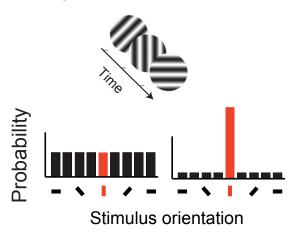
### A Model of Contingent Adaptation in Cortex

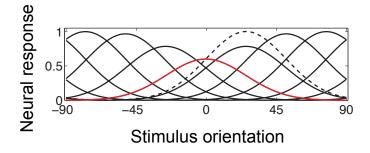
Michael S. Landy, Zachary M. Westrick & David J. Heeger

New York University
Dept. of Psychology and
Center for Neural Science

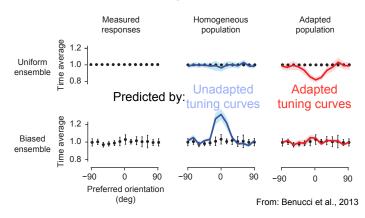



#### Outline

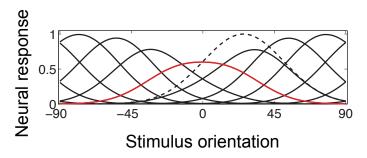
- Introduction: A variety of effects of pattern adaptation in cortex
- A model for contingent adaptation
- Simulation results
- · Implications for behavior


#### **Outline**

- Introduction: A variety of effects of pattern adaptation in cortex
- A model for contingent adaptation
- Simulation results
- Implications for behavior

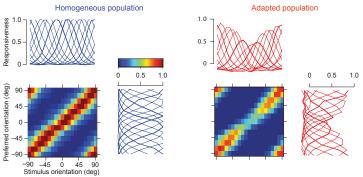

#### Adaptation to orientation




## Standard model: Gain adaptation

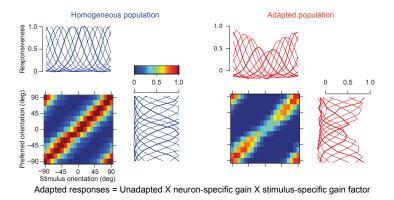


# The effect: Homeostasis of firing rate

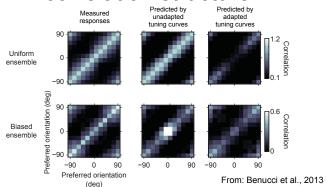



### But: Tuning-curve repulsion is also evident




Cat: Benucci et al., 2013; Dragoi et al., 2000, 2001; Felsen et al., 2002 Macaque: Muller et al., 1999; Patterson et al., 2013; Wissig et al., 2013

#### The net effect: Both neuron- and stimulus-specific adaptation




From: Benucci et al., 2013

#### The net effect: Both neuron- and stimulus-specific adaptation



# Another interesting outcome: Approximate maintenance of correlation structure



#### Outline

- Introduction: A variety of effects of pattern adaptation in cortex
- A model for contingent adaptation
- Simulation results
- Implications for behavior

### Can these effects be predicted by a single model?

- · Neuron-specific adaptation
- Stimulus-specific adaptation
- Approximate correlation homeostasis

We suggest that a simple learning rule paired with normalization can account for these results.

Normalization (Heeger, 1993)

$$R_{i}(\theta) = \frac{F_{i}(\theta)^{2}}{s + \sum_{j=1}^{N} F_{j}(\theta)^{2}}$$

where  $F_i$  is the feed-forward drive to neuron i and  $R_i$  is its response to a stimulus with orientation  $\theta$ .

Normalization with weights

$$R_{i}(\theta) = \frac{F_{i}(\theta)^{2}}{s + \sum_{j=1}^{N} W_{j,i} F_{j}(\theta)^{2}}$$

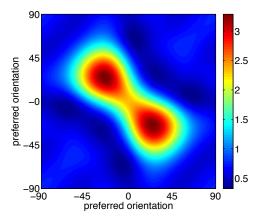
where  $W_{j,i}$  is the weight by which neuron j contributes to the inhibitory normalization pool for neuron i.

Our model: Contingent adaptation

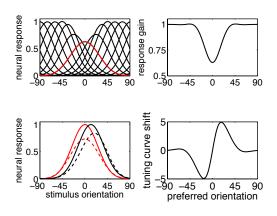
$$R_{i}(\theta) = \frac{F_{i}(\theta)^{2}}{s + \sum_{j=1}^{N} W_{j,i} F_{j}(\theta)^{2}}$$
$$W_{j,i}^{t+1} = W_{j,i}^{t} + \alpha \times \left(R_{j}^{t} R_{i}^{t} - C_{j,i}\right)$$

Our model: Contingent adaptation

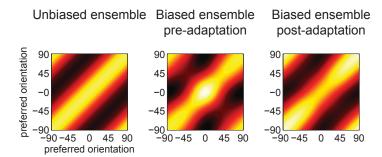
$$R_{i}(\theta) = \frac{F_{i}(\theta)^{2}}{s + \sum_{j=1}^{N} W_{j,i} F_{j}(\theta)^{2}}$$


$$W_{j,i}^{t+1} = W_{j,i}^{t} + \alpha \times \left(R_{j}^{t} R_{i}^{t} - C_{j,i}\right)$$

$$C_{j,i} = E_{\text{unbiased}}(R_{j} R_{i})$$


#### Outline

- Introduction: A variety of effects of pattern adaptation in cortex
- A model for contingent adaptation
- Simulation results
- Implications for behavior


Normalization weights after adaptation to biased ensemble



### Tuning curves after adaptation to biased ensemble



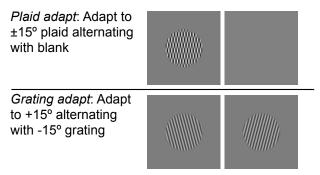
### Approximate covariance homeostasis



#### Alternative models

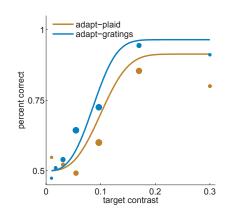
That don't work:

- Maintenance of correlation rather than joint product
- Inherited adaptation and response gain control alone

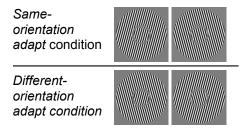

That do work:

Recurrent contingent adaptation

#### **Outline**


- Introduction: A variety of effects of pattern adaptation in cortex
- A model for contingent adaptation
- Simulation results
- Implications for behavior

# Contingent adaptation: Overlap masking

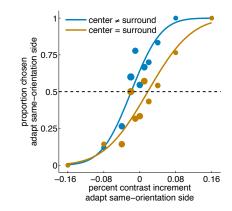



Task: Detect +15° grating masked by -15° grating

## Contingent adaptation: Overlap masking



### Contingent adaptation: Surround masking




Adaptation is same-orientation on one side and different-orientation on the other. Test is same condition on both sides. Task is contrast discrimination.

#### Conclusions

- Contingent-adaptation model accounts for several phenomena of cortical adaptation
- It has implications for psychophysical performance, and we have hints that its predictions will be borne out
- It bears resemblance to other forms of contingent adaptation (e.g., the McCollough effect), and may explain pattern-based effects (e.g., Nakashima & Sugita, JOV, 2014)

# Contingent adaptation: Surround masking

