

# Sequential Effects in Confidence & Performance Monitoring



Shannon M. Locke<sup>1</sup> - Pascal Mamassian<sup>3</sup> - Michael S. Landy<sup>1,2</sup>

(1) Dept. of Psychology & (2) Center for Neural Science, New York University, New York, USA; (3) Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL Research University, CNRS, 75005, Paris, France



# Background

Confidence: our subjective sense of P(correct).

Confidence Sequential Effects (CSE): when Conf<sub>n</sub> is correlated with Conf<sub>n-1</sub>. [1] Does feedback ameliorate CSE? NO Do feedback & reward prediction error modulate CSE? LIKELY

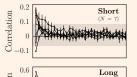
Are there CSE in performance monitoring? YES Does trial duration modulate CSE? 50/50

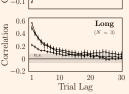
Are there CSE in relative confidence judgements? MINIMAL

# Conclusion

We found CSE for binary confidence and performance monitoring. CSE was robust despite feedback and long trial durations.

The confidence forced-choice task had minimal CSE, indicating that relative judgements might mitigate CSE.


# Binary Confidence: Orientation Discrimination


(see talk 54.12: Gaffin-Cahn et al., at 2:45pm Tue in Talk Room 1)

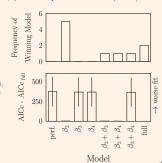
#### Task:

- $\rightarrow$  Discriminate orientation of tilted Gabors (left/right, d'=1)
- → Report confidence (low/high)
- → Feedback and points/cash given for orientation judgement
- $\rightarrow$  Priors & payoffs manipulated to measure criterion placement

#### Confidence Autocorrelations

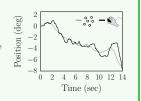




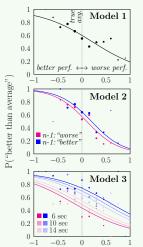

### Bonus: Switch-Stay Strategy



## Nested Model Comparison (AICc):


Logistic regression to predict confidence

- $\rightarrow \beta_0$ : intercept (confidence bias)
- $\rightarrow \beta_1$ : performance (correct/incorrect)
- → β<sub>2</sub>: CSE (previous confidence)
- → β<sub>3</sub>: feedback (previous performance)
- $\rightarrow \beta_4$ : reward prediction error (\$ \$)




# Performance Monitoring: Visuomotor Tracking

- → Mouse-track dot cloud centroid following a random 1D horizontal trajectory
- → Rate tracking performance as better/worse than average (performance monitoring)
- $\rightarrow$  Durations: 6, 10, 14 sec



### Results:



Relative RMSE (deg)

#### Bayesian Model Comparison:

Logistic regression to predict confidence

#### $\rightarrow$ Model 1:

Performance only (relative RMSE)

#### $\rightarrow$ Model 2:

Performance & CSE

#### $\rightarrow$ Model 3:

Performance & CSE modulated by current trial duration



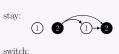
Locke, Landy, Mamassian, & Simoncelli (2017) Journal of Vision, 17, 1166.

Protected Exceedance Probability

# Confidence Forced-choice: Dot-Cloud Location Discrimination

#### Task:

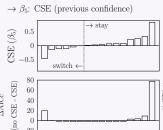
- $\rightarrow$  Dots drawn from 2D dot distribution  $N(\mu, \sigma)$
- $\rightarrow$  Discriminate horizontal location of mean,  $\mu$  (left/right)
- → Report relative confidence for decision pairs: every 2 trials choose interval with higher confidence (1 or 2)
- $\rightarrow$  7 stimulus locations:  $\mu = -4, -2, -1, 0, 1, 2, 4 deg$
- $\rightarrow$  6 interleaved conditions: # dots = 2,5; cloud size:  $\sigma = 1.5, 2, 2.5 \text{ deg}$


### Results:

### Confidence Autocorrelations

# 0.2 -0.2-0.3Trial Lag

## Model Comparison (AICc):


- Logistic regression to predict confidence
- $\rightarrow \beta_0$ : intercept (interval bias)  $\rightarrow \beta_1$ :  $\Delta$  performance (correct/incorrect)
- $\rightarrow \beta_2$ :  $\Delta$  trial difficulty ( $\mu$  in SNR units)
- $\rightarrow \beta_3$ :  $\Delta$  number of dots
- $\rightarrow \beta_4$ :  $\Delta$  cloud size,  $\sigma$



Bonus: Switch-Stay Strategy



Most observers had a stay strategy. This suggests CSE acts across and within trial pairs.



Subject