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Abstract

It is well established that many living beings make use of motion information
encoded in the visual system as a means to understand the surrounding environ-
ment and to assist with navigation tasks. In particular, a phenomenon referred to
as motion parallax is known to be instrumental in the perception of depth when
binocular cues are distorted or otherwise unavailable [6]. The key idea is that
objects which are closer to a given observer appear to move faster through the
visual field than those at a further distance. Due to this phenomenon, optical flow
can be a very powerful tool for the decoding of spatial information. When exact
data is available regarding the speed and direction of optical flow, recovering
depth is trivial [1]. In general, however, sources of this information are unreliable,
therefore a learning approach can come of great use in this domain.

We describe the application of a deep belief network (DBN) to the task of learn-
ing depth from optical flow in videos. The network takes as input motion features
generated by a hierarchical feedforward architecture of spatio-temporal feature de-
tectors [4]. This system was developed as an extension of the HMAX model [12]
and is inspired by the neurobiology of motion processing in the visual cortex. Our
network is trained using a set of graphical scenes generated by a gaming engine,
such that ground truth depth information is available for each video sequence.
We show that, by using such a DBN, we are able to improve considerably over
standard linear classifiers. In addition, we show that our results can be further im-
proved by performing Markov random field smoothing on the output depth field
map. Our findings suggest that cortex-like mechanisms are a conceivable tool for
artificial vision systems that operate on video data.

1 Motivation

The human brain is arguably the most powerful information processing device in existence, with
a significant portion of its computational power devoted to sensory processing and in particular,
vision. Modern deep learning systems have attempted to compete with the brain in the realm of
visual perception, drawing loose inspiration from the biological mechanisms of the visual cortex.
Despite the latest efforts, however, artificial vision systems have failed to replicate the power and
versatility of the brain with regard to vision tasks. Here, we would like to design a computer
vision system that relies on biologically inspired neural representations. Rather than owing to
elaborate spiking neural networks, our representations are obtained using mathematical abstractions
that extend current deep architectures while remaining interpretable in the context of biophysical
mechanisms. To demonstrate the power of these representations, we will design a decoding task
using artifical scenes so that ground truth information about the environment is available at our
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disposal. The key contribution of this work is the development of a theoretically-sound learning
pipeline that allows for robust decoding of spatial information from biologically inspired neural
representations.

2 Optical Flow and Motion Parallax

Research conducted over the past few decades has established that the visual systems of bees and
a number of other small insects are finely sensitive to motion cues [13]. These insects cannot rely
on the mechanisms of binocular disparity or accommodation that are used by primates to extract
3D spatial information; the form of the eye in these insects suggests that they measure range over
long distances by motion parallax as opposed to binocular overlap. It has been shown that motion-
sensitive neurons in the visual pathway of bees play a significant role in the process of goal localiza-
tion [8]. Similarly, in primates, a functional link has been discovered between depth perception and
the activity of neurons in the middle temporal (MT) area [5]. These neurons exhibit selectivity to di-
rection and speed of motion, and the middle superior temporal area (MST) uses inputs received from
this region to compute optical flow. The processing stages in this region of the brain are believed to
assist with the interpretation of spatial relationships and thereby aid with the task of navigation.

source: opticflow.bu.ede

(a) Motion Parallax (b) Human Navigation

Figure 1: Motion parralax assists with the decoding of spatial information required for navigation tasks

Motion parallax refers to the concept that objects which are closer to a particular observer move
faster through the visual field than those that are further away. A depiction of this phenomenon is
presented in Figure 1a. As the observer in this scenario exhibits translational motion, the optical flow
detected in each region of his visual field is a function of the environment range for that region. In
this diagram, the optical flow is shown to diminish between regions of the visual field corresponding
to foreground and those corresponding to distant background. By providing a means for depth
perception, optical flow assists with navigation tasks that involve the avoiding of obstacles and the
localizing of targets. A diagram of human naviagtion is provided in Figure 1b. As the subject moves
through an environment cluttered with obstacles, optical flow helps him determine an optimal path
by providing information about the locations of obstacles and targets.

3 The Motion Model

When precise optical flow information is available, including the direction and magnitude of this
flow, recovering depth is trivial given a stationary environment. A thorough mathematical analysis
of this process is provided in [1]. Equation 5 of this paper describes the mapping from direction
and magnitude of optical flow to depth when the motion of the camera is constant and known.
Unfortunately, sources of this information are unreliable, and the optical flow data that is received
is often obscure. We would like to evaluate the potential of our optical flow feature representations
in regards to the task of depth prediction.
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To construct optical flow feature representations, we make use of a biologically inspired model of
motion processing that closely follows the organization of the visual cortex [4]. The model bears a
feedforward hierarchical architecture within which increasingly complex and invariant features are
constructed by alternating between layers of template matching and max pooling. A visualization
of this model is depicted in Figure 2. During template matching, convolutions are performed on
layer inputs with a battery of spatio-temporal filters, tuned to a selection of different speeds and
orientations. In the pooling phase, local max pooling is performed over sub-populations in order to
obtain invariance to position and scale. The model takes in a 20-frame video sequence, and it outputs
a motion energy feature map of dimensionality (#Speeds x #Directions x Height x Width) for
the center frame of this sequence. Figure 3 presents a visualization of the model outputs, using
luminance to depict decoded speed and chromenance to depict direction.

Figure 2: Sketch of the MT motion model. Our version cuts off at C2 of this diagram. Source: [4]

Figure 3: A visualization of motion energy responses. Decoded speeds and directions correspond to an argmax
taken over speed and direction feature vectors at each pixel.

The motion processing step can be thought of as a data preprocessing phase; while we make use of
the motion model to generate feature representations, we do not alter the model’s parameters during
training.
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4 A Data-Driven Approach

4.1 Deep Learning

Equipped with our motion feature model, we would like to build an algorithm to map from motion
features to depth prediction at each pixel of the visual field. One possible approach, it could be
argued, would be to develop a function that maps from argmax decoded speed to depth prediction.
In following such an approach, however, we naively discard a great deal of motion information
provided by our feature representations, reducing the entropy of the information set upon which
our model is constructed. As an alternative to such route, we propose a data-driven approach that is
grounded in a deep neural network predictive model.

A great deal of progress has been made in the field of deep learning over recent years, driven by
a realm of algorithms that consist of multiple layers of nonlinear processing. An example deep
learning architecture is depicted in Figure 4. Given a training set of data features and corresponding
ground truth labels, these algorithms are able to learn highly complex functions from feature
inputs to desired outputs by means of supervised training mechanisms. The performances of these
algorithms have been shown to scale significantly with the number of training examples and the
number of model parameters [2].

source: www.deeplearning.stanford.edu

Figure 4: Diagram of an artificial neural network. The network consists of a feedforward hierachical archi-
tecture, whereby linear combinations of the outputs from each layer are passed forward and processed by the
nodes of the following layer.

At each hidden layer node, linear combinations of outputs from the previous layer are processed
through a nonlinearity at the nodes of the current layer so as to facilitate a more complex input to
output function for the model. The standard activation function, and the one which we describe in
our model, is the sigmoid function. This activation is depicted in Figure 5.
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Figure 5: linear combinations of outputs from the previous layer are passed through a sigmoid nonlinearity at
each node of a given layer.
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f(w · x+ b) =
1

1 + e−(w·x+b)

4.2 The Backpropagation Algorithm

In building an optimal neural network model, we would like to find the set of weights and biases such
that our model’s outputs match with greatest possible precision the labels of the training examples
that it is fed. To do so, we compose a cost function that details how well our network outputs fit with
the training data labels. By analyzing the mathematical relationship between this function’s output
and each model parameter we can update these parameter values iteravely such that we approach a
locally optimal solution set. This process is known as gradient descent, and it is depicted in Figure
6. In [11] Rumelhart showed that networks of neurone-like units could be trained by a process of
backpropagation, whereby error gradients with respect to the cost function at the output layer are
differentially backpropagated downward to the level of input. In doing so, model parameters at each
layer may be updated iteratively in the direction of these gradients to facilitate convergence toward
a local optimum.

source: Vasilis Vryniotis

Figure 6: An illustration of the gradient descent algorithm. In each iteration, gradient values are used to
determine step updates.

The standard cost function at the output layer is squared error:

C =
∑

samples

(yprediction − ylabel)2

For each weight in our network, we would like to update its value such that we reduce this cost

∆W ∝ − ∂C
∂W

and similarly for each bias value. Rumelhart provides a rigorous mathematical derivation of the
gradient values for parameters at each layer of the network in the case of sigmoidal activation.
Rather than computing these gradients by hand, we can use symbolic differentiation, which is easily
accessible thanks to recent software tools. We make use of these gradients, as well as a gradient
momentum term, to train our network by gradient descent.

4.3 Computer Graphics

In order to obtain a large number of labeled training examples in a fast and cost-effective manner, we
make use of graphical scenes generated by the CryEngine game engine [9]. This software allows for
the development of a variety of visual scenes displayed in first person perspective, with ground truth
depth map sequences provided for each scene. To build a training set for our model, we generated a
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database of graphical videos in which an observer is moving forward through a variety of different
forest scenes. As the parallax mapping differs between forward and translational motion, we focus
on the subcase of forward motion for our predictive task. A key frame from one of our sequences is
shown in Figure 7 alongside the corresponding ground truth depth map.

(a) RGB Frame (b) Ground Truth

Figure 7: Computer graphics provide a large number of training examples for supervised learning. We can
obtain this data essentially for free.

4.4 Model Configuration

We make use of a neural network that takes as inputs the motion feature vectors from a 3x3 pixel
window, centered at the pixel for which we would like to predict depth. By using this window, as
opposed to a single pixel, we provide the model with a greater context range for inference. Since
each vector has 72 elements (9 speeds x 8 directions = 72), our network takes in 648 values at the
input layer. It is constructed with 3 hidden layers of 800 units each and a linear output layer. We
train via mini-batch gradient descent with a batch size of 5000, making use of the RMSprop learning
rule as well as the dropout regularization technique. Our model is implemented from the ground up
in Python, making use of the Theano software library. This library enables transparent use of the
GPU for fast linear algebra computations.

5 Deep Belief Networks

5.1 Random Initialization: Failure

We have described an algorithm for updating our weights toward an optimal solution, however, the
issue still lingers regarding how to initalize these weight values. A standard approach is to use ran-
dom initialization, by means of a random number generator. The idea is that, regardless of where
we begin, we can approach a solution that is pretty good with our supervised backpropogation al-
gorithm. In [7] a sparse initialization scheme is described, whereby the majority of the weights at
each layer are set to 0 and a select few are sampled from a normal distribution with 0 mean and
standard deviation < 1. In addition, all biases are initially set to 0. This scheme is designed so
that hidden units are initially both unsaturated and highly differentiated, helping to ensure a smooth
entry into the gradient descent process. The method is considered the state-of-the-art in regards to
random initialization approaches for supervised learning. Beginning with this initialization mecha-
nism, however, our model was unable to converge to a meaningful solution in any of a number of
trials.

5.2 The Generative Model

As an alternative to random initialization, Geoffrey Hinton showed in [3] that we can do better
by initializing our network via a phase of unsupervised learning. To do so, we build a generative
probablistic model to describe the distribution of our network graph, and we perform sequential
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maximum likelihood learning over this model such that the network is initialized with a hierarchy
of feature detectors.

P (x, h1, ..., hl) = (

l−2∏
k=0

P (hk, hk+1)) ∗ P (hl−1, hl)

At each layer, nodes are trained to extract useful features from the units in the previous layer, thereby
uncovering hidden structure from unlabeled training data by a method of belief propagation. Hinton
showed that, by learning this generative model in an unsupervised pre-training phase, we can con-
verge to a more optimal solution during supervised backpropagation and avoid getting stuck in local
maxima. He described a learning procedure for this model whereby each sequential pair of layers
is designated as a Restricted Boltzmann Machine (RBM). A depiction of this architecture is given
in Figure 8. The RBM model consists of a hidden layer and a visible layer; each unit of the hidden
layer is independent of all others conditioned on the vector of visible unit values, and vice-versa for
the visible units. The RBMs are trained sequentially from the layer of input onward by a greedy
maximum likelihood learning algorithm known as contrastive divergence. During this process, the
first RBM makes use of the input values as its visible data, and each RBM thereafter uses the values
passed on through weights learned by the previous RBMs as visible unit data.

source: http://deeplearning.net

(a) DBN (b) Restricted Boltzmann Machine

Figure 8: Deep belief netorks are constructed of stacked RBMs

5.3 Contrastive Divergence via Gibbs Sampling

The contrastive divergence algorithm revolves around an energy-based probability model that de-
scribes a distribution across the RBM graph. In the standard (Bernoulli-Bernoulli) RBM, units of
both the hidden and visible layers retain binary values. A slight modification can be made to this
model such that the visible layer units have continuous values; this model is known as a Gaussian-
Bernoulli RBM. The energy equations of these two models are as follows:

Standard RBM:

E(~v,~h) = −
m∑
i=1

n∑
j=1

wijvihj −
m∑
i=1

bivi −
n∑
j=1

cjhj

Gausian-Bernoulli RBM:

E(~v,~h) = −
m∑
i=1

n∑
j=1

wijhj
vi
σi
−

m∑
i=1

(bi − vi)2

2σ2
i

−
n∑
j=1

cjhj
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Here, (~v, ~h) are the visible and hidden unit vectors, W is our weight matrix, and (~b, ~c) are our visible
and hidden bias vectors, respectively. The probability distribution over the visible and hidden units
is then

P (~v,~h) =
1

Z
e−E(~v,~h)

where Z represents the partition function required to normalize this distribution. The goal of
maximum likelihood learning is to find the set of values for our model’s parameters (W , ~b, ~c) such
that the likelihood of the observed training data is maximized under this probability model. In each
RBM, however, we only observe visible unit data, therefore we must sum over all possible hidden
states to generate a new probability equation for our maximum likelihood algorithm. In doing so,
we develop a new “free energy”, denoted F (~v), that is a function of solely the visible units. The
probability can then be written as

P (~v) =
1

Z
e−F (~v)

To retain the previous value for Z, the free energy equation then becomes

F (~v) = −~bT~v −
n∑
j=1

log(1 + ecj+
~Wj
~b)

Now, to perform a maximum likelihood estimation on this new probability distribution, the natural
approach is to run a gradient descent on each of the model parameters, updating the values of these
parameters iteratively in the direction of the derived gradient values. We can deduce by analysis that
the gradients of log probability with respect to each parameter Θ are of the form

−∂logP (~v)

∂Θ
=
∂F (~v)

∂Θ
−

∑
~vp

P (~vp)
∂F (~vp)

∂Θ

where ~vp are the possible states of the vissible unit vector. The second term thus represents an ex-
pected value of the free energy derivative under our probability distribution. Now, unfortunately,
obtaining exact values for these gradients is computationally intractable; computing this expected
value would require that we sum over all possible configurations of the input. To make this com-
putation tractable, however, we can substitute this second term with a Monte Carlo estimate of the
derivative:

−∂logP (~v)

∂Θ
≈ ∂F (~v)

∂Θ
− 1

|N |
∑
~vs∈N

∂F (~vs)

∂Θ

Here N is our sample set, and ~vs are the visible unit vector samples. Given the structure of the
RBM model, we can obtain these samples very efficiently by the MCMC method known as Gibbs
sampling. To perform Gibbs sampling, we alternate between sampling hidden unit values from our
distribution conditioned on the visible units and sampling visible unit values from the probability
conditioned on the hidden unit values:

~hs ∼ P (~h|~v = ~vs) = Sigmoid(WT ~vs + ~c)

~vs ∼ P (~v|~h = ~hs) = Sigmoid(W ~hs +~b)

An illustration of this process is provided in Figure 9. The Gibbs algorithm guarentees that the
K-L divergence between the probability distribution from which we are sampling and our model’s
equilibrium distribution is reduced with each iteration. Typically, when performing Gibbs sampling,
values are initalized randomly, and a burn period is allowed before samples are collected. To perform
this training quickly, however, we begin with a training example for the visible unit states. In this
sense, contrastive divergence is a “greedy” algorithm, as we assume that the distribution from which
we begin is close to P (~v), and thus we run our chain for only a small number of iterations. In the
particular case of our DBN, we use the standard CD-1, meaning that a single sample is used for the
MC estimate.
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Figure 9: A depiction of the Gibbs sampling algorithm. Source: [3]

5.4 Results

To pre-train the DBN we use a Gaussian-Bernoulli RBM at the first layer, as our input data is
continuous, and standard RBMs at each of the other 2 layers. Subsequently, supervised training
is performed via backpropogation with our ground truth depth maps from CryEngine. Given an
appropriate number of pre-training epochs, we found that our model was able to converge to a
solution that performs much better than linear classifiers. To test the performance of our model, we
built a test set of sequences from our database drawn from a series of visual scenes significantly
distinct from those in our training set. A number of example predictions are shown in Figure 10,
displayed next to the predictions of a simple linear regression model trained for the same task. As a
metric to evaluate how well we are doing, we use the R2 coefficient of determination classification
score. Figure 11 depicts a plot of test R2 performance vs. model type.

R2 = 1−
∑
i(di − d̂i)2∑
i(di − d̄)2

Figure 10: A comparison of results. The DBN does a much better job segmenting the scene into seperate
spatial components.
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Figure 11: R2 plotted against model. Scores improve considerably over linear classifiers with our DBN.

5.5 Additional Experiment

As an additional test to evaluate our generative feature-learning process, we conducted one more
small experiment. From the results charted in Figure 11, one can see that an R2 score of 0.240
was obtained by a linear classifier built upon the 648 feature input model. As a manner to test
the features generated by our RBM model, we designed a neural net experiment with a single
hidden layer of 648 units. This network was pretrained with a Gaussian-Bernoulli RBM via the
standard procedure; however, during the supervised phase, in order to isolate the unsupervised
feature generation process, we did not backpropogate error gradients down the network. Instead,
we trained a simple linear classifier on the features at the output layer, feeding the original feature
inputs through our pre-trained network to obtain these new representations. In doing so, we ensure
that the hierarchical representations formulated within our network are credible to the unsupervised
learning process, rather than to the backpropogation algorithm. Training this model in such a
manner, we obtained an R2 classification score of 0.302, showing significant improvement over the
original feature representations. As a control test, we performed one further experiment where the
weights between layers are initalized randomly, as opposed to via unsupervised learning. With all
other specifics held the same, this model achieved an R2 performance of 0.252.

Our results provide that, by uncovering hidden structure within the data via an unsupervised learning
phase, we are able to improve upon our original feature representations. Furthermore, it could
be argued that the quantity of improvement observed in such an experiment constitutes a merit of
the baseline feature representations used; certain features may very well facilitate the discovery
of hidden structure better than others. In future work, it would be interesting to test whether or
not aptitute for simple linear classification tasks is directly correlated with aptitude for this type of
unsupervised structural learning.
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6 Markov Random Field Smoothing

As a mechanism to improve our prediction results, we would like to capitalize upon the power of a
receptive field as applied to the task of structure decoding. In order to develop a spatially-coherent
perception of the surrounding environment, we propose a Markov random field model to describe
the distribution of depth values over all pixels in our prediction map. This MRF is defined by two
potential functions:

φ =
∑
i

(oi − di)2

ψ =
∑
<i,j>

(di − dj)2

(di − dj)2 − α1

Notation:
• oi ≡ original DBN depth prediction for pixel i
•
∑
<i,j> ≡ sum over all neighboring pairs i, j

• α1 ≡ one of two model smoothing parameters

(a) the MRF graph (b) smoothing potential

Figure 12: Neighboring pixels of a given node are shown in (a), and our smothing potential ψ plotted vs. (di -
dj) is shown in (b).

Our definition of the neighboring pixel set is depicted in Figure 12a. With the first of these two po-
tential functions, φ, we assign a cost to the deviation of a given depth vector from our original DBN
prediction map. With the latter of these two functions, ψ, we assign a cost to lack of smoothness in
a given depth vector, i.e. to a greater total of differences between neighboring pixel values. Rather
than the naive cost function of squared difference, however, we propose a function with a cutoff cost
such that we avoid oversmoothing at segment boundaries of the scene. A plot of this function is
shown in Figure 12b. This function ensures that we do not assign exponentially larger cost to neigh-
boring pixels at segment boundaries relative to those in smooth regions of the scene. The smoothing
parameter α1 determines where this cutoff is reached. Given these two potential functions, we can
define a probability distribution over the depth vector conditioned on our original predictions as

P (d|o;α1, α2) =
1

Z
e−(α2ψ+φ)

where Z is the partition function that normalizes our distribution and α2 is a second smoothing
parameter that determines the weight placed on smoothness vs. original model consistency. Under
this distribution, the depth value of a given pixel is dependent on each of its neighboring nodes, and
conditioned on the values of those nodes, it is independent from all other nodes in the graph. The
values of α1 and α2 are determined by cross-validation, and thereafter we perform a maximum-a-
posteriori estimation to determine the depth vector that constitutes the mode of this distribution. In
doing so, we were able to achieve noticeable performance improvements over our original depth
maps. On average, an R2 score increase of∼ 0.04 was seen with each test frame, and visualizations
appear to be much more coherent and smooth (see Figure 13).
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Figure 13: A depiction of MRF results.

7 Drone Test

As a final measure to evaluate the performance of our trained model, we tested its predictions on a
set of videos recorded by a Phantom Vision 2 drone. This drone was flown through a series of visual
environments, mimicking the forward motion and perspective of the observer from our CryEngine
video sequences. Shown below are frames from two visual scenes of this database, corresponding
to a forest environment and a university stadium. Along with each frame are the associated depth
maps output by our model when provided with the video sequences. Considering that no real-world
videos were included in supervised training, our model has decoded a signifant information set
regarding the structure of the surrounding environment.

12



8 Concluding Remarks

We have shown that our feature-based representations of optical flow possess great potential for the
task of depth prediction. This potential was not immediately obvious, however, by the results of
linear regression classifiers. In [12] it was shown that the HMAX model could mimic the perfor-
mance of state-of-the-art systems while abiding by biological constraints; to do so, classification
results were demonstrated with simple linear classifiers built upon the output features. As a further
experiment, it would be interesting to test how well this model can perform when provided with an
additional unsupervised learning extension. In [10] it was demonstrated that generative probablistic
frameworks are promising as hypothetical models of cortical learning and perception. By developing
a generative model that extends from our feature representations, we are able to exploit information
regarding the global distribution of these features by means of unsupervised learning. In doing so,
we may extract deep hierachical representations of our inputs in an unsupervised manner, and these
reperesentations may then be fine-tuned in a subsequent supervised phase according to task.

At a time when artificial vision systems continue to remain poor cousins to their biological coun-
terparts, a great deal of effort is being concerted toward unlocking the cortical computations not
captured by these existing systems. Through our experiments, we have demonstrated the aptitude
of biologically-inspired vision models for a particular inference task. By combining a neurophys-
ically accurate computational model of sensory processing in the primate cortex with a generative
probablistic model that extends from the output responses, we have shown that we are able to per-
form significantly well at predicting depth field maps for visual media inputs. Furthermore, we have
provided a mathematical abstraction to model the role that context plays in the decoding of spatially
coherent environment structure, and we have verified that this algorithm improves our decoding
performance.
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