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Review - SVMs

Linear classifier that uses support vectors on margin

Strong generalization guarantees based on margin

But what if data is not linearly separable?
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Example
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SVM - Linear
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SVM - Gaussian Kernel
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Problem

If data not linearly separable, must change space.

Non-linear function φ maps input space to high-dimensional space H.

SVM generalization doesn’t depend on dimension of feature space

BUT - determining hyperplane in high-dimensional space requires
computing multiple inner products.
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Kernels

A kernel is a function K : X × X → R
Define kernels so that given two points x , x ′ ∈ X , K (x , x ′) is
equivalent to an inner product of vectors < φ(x), φ(x ′) >

φ : X → H, where H is a Hilbert space called a feature space.

Note: H can be infinite dimensional, yet the Kernel can be computed
in finite time.

The Kernel K is arbitrary, as long as φ exists

φ is guaranteed as long as K is positive definite symmetric.
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PDS Kernels

A kernel K is pds if a kernel matrix K = [K (xi , xj)]ij is symmetric
positive semidefinite (SPSD).

K is SPSD if it is symmetric and its eigenvalues are non-negative

K is also known as the Gram matrix
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Polynomial Kernels

∀x, x ∈ RN ,K (x, x′) = (x · x′ + c)d

c > 0 is a constant and d ∈ N is the degree

Example: N = 2 and for second degree polynomial

∀x, x′ ∈ R2,K (x, x′) = (x1x
′
1 + x2x

′
2 + c)2
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Gaussian Kernels (RBF)

∀x, x′ ∈ Rn,K (x, x′) = exp
(
− ‖x

′−x‖2
2σ2

)
The power series expansion of K shows that the corresponding H is
inifite dimensional:

K (x, x′) =
+∞∑
n=0

(x · x′)n

σnn!
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Sigmoid Kernels

∀x, x′ ∈ RN ,K (x, x′) = tanh(a(x · x′) + b) for a, bgeq0

SVMs with sigmoid kernels coinside with single layer perceptrons
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Kernel-SVMs

Recall the dual form of the constrained optimization problem of
SVMs:

max
α

m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

subject to : 0 ≤ αi ≤ C ∧
∑m

i=1 αiyi = 0, i ∈ [1,m].

PDS kernels implicitly define an inner product in H, so replace inner
products x · x ′ with K (x , x ′):

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK (xi , xj)

subject to : 0 ≤ αi ≤ C ∧
∑m

i=1 αiyi = 0, i ∈ [1,m].

This leads to: h(x) = sgn
(∑m

i=1 αiyiK (xi , x) + yi −
∑m

j=1 αjyjK (xj , xi ))
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Learning guarantees

Rademacher Complexity:
Given a sample S ⊆ {x : K (x , x) ≤ r2} of size m and
H = {x 7→ w · φ(x) : ‖w‖H ≤ Λ} for Λ ≥ 0:

R̂S(H) ≤
Λ
√
Tr[K]

m
≤
√

r2Λ2

m
.

Margin bounds: Now if r2 = supx∈X K (x , x) and ρ > 0 is the margin, then
with probability at lest 1− δ, for any h ∈ H:

R(h) ≤ R̂ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
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MATLAB Tutorial

MATLAB Tutorial
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Conclusion

Kernel methods are used to extend linear classifiers to non-linear
spaces

PDS Kernels implicitly define inner products in high-dimensional space

Generalization bounds for Kernels depends on trace of Kernel matrix
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