce the same physical stimulus.

moves to the left. Note that  in all three cases the appearance of the

moving grating, as seen through the window, is identical: the bars appear

to move up and to the left, normal to their own orientation, as if produced

by the arrangement shown in Fig. 1A. The fact that a single stimulus can

have many interpretations derives from the structure of the stimulus rather

than from any quirk of the visual system. Any motion parallel to a gra-

ting's bars is invisible, and only motion normal to the bars can be detected.

Thus, there will always be a family of real motions in two dimensions that

can give rise to the same motion of an isolated contour or grating

(Wohlgemuth, 1911, Wallach, 1935; Fennema and Thompson, 1979; Marr

and Ullman, 1981).

[Wallach 1935; Horn & Schunck 1981; Marr & Ullman 1981]
Figure: Movshon, Adelson, Gizzi, Newsome, 1985



Intersection-of-constraints (IOC)
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Fig. 4. A single grating (A) and a 90 deg plaid (B), and the representation of their motions in velocity
space. Both patterns move directly to the right, but have different orientations and 1-D motions. The
dashed lines indicate the families of possible motions for each component.

in spatial extent, and uniformly stimulated the entire retinal region they

covered. This sidesteps the issue which arises in considering stimuli like

the diamond of Fig. 2, of how the identification of spatially separate

moving borders with a common object takes place. Moreover, the plaid

patterns were the literal physical sum of the grating patterns, which makes

superposition models particularly simple to evaluate.

These stimuli were generated by a PDPll computer on the face of     

a display oscilloscope, using modifications of methods that are well-

established  (Movshon et al., 1978).  Gratings were generated by modulat-

[Adelson & Movshon, 1982]
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Movshon, Adelson, Gizzi & Newsome, 1985
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Simple plaid perception = IOC

[Adelson & Movshon, 1982]



Simple plaid perception = IOC

[Adelson & Movshon, 1982]



IOC failure

[Stone etal 1990]



The “Thompson effect”

[Thompson ‘82]

Contrast affects perceived speed



Helmholtz (1866)
Perception is our best guess as to what is in the 
world, given our current sensory input and our 
prior experience [paraphrased]
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memory

“Encoding” “Decoding”



Bayesian perception
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Bayesian perception
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Some Bayesian perceptual models
• Shading/lighting [Kersten 90; Knill, Kersten, Yuille 96; 

Mamassian, Landy, Maloney 01]

• Motion  [Simoncelli 93; Weiss etal. 02; Stocker & 
Simoncelli 06]

• Surface orientation  [Bülthoff & Yuille 96; Saunders & 
Knill 01]

• Color constancy [Brainard & Freeman 97]

• Contours  [Geisler, Perry, Super 01]

• Sensory-motor tasks [Körding & Wolpert 04]



Brightness Constancy

• Assume translational motion (locally)

• Differential approximation (Taylor series)

• Insufficient constraint, so combine over a 
neighborhood (space and/or time):

[Fennema & Thompson ‘79; Horn and Schunck ‘81]

min
∑

(!∇I · !v + It)2

!∇I · !v + It = 0, !∇I = [Ix, Iy]



With noise...
• Additive Gaussian noise in temporal 

derivative:

• Likelihood (combined over neighborhood):

P (!∇I, It|!v) ∝ exp[−
∑

(!∇I · !v + It)2/2σ2]

!∇I · !v + It = n

[Simoncelli, Adelson, Heeger ‘91]



[Simoncelli, Adelson, Heeger ‘91]

With prior...

• Simplest prior choice: Gaussian (preference 
for slow speeds)

• Posterior:

P (!v) ∝ exp[−||!v||/2σ2

p
]

P (!v|!∇I, It) ∝

exp[−||!v||/2σ2
p −

∑
(!∇I · !v + It)2/2σ2]
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Credits

• Bayesian Plaid motion modeling:  Edward 
Adelson, David Heeger,  Yair Weiss

• Reverse-engineered prior/likelihood: Alan 
Stocker


