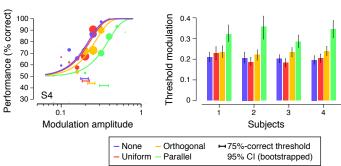
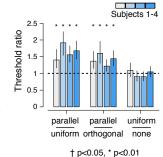
Psychophysical Evidence for Normalization in Second-Order Mechanisms

Helena X. Wang, Michael S. Landy, and David J. Heeger

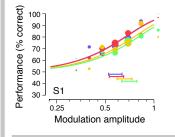
Center for Neural Science & Dept. of Psychology, New York University

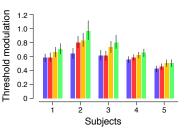

Background Input Image Cascade model of cortical processing Linear Spatial Filter Rectification Normalization Filter Rectification Normalization Figure Rectification Normalization Filter Filter Rectification Normalization Filter Filter Filter Filter Filter F

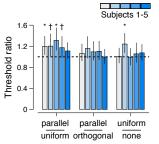

- Second-order patterns (e.g., changes in texture) cannot be detected by first-order mechanisms sensitive
 only to luminance cues.
- The "cascade model" combines the backpocket model (Chubb & Landy, 1991) with the normalization model (Heeger, 1992), in which linear filtering (F), rectification (R), and normalization (N) are hypothesized to cascade across a hierarchy of computational stages.
- Normalization predicts that the neural representation of a target stimulus is suppressed (divisively) by the pooled activity of many neurons, including those responding to the surrounding region.

Surround Conditions Stimuli Contrast-modulated (CM) gratings None Uniform Orientation-modulated (OM) gratings 1.5 dea 7.6 deg Full Zero Orthogonal Parallel Modulator: 1.5 cyc/deg sine wave (vertical or horizontal) Carrier: OM: isotropic bandpass noise (center SF: 8 cyc/deg) CM: modulation between 45° and 135° bandpass noise Task: 2AFC detection. Was modulation in quadrants 1/3 or

Results


Contrast-modulated Stimuli





† p<0.05, * p<0.0° (bootstrapped)

Orientation-modulated Stimuli

Summary

Cartoon stimuli

- Higher thresholds for second-order target stimuli in the presence of full-modulation surround.
- ⇒ Second-order surround suppression
- Suppression was orientation-specific for CM stimuli but not for OM stimuli.
- · First-order suppression was negligible ("none" versus "uniform").
- ⇒ No confound between first- and second-order suppression
- Supports the cascade model of cortical computation.

References

Chubb C, Landy MS. (1991). In Computational Models of Visual Processing (MS Landy & JA Movshon, eds.). pp. 291-301

Heeger DJ. (2002). Vis. Neurosci. 9: 181.

Landy MS, Graham N. (2004). In *The Visual Neurosciences* (LM Chalupa & JS Werner, eds.). pp. 1106-1118. Landy MS, Oruc I. (2002). *Vis. Research*. 42: 2311.

Support: NIH EY016752 (DJH) and EY016165 (MSL & DJH)

contact: helena.wang@nyu.edu

Staircase procedure, surround conditions interleaved