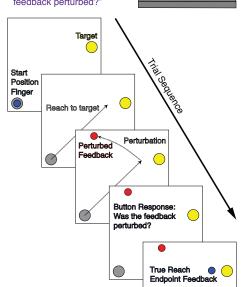


Visual but not proprioceptive signals contribute to detection of sensory-motor perturbation

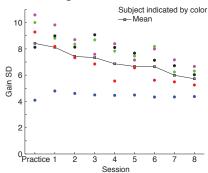
E Gaffin-Cahn¹, TE Hudson^{2,3}, MS Landy^{1,4}

¹Department of Psychology, New York University, ²Department of Rehabilitation Medicine, New York University Langone Medical Center, ³Department of Neurology, New York University Langone Medical Center, ⁴Center for Neural Science, New York University

Motivation

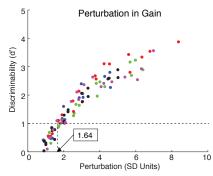

- Motor planning studies perturb visual feedback to measure compensation
- Large (noticeable) perturbations evoke different compensation processes from unnoticed ones

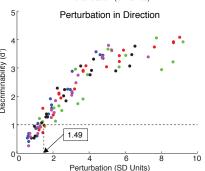
Research Questions


- Q1: How large can a perturbation be without being detected?
- Q2: How do people combine cues to decide if there was a perturbation?

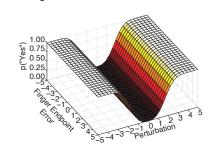
Task

- · Center-out reaches
- Finger and target represented on screen
- Reach endpoint perturbed in gain or direction
- Perturbation magnitudes were 1-5 times individual motor variability
- Detection task: "Was the feedback perturbed?"

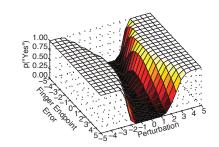



Motor Learning

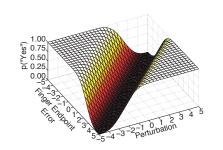
A1: Detection Performance


Perturbations greater than \sim 1.5 times motor SD could be reliably detected (d' = 1)

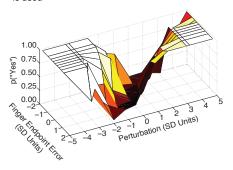
Comparison Observer


Compares (subtracts) proprioceptively and visually sensed finger locations

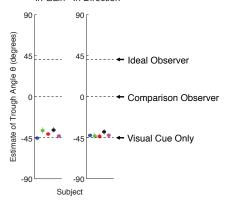
Ideal Observer


Calculates signal likelihoods:

 $\frac{p(\text{sensory signals} | \text{perturbation})}{p(\text{sensory signals} | \text{no perturbation})}$


Visual Cue Only

Responses based on the visually displayed error alone



A2: Cue Weights

- Subjects believe errors are self-generated when visual feedback is near the target
- Data are fit by the prediction that only the visual cue is used

Perturbation: In Gain In Direction

Conclusions

- A1: Subjects believed errors to be externally generated when perturbations are greater than ~1.5 SD of their own motor noise
- •A2: Subjects ignored proprioceptive cues

Support

- NIH R01 EY008266-25 (MSL)
- NSF GRFP DGE 1342536 (EGC) eg.gc@nyu.edu