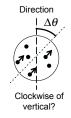
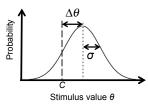
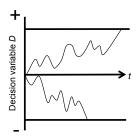

Visual discrimination is a two-stage process



Peng Sun & Michael S. Landy Department of Psychology & Center for Neural Science, NYU


What process underlies discrimination?

Three discrimination tasks


Signal detection theory

Decision variable: $E = \log \frac{r_1(\theta > 0)}{P(\theta < C)}$ If E > 0, say "Clockwise" If E < 0, say "Counter Clockwise"

Accuracy depends on the magnitude of E, which depends on signal-tonoise ratio (SNR): $d' = \frac{\Delta \bar{\theta}}{1}$

Drift-diffusion model (DDM)

Momentary evidence E(t)

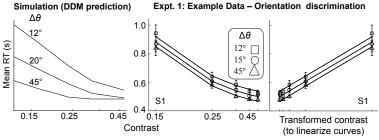
Decision variable accumulates evidence

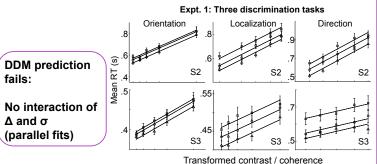
$$D(t) = \sum_{t=0}^{t} E(t)$$

Evidence accumulates until

- D(t) reaches a decision boundary
- task forces process to terminate

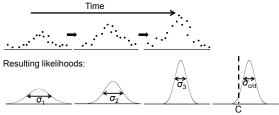
Accuracy and RT depend on D and hence on SNR


Prediction of DDM for RT: Δ and σ interact


Model (Drift-diffusion + Population code)

- 36 orientation-selective neurons
- Poisson firing rates
- Decoded via Bayesian inference¹
- Decode every 50 ms

Experiment 1:

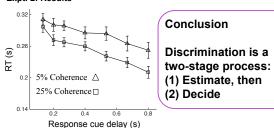

- Orientation, location and direction
- discrimination;
- 5 contrast/coherence levels (σ)
- $3 \Delta\theta/\Delta x$ levels, all interleaved
- Instructions: Respond quickly but maintain 95% accuracy

Alternative model: Estimate-Then-Decide

Accumulated neural responses:

Stage 1: Estimation until σ reduced to σ_{crit} , duration depends only on contrast / coherence

Stage 2: Decision, duration depends on SNR, e.g., only on $\Delta\theta$


Predictions:

- Effects of $\Delta\theta/\Delta x$ and σ additive
- Early accumulation termination: RT depends on SNR at time of cue

Experiment 2:

- Direction discrimination
- Respond upon hearing a cue

Expt. 2: Results

1. Ma. W. J., Beck, J. M., Latham, P. E. & Pouget, A. (2006), Nat Neurosci 9: 1432-1438 Support: NSF-CRCNS 1420262