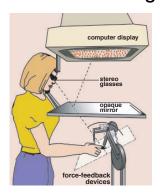
The importance of causal inference in multisensory learning

Michael S. Landy NYU

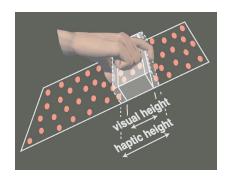
Stephanie Badde

"Traditional" cue integration



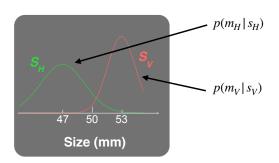
Maloney & Landy, 1989; Clark & Yuille, 1990; Landy et al., 1995; Ernst & Banks, 2002; etc.

"Traditional" cue integration

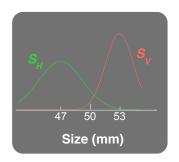


Maloney & Landy, 1989; Clark & Yuille, 1990; Landy et al., 1995; Ernst & Banks, 2002; etc.

"Traditional" cue integration



"Traditional" cue integration

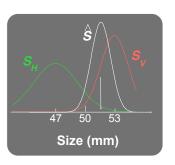


$$\hat{s} = w_H m_H + w_V m_V$$

$$w_H = \frac{r_H}{r_H + r_V}$$

$$w_V = \frac{r_V}{r_H + r_V}$$
Reliability $r = \frac{1}{\sigma^2}$

"Traditional" cue integration



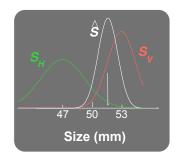
$$\hat{s} = w_H m_H + w_V m_V$$

$$w_H = \frac{r_H}{r_H + r_V}$$

$$w_V = \frac{r_V}{r_H + r_V}$$

Reliability
$$r = \frac{1}{\sigma^2}$$

"Traditional" cue integration



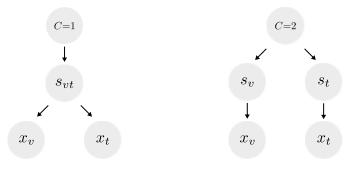
$$\hat{s} = w_H m_H + w_V m_V$$

$$\sigma_{HV}^2 = \frac{\sigma_H^2 \sigma_V^2}{2 + \sigma_V^2}$$

$$r_{HV} = r_H + r_V$$

Variance of combined estimate is lower than variance of either single-cue estimate

Causal inference



Körding et al., 2007

Ventriloquism and its aftereffect

Ventriloquism and its aftereffect

- · Multisensory integration
- · Causal inference
- Bayesian modeling of integration (e.g., Körding et al., 2007)
- · Recalibration from consistent discrepancy

1. Models of multisensory recalibration

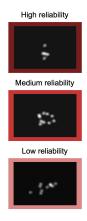
- Reliability-based: Several studies find that vision dominates for parameters for which it is more reliable, but not when it is the less-reliable cue. Burge, Girshick & Banks (2010) tested and confirmed a reliabilitybased model for vision and haptic cue integration
- Fixed-ratio: Zaidel, Turner & Angelaki (2011) found that a fixed-ratio model fit best for visual-vestibular integration, and argued that a statistical flaw led to Burge et al.'s conclusions
- Ernst & di Luca (2011) suggested a "coupling prior" based on the tendency for cues to become miscalibrated

Apparatus: Projection screen

Apparatus: Movable speaker

Apparatus: Pointing device

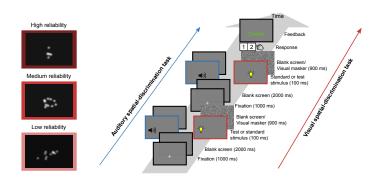
Visual stimuli with varied reliability



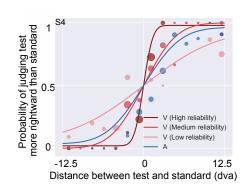
Experimental tasks/sessions

- 1. Unimodal spatial discrimination: To measure JNDs
- 2. Bimodal spatial discrimination: To measure bias
- 3. Pointing practice: For practice and to measure motor noise)
- 4. Recalibration. Sessions: 2 directions x 3 visual reliabilities
 - Pre-recalibration phase: Unimodal spatial localization
 - · Recalibration phase: Bimodal localization task
 - Post-recalibration phase: Same as pre-recalibration

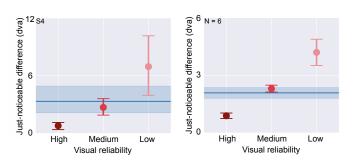
Phase 1: Unimodal spatial discrimination



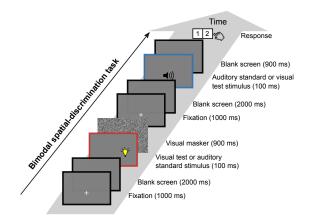
Phase 1: Unimodal spatial discrimination



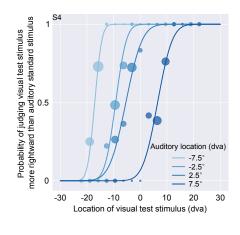
Phase 1: Unimodal spatial discrimination



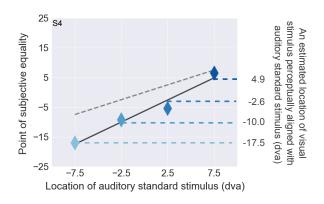
Phase 2: Bimodal spatial discrimination



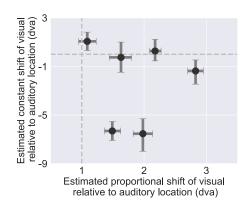
Phase 2: Bimodal spatial discrimination



Phase 2: Bimodal spatial discrimination



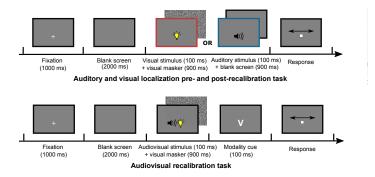
Phase 2: Bimodal spatial discrimination



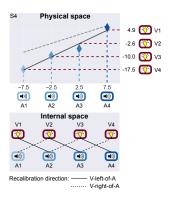
Phase 3: Pointing practice

- · Provides practice with the pointing device
- Visual feedback was provided (else very noisy and likely biased)
- Provides estimates of motor noise for subsequent localization tasks: $\bar{\sigma}_r = 1.85 \deg$

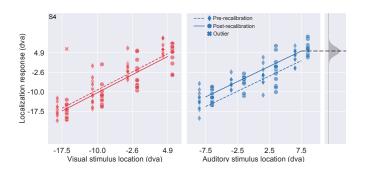
Main experiment: Recalibration



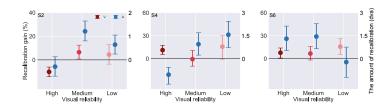
Main Experiment: Recalibration



Main Experiment: Recalibration



Main Experiment: Recalibration



The story so far

- No or tiny amount of visual recalibration. This is consistent with previous studies, although for them, visual reliability was typically higher than auditory
- · Significant auditory recalibration
- Amount of auditory recalibration depends on relative reliability
- That dependence varies across participants; it can rise, fall, or rise then fall with increasing visual reliability
- What can account for these varying patterns of recalibration?

Modeling

We compare three models

- · Reliability-based
- Fixed-ratio
- Causal-inference

We fit the models to the data from

- Unimodal discrimination
- · Bimodal discrimination
- Pre- and post-recalibration bimodal localization

Modeling

Common model aspects

- Parameters for initial bias, assumed (without loss of generality) to be bias in the auditory signals
- · Cumulative shifts from recalibration
- Thus, $s_A' = a_A s_A + b_A + \Delta_A$ and $s_V' = s_V + \Delta_V$
- These are corrupted by internal noise, e.g., $m_A' = s_A' + \varepsilon_A$
- Measurement reliability may differ between uni- and bimodal conditions
- Single lapse rate for discrimination, late noise for localization estimated from pointing practice
- Single supra-modal prior (very wide)

Fixed-ratio model

- Updates in fixed proportion based on modality-specific learning rate
- · Thus.

$$\Delta_A(t+1) = \Delta_A(t) + \alpha_A \left(m_V' - m_A' \right)$$

anc

$$\Delta_V(t+1) = \Delta_V(t) + \alpha_V \left(m_A' - m_V' \right)$$

Causal-inference model

- Estimates are based on standard causal-inference integration model using model averaging
- Two scenarios: C=1 and C=2
- $\hat{s}_{A,C=1}' = \hat{s}_{V,C=1}'$ based on reliability-based integration of both measurements and the supra-modal prior
- $\hat{s}'_{A,C=2}$ based on reliability-based integration of auditory measurement and the supra-modal prior, and similarly for $\hat{s}'_{VC=2}$
- \hat{s}_A' and \hat{s}_V' average the estimates for the two scenarios, weighted by their respective probabilities given the measurements

Reliability-based model

- · Updates based on measurement discrepancy
- · Updates proportional to the other modality's reliability
- Thus

$$\Delta_A(t+1) = \Delta_A(t) + \alpha w_A \left(m_V' - m_A' \right)$$

and

$$\Delta_V(t+1) = \Delta_V(t) + \alpha w_V (m_A' - m_V'),$$

where

$$w_A = \frac{{\sigma'_{AV,V}}^{-2}}{{\sigma'_{AV,V}}^{-2} + {\sigma'_{AV,A}}^{-2}} = \frac{r_{AV,V}}{r_{AV,V} + r_{AV,A}}$$

$$w_V = 1 - w_A$$

Causal-inference model

- Updates based on difference between measurement and estimate
- Thus.

$$\Delta_A(t+1) = \Delta_A(t) + \alpha_A \left(\hat{s}_A' - m_A'\right)$$

and

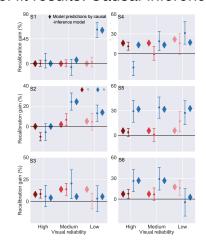
$$\Delta_V(t+1) = \Delta_V(t) + \alpha_V \left(\hat{s}_V' - m_V'\right)$$

- Also tested single-rate model, where $\alpha_{\!A}=\alpha_{\!V}$

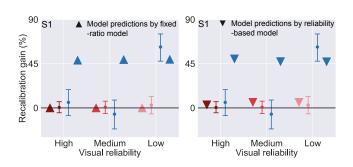
Free parameters for model fits

Θ	Meaning	RB	FR	CI	$CI_{\alpha_V = \alpha_A}$
$\sigma_{AV,A}$	Measurement noise variance for the auditory	√	√	✓	✓
	stimulus in bimodal trials				
σ_{AV,V_i}	Measurement noise variance for the visual	√	√	√	✓
	stimulus in bimodal trials				
μ'_P	The mean of the supra-modal prior distribution	-	-	-	-
σ_P'	The standard deviation of the supra-modal prior	-	-	-	-
a_A, b_A	The slope and the intercept of the linear function	√	√	✓	✓
	that captures biases in auditory measurements				
P(C=1)	Prior probability of a common cause	-	-	✓	✓
α_A, α_V	Modality specific learning rate	-	✓	√	-
α	Common learning rate	V	-	-	✓
λ_{AV}	Lapse rate for the bimodal spatial-discrimination	√	√	√	√
	task				
	Number of total parameters:	8	9	10	9

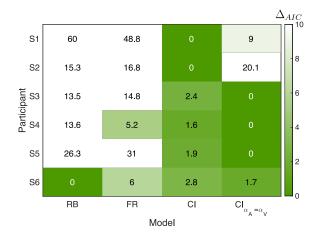
Model fit results: Causal-inference model



Failure to fit: Other models



Model comparison



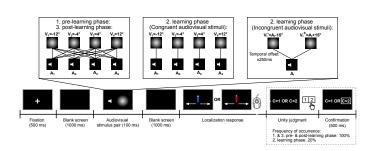
2. Is the common-cause prior flexible?

- The causal-inference model estimates location by first making a common-cause inference, which in turn depends on the prior probability of a common cause.
- Is that common-cause prior fixed, or can it adapt to current conditions?
- We test this by a similar experimental design in which the learning phase involves either a set of fully congruent or fully discrepant audiovisual stimuli.

Experimental tasks/sessions

- 1. Unimodal spatial discrimination: To measure JNDs
- 2. Bimodal spatial discrimination: To measure bias
- Pointing practice: For practice and to measure motor noise)
- 4. Learning. Two sessions: congruent vs. incongruent stimuli
 - Pre-recalibration phase: Unimodal spatial localization
 - · Learning phase: Bimodal localization task
 - · Post-recalibration phase: Same as pre-recalibration

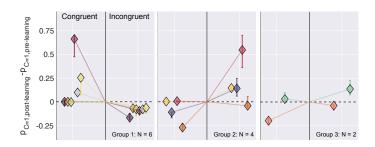
Main experiment: Prior Learning



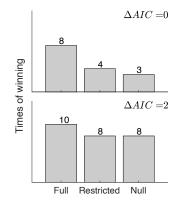
Main experiment: Sample results

Pattorn 1 Pattorn 2 Pattorn 2

Main experiment: Data patterns



Main experiment: Model comparison



Conclusions

- A causal-inference-based model of cue recalibration can explain the diverse patterns of recalibration with varying cue reliability across participants
- The prior for a common cause is flexible, adapting to recent conditions
- Given the presence of biases across cues, biases must be measured and taken into account in understanding multisensory integration
- Predictions are more clear-cut if stimuli across modalities are equated for these biases