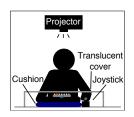
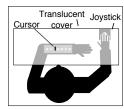
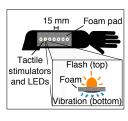
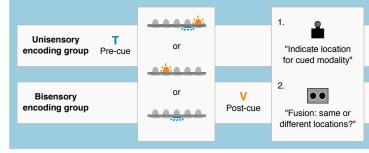
Vision and touch are not automatically integrated

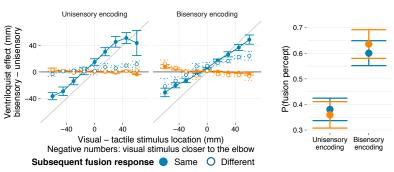

Stephanie Badde^{1,2}, Karen T. Navarro³, & Michael S. Landy^{1,2}
¹Department of Psychology and ²Center of Neural Science, New York University
³Department of Psychology, City College of New York

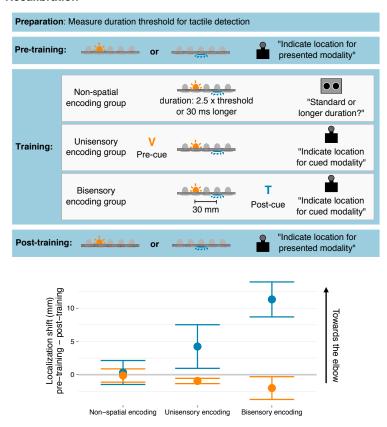



Introduction

- · Visual stimuli can occur anywhere, but tactile stimuli are bound to the body.
- · Are visual-tactile interactions in space automatic?
- · Tested for:
- · Integration: shift in perceived location for one modality towards concurrently presented stimulus in the other (ventriloquist effect)
- · Recalibration: localization shift for unisensory stimuli after exposure to discrepant stimulus pairs (ventriloquist aftereffect)


Setup





Integration

Recalibration

Conclusion Visual-tactile recalibration and integration effects are stronger when participants are forced to encode both stimuli. Thus, visual and tactile information are not automatically integrated.