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METHODS & DESIGNS

All about EVE:
The Early Vision Emulation software

MICHAEL S. LANDY, LEV Z. MANOVICH, and GEORGE D. STETTEN
New York University, New York, New York

EVE, the Early Vision Emulation software, is a set of computer programs designed to compute
models of early visual processing. EVE may be used with a wide variety of models concerning
spatial detection and discrimination, motion analysis, and issues of spatial sampling. EVE is
modular and flexible. It runs under the UNIX operating system, and is device-independent. We
describe the implementation of the EVE software and discuss how it may be applied to several

visual models.

Computer simulation has gained in popularity recently
as a means of exploring models of early visual process-
ing. Researchers have proposed computational models for
a variety of tasks, including spatial pattern detection and
discrimination (e.g., Watson, 1983; Watt & Morgan,
1983; Wilson & Gelb, 1984), motion processing (Adel-
son & Bergen, 1985; Barlow & Levick, 1965; Marr &
Ullman, 1981; van Santen & Sperling, 1985; Watson &
Ahumada, 1985), and so forth. These models comprise
one or more layers of processors, which analyze a visual
stimulus using both linear (receptive field) and nonlinear
operations. The processor outputs in the final layer are
then combined in a nonlinear fashion in order to produce
a number that may be related to human performance in
a similar task. These models have grown increasingly
complex, and a number of scientists have therefore be-
gun to use computer simulation in order to test their
models.

The model proposed by Watson (1983) for pattern de-
tection and discrimination is a case in point. In this model,
a large number of processors have linear receptive fields
that respond to the visual input. These receptive fields vary
in spatial position, spatial scale, phase, and orientation.
They are scaled in size with retinal eccentricity. Outputs
are scaled so that the entire array (of thousands of proces-
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sors) has a pooled response consistent with a measured
contrast-sensitivity function. The number that is related
to human performance is the Minkowski vector magni-
tude of the set of processor outputs, which is considered
to be an estimate of 4’ in a detection task. The model is
also applicable in spatial discrimination tasks. One com-
putes the vector difference between the outputs from each
of the two patterns to be discriminated. The vector mag-
nitude of this difference vector is the estimate of d’. Com-
puter simulation is imperative for such a model if it is
to be used to predict performance using complex stimuli.

In this paper, we describe a software system that we
have devised for testing visual psychophysical models.
The software is called EVE, which stands for the Early
Vision Emulation software. We discuss the design and
some implementation details of the EVE software, its
capabilities, and how it is used to compute several visual
models. For a complete account of the software, we refer
the interested reader to the reference manual supplied with
it (Landy, 1988). There is also a technical note on the
results of several model simulations carried out with EVE
(Landy, Manovich, & Stetten, in press). We intend that
EVE be used by researchers so that models may be shared
among laboratories, and their performance be easily
compared.

THE SOFTWARE SYSTEM

EVE may be used to test any visual model consisting
of a number of layers of processors that are wired together
in a feed-forward manner. For example, consider the
model outlined in Figure 1. This model is not based on
any current visual theory, but is intended simply to illus-
trate how models are expressed using EVE. The network
consists of an input, two layers of processors, and a com-
putation (or *‘linking hypothesis’’) that relates the output
of the second layer to performance in a detection task.
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C,
C, D
Linking Hypothesis
12
G D(r)= }:cj(r)z]
i
Second Layer

Ci(t)=B;(t)~Bj.(r)

492 LANDY, MANOVICH, AND STETTEN
A,
A, B,
A,
B,
A,
As
B,
A,
A, B.
A, First Layer
Bj(t)=] [Zw;jA‘-(t —r)} "Lydr
Input Image oL

A1)

Figure 1. An example of a model that may be calculated with the EVE software.
(A) The input consists of a sequence of images with luminance values A,(?), ..., As(®)
at time t. (B) The first layer of processors computes the output of a set of linear receptive
fields, squares the result, and then applies a temporal filter. (C) The second layer
of processors computes differences between pairs of processors in the first layer. (D) A
summary statistic is computed based on the outputs of the processors in the second
layer. This computation represents a “linking hypothesis,” which becomes the model’s
prediction of human performance in a detection or discrimination task using the same

input stimulus.

The input is a temporal sequence of visual images. The
first layer has many processors, each of which computes
the output of a linear spatial receptive field, squares the
result, and then applies a temporal filter. The second layer
consists of processors that compute the differences be-
tween particular pairs of processors in the first layer. The
final stage computes a summary statistic of the activation
of the second-layer processors.

In EVE, it is quite simple to test models similar to the
one we have just described. The unifying principle of the
design is that the input and output of all programs in the
system are treated as an image sequence, which can be
a sequence of outputs of processors from a previous layer,
a sequence of input images to be presented to the first
layer in the model, or simply a description of a proces-
sor layer that has not yet been applied to an input se-
quence. Any given layer consists of a set of processors,
each characterized by its spatial position and the way
it combines processor outputs from previous layers. In
Figure 2, we outline the way the first layer of the model
of Figure 1 is represented in EVE. The modeling of this
layer is decomposed into three parts: (1) the definition
of the processor array; (2) the calculation that involves
the combination of several processor output values from

a previous stage (in this case, the receptive field calcula-
tion); and (3) a series of spatially pointwise operations.
We define spatially pointwise calculations to be any oper-
ations that do not change the sampling positions and treat
each processor independently. Examples include point
nonlinearities, temporal filtering (both of which are
represented in Figure 2), and the addition of independent
noise. This is in contradistinction to the operations in
part 2 above, which can involve more than one input pro-
cessor value, and which effectively resample the input.
This series of three operations is common to all process-
ing in EVE.

The first operation for a given layer is to define the
processor array by specifying the processor positions (i.e.,
the sampling characteristics of that layer) and the param-
eters that are particular to each processor (Figure 2—
“‘create processors’’). EVE allows images to be sampled
in a variety of ways including square or hexagonal sam-
pling grids, or arbitrary specification of sample positions.
Each processor may be associated with a set of processor
parameters, which is called a processor structure. For ex-
ample, a processor might compute a linear receptive field
as applied to the layer’s input, where the receptive field
has a Gabor profile. In that case, each processor will be
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Figure 2. An outline of the way the first layer from Figure 1 is implemented with EVE, There are three operations for
each layer: (1) Define the set of processors in that layer including spatial locations and processor parameters (“create proces-
sors”); (2) combine information from the previous layer or input (here the combination is effected by a linear receptive field,
“convolve”); and (3) apply a series of spatially pointwise transformations (here: “square” followed by “temporal filter”).

associated with a processor structure that specifies the
parameters of that processor’s receptive field: spatial fre-
quency, orientation, phase, and Gaussian width.

The next computation applies the processor array to the
input to this layer. For example, if the array consists of
Gabor processors, then a correlation of the Gabor recep-
tive fields with the input is computed for each processor
(Figure 2—‘“‘convolve’’). For each frame of the input to
this layer, this results in a new frame consisting of the
output of each Gabor receptive field. The sampling char-
acteristics of the current layer were defined in the previ-
ous step; the sampling characteristics of the input to this
layer can be quite different. EVE handles this change in
sampling from layer to layer automatically.

Finally, having combined various values from the in-
put to a layer, we may apply a series of spatially point-
wise operations (in the sense defined above). In the cur-
rent example, the correlation result for each processor is
squared by one EVE program, and then temporally
filtered by another (Figure 2—‘‘square’’ and *‘temporal
filter”’).

Other processor layers are computed in a similar man-
ner: define a sampling array and the parameters of the
processors in that array, use this array to combine out-
puts of a previous layer or input image (this need not
necessarily be a linear combination as in the example),

and then apply a series of pointwise operations to each
processor (instantaneous nonlinearity, temporal filtering,
addition of noise, etc.). The form of the model need not
be a simple sequence of layers as in Figure 1, but can
involve any feed-forward arrangement of processor layers
(e.g., involving parallel channels; see Figure 3).

Implementation

EVE is flexible in its ability to test visual models, be-
cause it is modular. Each simple operation is computed
by a single EVE program. For example, there are dozens
of programs in EVE that compute spatially pointwise oper-
ations, and one can use them in any desired combination.
The data passed between all EVE programs are in a stan-
dard image format. Each image consists of an image
header followed by data concerning processor positions,
processor parameters (called processor structures), and
processor output values. The design was based on the
HIPS image processing system (Landy, Cohen, & Sper-
ling, 1984a, 1984b), but it extends that software in several
ways critical for use in vision modeling. The software is
written entirely in the C programming language (Kerni-
ghan and Ritchie, 1978), and it relies to a certain extent
on the facilities of the UNIX operating system (Kernighan
& Mashey, 1981; Ritchie & Thompson, 1978). EVE can
be used on any machine that runs UNIX, and it is there-
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Figure 3. The EVE software can be used with models with any number of processor arrays ar-
ranged in any feed-forward manner. This can be a simple pipeline of layers as in Figure 1, but can
also involve arbitrary arrangements of layers involving parallel channels.

Header format: 1

Originator name: Michael Landy
Sequence name: Gabor Model
Number of frames: 3

Original date: 6/6/88

Image format: positions table
Number of processors: 4

Number of rows: 0

Number of columns: 0

Processor format: Reals

Size of outputs (bytes): 4

Sequence history:

read_posns "-D Wed Jul 27 11:36:49 1988" |\
add_struct -g Gabor-structures "-D Wed Jul 27 11:45:34 1988"

Sequence description:

This sequence is based on the processor positions needed for the blurred
hyperacuity task.

Scale: 1.000

XO: 0.000

YO: 0.000

Processor structure: Gabor

Size of processor structure: 28

Size of POSNS(x,y): 8

Figure 4. A sample EVE image header as output by the program

eve_seeheader.



fore device-independent. However, special facilities ex-
ist to use EVE with the HIPS software, and to view EVE
processor images on Sun workstations.

In EVE, all image sequences begin with an image
header, which describes the basic parameters of the se-
quence. The image header gives EVE its flexibility. Each
EVE program can operate on images in a variety of for-
mats by checking the contents of the image header. An
example image header is shown in Figure 4, as printed
by the program eve_seehead. This sequence consists of
three frames of data (three discrete time steps have been
simulated), and four processors. Note that we use the term
processor in this paper, rather than the term pixel or pic-
ture element from image processing, in order to empha-
size the generality of processing available in EVE. For
this sequence, the images (or processor arrays, if you
prefer) are in positions table format. Directly after the
image header, there is a processor positions table that
gives the spatial position of each of the four processors.
After the processor positions table, there follow the
processor structures. For this sequence, the processor
structures are in Gabor format. Thus, for each proces-
sor, there is an associated set of parameters for a recep-
tive field with a Gabor profile. The parameters include
orientation, spatial frequency, phase, and the width of the
Gaussian window. Finally, the processor output values
are floating point numbers. Thus, after the processor
structures, there are 12 floating point numbers corre-
sponding to the output values of the four processor out-
puts for each of the three time steps. The image header
also includes documentary information, which is stored
along with the image and remains with the image sequence
as it is processed by further EVE programs. Most im-
portant is the sequence history (a notion borrowed from
HIPS; see Landy et al., 1984a, 1984b). The sequence his-
tory automatically summarizes all of the EVE commands
that have been executed to compute a given image se-
quence. Each EVE program automatically keeps the his-
tory up to date by adding an additional line correspond-
ing to its own command line.

EVE images may be spatially sampled in a variety of
ways. The previous example presented an image in posi-
tions table format. The other formats currently imple-
mented are square and hexagonal sampling. For these two
formats, the header indicates the numbers of rows and
columns in the sampling array. For square sampling, the
processors are arranged in rows and columns that are
aligned and equidistant. For hexagonal sampling, a hex-
agonally packed rectangular array is achieved by offset-
ting odd-numbered rows % of an intercolumn distance
to the right, and spacing rows more closely together than
columns by a factor of v/3/2 (see Emerson, 1986, for more
discussion of simulation of hexagonal sampling arrays
for visual modeling). Since the sample position informa-
tion is stored with each image, successive EVE programs
can handle all three sampling formats without user inter-
vention, enhancing the flexibility of the system. Finally,
each EVE image includes a coordinate transformation
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from the natural coordinate system of the image (e.g.,
row and column numbers, etc.) to retinal coordinates
(degrees of visual angle), so that modelers can refer to
processor and stimulus parameters in retinal terms.

EVE allows the user to store an arbitrary set of param-
eters in image sequences to describe each processor. These
parameters are held in the processor structures, which are
stored in the image sequence after the header and posi-
tions table. There is one processor structure for each
processor. For example, if the model consists of a set of
Gabor filters, each processor structure can describe the
parameters of the Gabor (spatial frequency, orientation,
phase, etc.). There are currently three formats for proces-
sor structures implemented in EVE: Gabor, DoG, and
General. The Gabor and DoG formats are tailor-made for
describing receptive fields with a Gabor or Difference of
Gaussians profile, respectively. The General processor
structure is just that: it allows the user to store an arbitrary
set of up to 10 parameters with each processor to govern
its performance. General processor structures can be used
to control several kinds of model behavior: shape of linear
receptive fields (by storing parameters of a functional form
of the receptive field profile), wiring of linear or non-
linear processor computations (by specifying the proces-
sors that provide input to a given processor), and param-
eters of spatially pointwise transformations. EVE can
easily work with arbitrary nonisotropic models. Each
processor is associated with its own parameters in the
processor structure. Thus, the processors in a layer can
have different receptive field shapes, different wiring,
different forms of nonlinearity, and so forth.

There are currently about 60 different programs in
EVE. These include programs involved with image
headers, binary format conversion, conversion to and
from ASCII, operations on sequences, operations on sin-
gle processors, frame arithmetic, operations using proces-
sor structures, and image statistics (see the Appendix for
a list of currently available programs). Images in HIPS
format can be converted to EVE format for use as input
stimuli, and processor arrays in EVE format can be con-
verted to HIPS format for display purposes (to view a
‘‘neural image’’; see Robson, 1980). There is a program
for viewing EVE images directly on the console of a Sun
workstation under SunTools.

There are a variety of programs that compute what we
have termed spatially pointwise operations. There are
programs that apply a log, an exponential, a power func-
tion, a quadratic, and a threshold. There is a program that
adds independent noise to the processor output values.
There is a general digital temporal filter program (see
Hamming, 1983, and Oppenheim & Schafer, 1975, for
further discussion of digital filtering). Finally, there is
eve_calcoutput, which takes a line of C program code
from the user as the definition of a spatially pointwise
transformation, and generates a new EVE program which
applies ihat transformation. Eve_calcoutput is one of sev-
eral EVE programs that can be used to easily extend EVE
by generating new EVE programs given user-specified
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program code (the others perform convolution, generate
new processor arrays, or perform arbitrary processor
computations).

There are several programs that can be used as the first
EVE computation in a layer—the one that combines out-
puts of processors in a previous layer. All of these pro-
grams can use processor structures. For linear receptive
field calculations, there are programs for Gabor and DoG
processors. In addition, there is eve_genconv, which al-
lows the user to specify the functional form of a recep-
tive field profile as a line of C program code (e.g., the
Laplacian of a Gaussian, the difference of three Gaussians,
etc.). The program then generates a new EVE program,
which calculates the result of the application of this re-
ceptive field form to the input to the layer. The other
kind of processor computation in EVE that combines
previous layer processor outputs involves a simple com-
bination of a small number of processor outputs from
a previous layer. EVE programs are provided that can
perform such a combination using addition, subtraction
(e.g., an opponency stage), multiplication (e.g., the cross-
correlation within a motion detector such as that described
by Reichardt, 1957, 1961), or division. A general pro-
cessor computation program is provided, eve_calcproc,
which takes a user-specified line of program code describ-
ing the functional form of the processor computation.

Typical EVE Usage

The use of EVE for simulation typically consists of three
steps: (1) define the processors for each layer; (2) create
the input stimulus; and (3) apply the sequence of calcu-
lations for each layer in turn, terminating with a compu-
tation of a statistic of the final output layer.

The first step involves creating a sampling array (giv-
ing each processor a spatial location), and then specify-
ing the parameters of each processor (the processor struc-
tures). The processor locations and parameters may be
specified by hand (or by programs of your own devising)
by using EVE programs read_eve, read_posns, read_sqr,
read_hex, and add_struct. Alternatively, one may specify
the program code used to compute processor locations
(with gen_posns), or simply write an EVE program spe-
cially tailored to the purpose (as we did for the Watson
spatial model described below).

There is a variety of ways to generate an EVE input
stimulus. The stimuli may be imported from other soft-
ware (using read_eve, read_posns, read_sqr, or read_
hex). Users of the HIPS image processing software
(Landy et al., 1984a, 1984b) may convert their HIPS im-
ages to EVE format for use as an input (with hips_to_eve).
Finally, there are three EVE programs that allow the user
to program simple input images easily by specifying a sin-
gle line of C program code, which computes the proces-
sor output values: gen_posns, gen_sqr, and gen_hex.

Having created the processor arrays and the input im-
age, the various layers are applied in turn to the input,
or to the outputs of previous layers. If the model consists
of a single series of layer computations, then this may

all be accomplished with a single UNIX command string
using the UNIX pipe facility. This facility (which is de-
noted with a | ) allows the output of each program to be-
come the input of the succeeding one. Consider the ex-
ample pictured in Figure 1. The main computation for this
model can be carried out with the following command
string (command parameters have been omitted for clarity):

eve_gabor layerl-processors < input-stimulus| \
eve_power | eve_tempfilt| \
eve_diffsens layer2-processors | eve_mink

The model consists of two layers. The first layer calcu-
lates a set of Gabor receptive fields (using eve_gabor),
squares their outputs (using eve_power), and temporally
filters the resulting processor outputs (using eve_tempfilt).
The second layer subtracts pairs of layer 1 outputs (us-
ing eve_diffsens). The final linking hypothesis consists
of a computation of the vector magnitude of the layer 2
processors (using eve_mink). Of course, the user need
not apply all stages of the model at one time, and can cut
off the computation after any intermediate stage. These
intermediate results, which are EVE images, can be con-
verted to readable ASCII (using eve_to_ascii), or viewed
as an image on a display system (using eve_sunview or
eve_to_hips).

EXAMPLE APPLICATIONS OF EVE

Here, we discuss the way in which the EVE software
may be applied to a variety of visual models. We con-
centrate on the range of models for which EVE is useful,
and on some of the details concerning how the EVE pro-
grams are combined to perform each simulation. Some
results from these simulations are discussed in Landy et al.
(in press). Note that this does not constitute an exhaus-
tive list of the potential applications of EVE. Other pos-
sibilities include applications to binocular brightness sum-
mation (by using two input layers, one for each eye), more
complicated motion processing such as the computation
of speed, and so forth,

The Watson Spatial Model

Watson (1983) proposed a model for the detection and
discrimination of spatial patterns that is perfectly suited
to simulation using EVE. The first layer of the model con-
sists of a large array of linear processors with a variety
of receptive fields with Gabor profiles (they are called
“‘sensors” by Watson). The processors vary in spatial fre-
quency, phase, orientation, and spatial position. There are
eight families of processors, which are distinguished by
their preferred spatial frequency—the central processor
in each family has a preferred spatial frequency of .25,
.5, 1,2, 4, 8, 16, and 32 cpd, respectively. The other
processors in each family are arranged in a series of cir-
cular rings around the central one (which is placed at the
center of the fovea). The spacing between processors is
always sufficient to meet the Nyquist sampling criterion,
and the processors scale in size and preferred spatial fre-



quency with eccentricity. At any sampling position in this
array of rings for a given family, there are 10 proces-
sors, which include each of 5 preferred orientations at each
of 2 phase angles (sine and cosine phase). The processor
sensitivities are the principal free parameters, and they
are adjusted so that the output of the model for sine wave
gratings conforms to an empirically measured contrast-
sensitivity function.

The Watson model consists of only two layers. The first
layer is the large array of processors with Gabor recep-
tive fields that we have just described. The only other
computation in the model relates the output of this col-
lection of thousands of linear processors in response to
a visual stimulus to performance by a human in a detec-
tion task using the same stimulus. This computation, or
*‘linking hypothesis,’’ involves treating the collection of
receptive field outputs as one large vector. The magni-
tude of that output vector is treated as an estimate of d’
in the detection task. To model performance in a discrimi-
nation task, one computes the output vectors resulting
from each of the two patterns to be discriminated. The
magnitude of the vector difference between those two out-
put vectors is the model’s estimate of the discrimination d’.

It is easy to compute the results of this model using
EVE. Given that the determination of processor positions
and preferred spatial frequencies is given by Watson as
an algorithm, we wrote a simple EVE program to gener-
ate the processor arrays, called wgrid. This program has
arguments that specify the spatial frequency family
(preferred spatial frequency at the fovea), the orientation,
the phase, the sensitivity, the eccentricity scaling constant,
and the radius of the largest ring of processors (in de-
grees). The output of wgrid is in positions table format,
and it has Gabor processor structures, so that each proces-
sor now has an assigned position and receptive field
parameters. The EVE command, gen_sqr, can be used
to generate an input stimulus (e.g., a sine wave grating).
Each processor grid is applied to an input pattern using
eve_gabor. Note that eve_gabor determines from the in-
put stimulus the positions of the input samples, and from
the processor array it determines the processor sample
positions, so the sampling properties of the input and new
processor array are effectively independent.

The pair of commands wgrid and eve_gabor are re-
peated for each subfamily of processors in the model
(8 frequencies, 2 phases, and 5 orientations, resulting
in 80 subfamilies). This allows the user to compute the
separate contribution of each subfamily to the total model
response if so desired. Finally, a merged vector of proces-
sors is created from the separate subfamilies using eve_
merge, and the vector magnitude is computed with a
Minkowski metric with a power of 3.5, using the pro-
gram eve_mink. Pelli (1981, 1985) suggests that effects
of stimulus uncertainty may be modeled reasonably by
using an exponent greater than 2.0.

Figure 5A shows a natural image that was converted
to EVE format using hips_to_eve. We ran one subfamily
of processors from the Watson model on this image, re-
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sulting in the set of processor outputs shown in Figure 5B
(using eve_sunview). The individual processors are visi-
ble as dark or bright squares corresponding to a recep-
tive field result that is positive or negative. The proces-
sors are located on a series of rings centered on the central
one. Processors with very weak outputs are represented
using a medium gray tone.

The Wilson Spatial Model

We have also simulated the line element model for pat-
tern discrimination described by Wilson (1986). Like the
Watson model, this model begins with a layer of proces-
sors with linear receptive fields and ends with a linking
hypothesis, which is a computation of output vector mag-
nitude. However, a different receptive field profile is used,
and a nonlinearity is applied to the outputs of each linear
receptive field prior to pooling across processors. The dis-
tance between two output vectors is again the model pre-
diction for pattern discriminability. The model consists
of six families of processors (indexed by preferred spa-
tial frequency). For each family and any given task, Wil-
son describes the spatial positions and orientations of
processors used to model performance in the task. The
spatial positions may be read using read_posns, and the
preferred orientations added as processor structure infor-
mation using add_struct. The program gen_sqr can be
used again to generate the stimulus. Next, the processor
receptive fields are calculated using eve_genconv, which
is a generalized convolution program. In the Wilson
model, receptive fields are the difference of three Gaus-
sians in one direction multiplied by a Gaussian in the or-
thogonal direction, which requires the use of eve_genconv
instead of eve_dog. Next, eve_calcoutput is used to ap-
ply a nonlinearity (first accelerating, then saturating) to
each processor response. This pair of computations (re-
ceptive field followed by nonlinearity) is repeated for each
of Wilson’s six spatial frequency channels. Finally, as
with the Watson model, the processors from each chan-
nel are merged into one vector for a given input stimu-
lus, the whole thing is repeated for a second stimulus,
and the magnitude of the vector difference is a measure
of discriminability.

Retinal Sampling

One of the novel aspects of the EVE software is its abil-
ity to handle different spatial sampling arrays easily. As
such, it may be used to explore the consequences of spa-
tial sampling in the visual system, both retinal and at later
processing stages. For example, a hexagonal sampling
grid using Gaussian sampling functions may be applied
to an image by using read_hex to set up the grid and eve_
gabor to compute the results of the Gaussian sampling
functions. Figure SC shows the result of hexagonally sam-
pling the central portion of the image shown in Figure 5A,
as viewed using eve_sunview. Of course, since later stages
in a model also use EVE routines that are general with
respect to the sampling of the input image, one can use
the results of the commands above as the image input to
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Figure 5. An example of using EVE to simulate the Watson (1983) model of spatial pattern detection and discrimination. (A) A natural
image. (B) The outputs of the 4-cpd family of processors as applied to the image in panel A. The family consists of a series of concentric
rings centered on the fovea. The central processor is tuned to 4 cpd. More eccentric processors are tuned to successively lower frequen-
cies. In this image, we indicate the output of units with Gabor receptive field profiles in sine phase and with vertical orientation. Positive
outputs result in a dark spot, and negative outputs in a light spot; weakly activated processors are represented using a midgray tone.
(C) A hexagonal grid of linear processors with Gaussian receptive fields used to sample the image in panel A.



a model. For example, we have used the preceding tech-
nique to create simulated foveal retinal images, and used
them as input to the Watson (1983) model simulation
described above. This was easy to do, because the EVE
routines used in the Watson simulation are general with
respect to the input image-sampling properties.

Motion Detection

EVE may also be used with models of motion detec-
tion. For example, consider the motion energy model of
Adelson and Bergen (1985). This model constructs linear
filters that are tuned to a particular direction of motion
(and hence are not space-time separable) by suitable sums
and differences of space-time separable filters. The total
power in two such leftward-tuned filters (which are ap-
proximately in space-time quadrature) is added, as is the
power in two such rightward-tuned filters. The opponent
response *‘right minus left’’ is the output of the model.

Again, models such as this are easy to compute using
EVE. In our simulation, we use gen_sqr to generate the
input image sequence (e.g., a moving sine wave grating).
Next, read_sqr is used to define the spatial sampling of
the motion processors. At each processor location, a sine-
phase and cosine-phase Gabor receptive field is cross-
correlated with the input (using eve_gabor). Next, the out-
put of each of the sine and cosine phase Gabor operators
is processed by each of two temporal filters using eve_
tempfilt. Both temporal filters are bandpass, but one has
a more delayed impulse response than the other (see Adel-
son and Bergen, 1985, for details of the filters). The
resulting outputs have thus been filtered by the composi-
tion of a spatial and a temporal filter. In other words, in
each case, a space_time separable filter has been applied.
Linear filters are constructed from these by sums and
differences (using eve_add and eve_diff) that are no
longer space-time separable functions of the input se-
quence, and which have receptive fields that are oriented
in space-time (i.e., are tuned for motion direction). The
power in these processors (the square) is then computed
using eve_power, followed by a sum of the two phases
in each direction. Finally, eve_diff computes the oppo-
nent motion signal. As a result, it is simple to explore
this motion model on a variety of stimuli using the EVE
software.

The elaborated Reichardt detector (or ERD; see van
Santen & Sperling, 1985) is an alternative model for early
motion detection. Particular realizations have been shown
to be equivalent at the model’s final output (Adelson &
Bergen, 1985; van Santen & Sperling, 1985). We have
demonstrated this with the EVE software, by simulating
a simple ERD. We use the same space-time separable
filter outputs as those in the simulation of the Adelson
and Bergen model. Multiplying outputs of pairs of these
processors (using eve_mul) results in processors that are
tuned for leftward or rightward motion, but are nonlinear.
As before, rightward and leftward subunits are set in op-
ponency. This final output is proportional to the final out-
put of the Adelson and Bergen simulation (as can be shown
by a trivial mathematical argument).
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The EVE software is a general package for the simula-
tion of models of early visual processing. We have out-
lined the software, and indicated the way in which it is
used to compute a variety of models. It is a flexible, modu-
lar system for simulation. It is easy to use, and easy to
extend. It is fully documented (with manual pages, and
a complete reference manual [Landy, 1988], as well as
example scripts that apply EVE to all of the model simu-
lations discussed in this paper). We have described ap-
plications to spatial pattern detection and discrimination
and to motion detection. EVE is also suitable for models
in other areas of vision, including binocular brightness
computation (using two input images, one for each eye),
further motion analysis (such as the computation of speed),
and so forth. As it stands, EVE is restricted to the com-
putation of models consisting entirely of feed-forward con-
nections hetween processors. We are interested in using
EVE to model the transformation of receptive fields in
the visual cortex, and we will be adding to EVE the capa-
bility of computing models that include feedback within
a layer and to earlier layers using a similar, iterative com-
putational scheme.

DISTRIBUTION

If one is interested in using the EVE software, it is avail-
able. There are two ways to obtain EVE. One can send
a tape to Michael Landy, New York University, Depart-
ment of Psychology, 6 Washington Place #961, New
York, NY 10003. It can be either a half-inch 9-track tape
or a quarter-inch Sun cartridge. Alternatively, if one has
ftp access to Arpanet hosts, one may obtain it via anony-
mous ftp to my Sun file server ‘vml.psych.nyu.edu’ (inter-
net number 128.122.132.4; the file is ‘‘eve.tar.Z’’ in
directory ‘‘pub’’). The distribution includes source, doc-
umentation, and all of the examples discussed in this
paper. The source directory takes about 1.3 MB. On my
Sun, the binaries require about 3.2 MB. EVE should run
on any UNIX machine with no, or only minor, changes.
We have run it on Suns and DEC Vax computers so far.
It should be a simple matter to port the software to MS-
DOS (e.g., using Turbo C). Anyone who is using EVE
should notify us, so that we may provide information
about new versions and bug fixes. Also, since the EVE
package is intended to be shared among laboratories, we
would appreciate copies of useful extensions made to
EVE, so that we may include them in subsequent versions.
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APPENDIX
Currently Available Eve Programs

HEADERS

eve_adddesc — Add descriptive information to a header
eve_grabhead — Throw away an EVE sequence, preserving the header
eve_seehead — Print the header of an EVE sequence

eve_striphead - Remove the header from a sequence

BINARY FORMAT CONVERSIONS

eve_btof — Convert byte format to floating point

eve_btoi — Convert byte format to integer

eve_ftob — Convert floating point to byte

eve_ftoc — Convert floating point to complex

eve_ftoi — Convert floating point to integer

eve_itob — Convert integer to byte format

eve_itof — Convert integer to floating point

eve_sunview — Display byte EVE sequences on a Sun console
eve:to_hips ~ Convert an EVE sequence to HIPS format
hips_to_eve — Convert a HIPS sequence to EVE format

CONVERSIONS TO AND FROM ASCII

ascii_to_eve — Convert an ASCII file to EVE format

eve to_ascii — Convert an EVE sequence to ASCII format

pos?ls__to_ascii — Convert processor positions to ASCII format

read_eve — Create an arbitrary EVE sequence from ASCII data

read hex — Create a hexagonal image format sequence from ASCII data
read:posns — Create a positions table image format sequence from ASCII data
read_sqr — Create a square grid image format sequence from ASCII data
struct_to_ascii — Convert processor structures to ASCII format
value_to_ascii — Convert processor output values to ASCII format
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APPENDIX (Continued)

OPERATIONS ON SEQUENCES

eve_cat — Concatenate several EVE sequences
eve_merge — Merge the processors from several sequences
eve_subseq — Extract a subsequence of frames

OPERATIONS ON PIXELS

eve_absval — Take the absolute value of each processor output value
eve_calcoutput — Generalized point transformation

eve_exp — Take the exponential of the sequence

eve_log — Take the logarithm of the sequence

eve_mag — Convert complex format to floating point magnitude
eve_neg — Take the negative of each processor output value
eve_noise — Add noise 1o a sequence

eve_phase — Convert complex format to floating poini phase
eve_power — Raise processor output values to a power

eve_scale — Scale processor output values by a linear or quadratic function
eve_tempfilt — Temporal filtering

eve_thresh — Apply a fixed or variable threshold to an image

FRAME ARITHMETIC

eve_absdiff — Absolute value of the difference of two sequences

eve_add — Compute the sum of two sequences

eve_combine — Combine phase and magnitude images to form a complex image
eve_diff — Compute the difference of two sequences

eve_div — Compute the quotient of two sequences

eve_mul — Compute the product of two sequences

OPERATIONS INVOLVING PIXEL STRUCTURES

add_struct — Add processor structures to the input sequence
drop_struct — Drop processor structures from the input sequence
eve_activate — Set/clear processor structure ‘active’ flags
eve_addproc — Compute the value of ‘summing processors’
eve_calcproc — Generalized processor computation
eve_diffproc — Compute the value of ‘difference processors’
eve_divproc — Compute the value of ‘division processors’
eve_dog — Perform Difference-of-Gaussians convolution
eve_gabor — Perform Gabor convolution

eve_genconv — Perform generalized convolution
eve_mulproc — Compute the value of ‘product processors’
eve_trim — Trim away inactive processors

STATISTICS

eve_framevar — Compute basic descriptive statistics
eve_histo — Compute a histogram of processor output values
eve_mink —~ Compute the Minkowski metric magnitude of processor outputs

MISCELLANEOQUS

eve_procedit — Edit an EVE sequence interactively

gen_hex — Generate a hexagonal sequence

gen_posns — Generate a sequence with a processor positions table
gen_sqr — Generate a square grid sequence

(Manuscript received May 5, 1989;
revision accepted for publication August 29, 1989.)



