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Review - SVMs

@ Linear classifier that uses support vectors on margin
@ Strong generalization guarantees based on margin

@ But what if data is not linearly separable?
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Example

151

Michael Rabadi (NY!

Kernel Methods June 30, 2015 4 /20



SVM - Linear
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SVM - Gaussian Kernel
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Problem

If data not linearly separable, must change space.
Non-linear function ¢ maps input space to high-dimensional space H.

SVM generalization doesn't depend on dimension of feature space

BUT - determining hyperplane in high-dimensional space requires
computing multiple inner products.
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Kernels

@ A kernel is a function K : X x X —- R

@ Define kernels so that given two points x, x" € X, K(x,x’) is
equivalent to an inner product of vectors < ¢(x), p(x’) >

e ¢ : X — H, where H is a Hilbert space called a feature space.

@ Note: H can be infinite dimensional, yet the Kernel can be computed
in finite time.

@ The Kernel K is arbitrary, as long as ¢ exists

@ ¢ is guaranteed as long as K is positive definite symmetric.
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PDS Kernels

o A kernel K is pds if a kernel matrix K = [K(x;, xj)];j is symmetric
positive semidefinite (SPSD).

o K is SPSD if it is symmetric and its eigenvalues are non-negative

@ K is also known as the Gram matrix
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Polynomial Kernels

o Vx,x € RV K(x,x) = (x - x' + ¢)9
@ ¢ > 0is a constant and d € N is the degree

@ Example: N = 2 and for second degree polynomial

vx, x' € R?, K(x,x") = (xax| + xox5 + C)2

=[x2, x3V2x1x2, V2cx1,V2exa, c] T - [x2, X3V 2x1x0, V2ex1, V2exa, ] T
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Gaussian Kernels (RBF)

(oa

o VX,X/ S Rn, K(val) = exp < — ”)(/2_7)2(”2>

@ The power series expansion of K shows that the corresponding H is
inifite dimensional:
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Sigmoid Kernels

o ¥x,x' € RV K(x,x') = tanh(a(x - x') + b) for a, bgeq0

@ SVMs with sigmoid kernels coinside with single layer perceptrons
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Kernel-SVMs

@ Recall the dual form of the constrained optimization problem of

SVMs:
m 1 m
mgx;a; ~3 Zl ajagy;yi(Xi - Xj)
i= ij=

subject to: 0 < a; < CAY " aiy; =0,i € [1,m].

@ PDS kernels implicitly define an inner product in H, so replace inner
products x - x’ with K(x,x’):

m m

1

mo?x E o — 5 E oz,-ozjy,-yjK(x,-,xj)
i=1 ij=1

subject to: 0 < a; < CAY " ayy; = 0,i € [1, m].

@ This leads to: h(x) = sgn(Z;ll aiyiK(xi, x) + yi = 270 ayK (x5, xi))
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Learning guarantees

Rademacher Complexity:
Given a sample S C {x : K(x, x) < r?} of size m and
H={x—w-¢(x):|w|m <A} for A >0:

5 AV/T[K 272
Rs(H) < mr[]g .

m

Margin bounds: Now if r? = sup,cx K(x,x) and p > 0 is the margin, then
with probability at lest 1 — 6, for any h € H:

N r2A2 /p? log %
R(h) < R,(h)+2
() < Ryl) 2 L2 [
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MATLAB Tutorial

MATLAB Tutorial
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Conclusion

@ Kernel methods are used to extend linear classifiers to non-linear
spaces
@ PDS Kernels implicitly define inner products in high-dimensional space

@ Generalization bounds for Kernels depends on trace of Kernel matrix
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