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People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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(Lake et al., 2015)

segway

Generation

(Jongejan et al., 2016)

Parsing

98 Artificial intelligence

Figure 1

The Omniglot challenge of performing five concept learning tasks at a human level. (a) Two trials of one-shot classification, where a single image
of a new character is presented (top) and the goal is to select another example of that character amongst other characters from the same
alphabet (in the grid below). In panels (b–e), human participants and Bayesian Program Learning (BPL) are compared on four tasks. (b) Nine
human drawings (top) are shown with the ground truth parses (human) and the best model parses (machine). (c) Humans and BPL were given an
image of a new character (top) and asked to produce new examples. (d) Humans and BPL were given a novel alphabet and asked to produce
new characters for that alphabet. (e) Humans and BPL produced new characters from scratch. The grids generated by BPL are (c) (by row) 1, 2;
(d) 2, 2; (e) 2, 2. Reprinted and modified from Lake et al. [1!!].

Current Opinion in Behavioral Sciences 2019, 29:97–104 www.sciencedirect.com
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2018)
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Imagination

(Ward, 1994)



Few-shot learning

This is a 

“breakfast machine.”

Which is another? What are its parts? Create a new one.



• What is the structure of human conceptual representations? How does this 
structure support a variety of discriminative and generative abilities? 


• How do people acquire such rich representations from so little experience?


• How can we understand these abilities in computational terms?

Research Questions



Tradition 1: structured knowledge

Structural Forms 

(Kemp & Tenenbaum, 2008)

Bayesian Program Learning 

(Lake et al., 2015)

Causal-Model Theory

(Rehder, 2007)

Modeling Traditions
Tradition 2: emergent "statistical" knowledge

Semantic Cognition Network

(Rogers & McClelland, 2003)

Finding Structure in Time

(Elman, 1990)

ALCOVE

(Kruschke, 1992)

Synthesis?



Proposal:  
Generative Neuro-Symbolic (GNS) Modeling

• Goal: model the compositional and causal structure in how concepts are formed, while simultaneously 
modeling nonparametric statistical relationships


• Proposal: probabilistic programs with neural network sub-routines

GNS program to generate a concept "type," a prototype for a new conceptual class

• probabilistic program representation facilitates 
explicit causal, compositional structure


• individual parts, and correlations between 
parts, are represented implicitly by neural 
networks



Case study:  
handwritten characters



Omniglot dataset

(Lake et al., 2015)

1. Train a GNS model to learn background knowledge of 
characters using a "background set" of character 
classes as proxy for human experience


2. Evaluate the model in a series of few-shot concept 
learning tasks with novel, unseen character classes 
(from new alphabets) and compare to human behaviors

Objectives:



type level

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

C
Canvas

yi, xi

Part

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type
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token level

Image
I

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1

location model  p(y ∣ C)

CNN MLP

stroke model  p(x ∣ y, C)

CNN LSTM

y

C

attention

p(y)

p(Δ1)

p(Δ2 ∣ Δ1)

p(ΔT ∣ Δ1:T−1)
…C

GNS model of character concepts



HumansBPL model

(centered)

GNS model
fully-symbolic model (BPL)

GNS model

Humans

HumansBPL model

(centered)

GNS model

HumansBPL model

(centered)

GNS model

Type prior

Neuro-Sym 19.51

H-LSTM 20.16

Baseline 19.66

Test losses

1. Evaluations on held-out concepts 2. Generating new concepts

Replicates across different train/test splits

procedure GENERATETYPE
C  0 . Initialize blank image canvas
while true do

[yi, xi] GENERATEPART(C) . Sample part location & parameters
C  frender(yi, xi, C) . Render part to image canvas
vi ⇠ p(v | C) . Sample termination indicator
if vi then

break . Terminate sample
  {, y1:, x1:}
return  . Return concept type

1



Concept learning tasks (Lake et al., 2015)

future 
work



θ Latent program

I Image 
(observation)

Probabilistic inference

Inference P(θ ∣ I) = P(I ∣ θ)P(θ)
P(I)

Bayes' rule:



One-Shot Classification

Results (400 trials)

GNS 94.3%

Humans 95.5%

Inference

fit score: 

25.3

fit score: 

12.1

Training item

Test items

Re-fitting



the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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Parsing

Human

GNS

Target

Generating new exemplars

More examples in Feinman & Lake (2020)



Fit to human perceptual discrimination

T

S

M

K

I

A

Human perception GNS model

r(576) = 0.650; p < 0.001
(Lake et al., 2011)



• Human concepts go far beyond classification: they enable a variety of discriminative and 
generative abilities


• Generative neuro-symbolic (GNS) models can capture the dual structural and statistical 
characteristics of human concepts that enable flexible generalization to a range of tasks


• GNS models offer an account for how previous experience can support the rapid 
acquisition of new concepts through priors

Conclusions



Thank You

Brenden Lake (NYU)

Joshua Tenenbaum (MIT)


Tuan-Anh Le (MIT)

Maxwell Nye (MIT)


Lucas Tian (Rockefeller U.)

Stéphane Deny (Facebook)

"What I cannot create, I do not understand."
—Richard Feynman



Extras



GNS Type Prior

Input 
Canvas

Termination 
Prediction

Location 
Prediction

Stroke 
Prediction

stroke 1

stroke 2

stroke 3

stroke 4



Novelty of character samples

GNS samples Omniglot neighborsGNS samples Omniglot neighborsGNS Samples Nearest training neighbors


