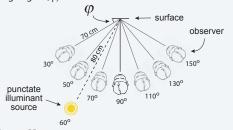


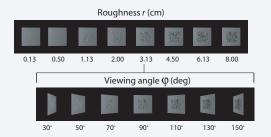
The effect of viewpoint on perceived surface roughness in binocularly viewed scenes

 $Yun\hbox{-Xian Ho$^{\scriptscriptstyle 1}$, Laurence T. Maloney$^{\scriptscriptstyle 1,2}$, and Michael S. Landy$^{\scriptscriptstyle 1,2}$}$

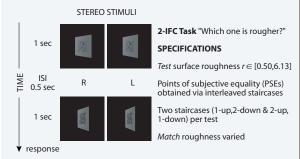

¹Dept. of Psychology & ²Center for Neural Science, New York University, NY

VSS, May 2006

How does viewing angle affect visual judgments of surface roughness?

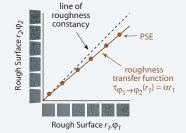

Viewing angles

We fixed the illuminant direction to the surface and tested 7 viewing angles (φ):

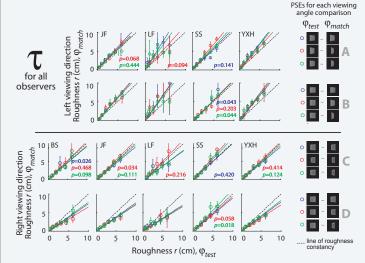


Stimuli

Side profile of surface with roughness *r* (max range of facet heights) rendered in Radiance¹ and displayed binocularly:



Methods

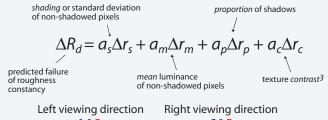

Roughness Transfer Function

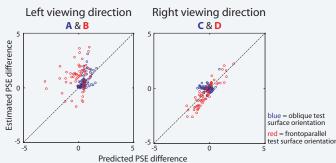
The roughness transfer function $r_2 = \tau_{\varphi_1 \to \varphi_2}(r_1)$ gives the degree of roughness r_2 of a surface viewed from angle φ_2 that appears equal in roughness to surface r_1 viewed

Results

from ϕ_1 , i.e., a PSE.

NOTE: p-values indicate values of α (slope) not significantly from 1 (line of roughness constancy) at the Bonferroni-adjusted level for number of observers.


Are observers roughness constant across viewing angles?


TEST SURFACE ORIENTATION oblique frontoparallel 0 and 0 are 0 and 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 and 0 are 0 are 0 are 0 are 0 and 0 are 0 and 0 are 0 are 0 are 0 and 0 are 0 a

Cue Combination Model

Notice how the proportion of shadows increases in both Case 1 and 2. This is one example of a variety of cues that may confound changes in surface roughness with changes in scene properties, e.g., viewing angle. We call these cues *pseudo-cues*². We use the difference between pseudo-cues calculated from two rough surfaces in a linear regression equation to predict failures of roughness constancy:

Pseudo-cues correlate best with failures of roughness constancy for comparisons between frontoparallel and right oblique viewing angles.

Summary

Observers are not always roughness constant across viewing angle; rough surfaces tend to appear rougher when mean luminance is lower and variation in shading, proportion of shadows, and texture contrast are higher.

References

- 1 Ward, G.J. The RADIANCE lighting simulation and rendering system. *Computer Graphics*, 28(2), 459-472. 2 Ho, Y.-X., Landy, M.S., & Maloney, L.T. (2006). How direction of illumination affects visually perceived surface
- roughness. Journal of Vision, in press. 3 Pont, S.C., & Koenderink, J.J. (2005). Bidirectional texture contrast function. International Journal of Computer Vision, 66(1/2), 17-34.

Acknowledgement

All members of the Landy and Maloney Labs and all observers. Supported by NIH EY08266 & EY16165. Image (top left): Cryptobiotic crust up close (Grand Escalante, Utah). Photographed by Yun-Xian Ho, 2005.