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Abatraet-Rapid texture segregation is examined using filtered noise textures. The stimuli consist of a 
foreground region of filtered noise with one dominant texture orientation against a background region 
with a different dominant orientation. Shape discrimination of the foreground region is measured as a 
function of the difference in orientation between the two regions (AO), the distance over which the 
dominant orientation rotates from the background to the foreground value (AX), and the dominant spatial 
frequency of the textures (f). Pe~o~an~ declines with smaller A@, larger Ax, and lowerf. These effects 
are partially independent of viewing distance, which implies that it is the refuiiue or object spatial 
frequency, not retinof spatial frequency, which determines performance in this task. We present a model 
consisting of channels tuned for orientation and spatial frequency which compute local oriented energy, 
followed by (texture) edge detection and a cross-correlator which performs the shape discrimination. 
Monte Carlo simulations of this model are in accord with the degradation in performance with increased 
Ax and decreased AtI 

Texture Texture gradient Spatial filtering 

INTRODUCTION 

An image region with one texture appears as a 
distinct perceptual entity within a background 
region with contrasting texture if the difference 
between the two textures is sufficiently great. 
The phenomenon of texture segregation will 
occur with differences between the foreground 
and background in mean local contrast, local 
spatial frequency, orientation and other local 
image properties (e.g. Beck, 1982; Beck, Sutter 
& Ivry, 1987; Bergen 8z Julesz, 1983a,b; Caelli, 
1982; Julesz, 1981; Julesz & Bergen, 1983; 
Sutter, Beck & Graham, 1989; for a review see 
Bergen, 1991). Most of these studies utilized 
micropattern textures, in which a foreground 
region contains a number of copies of a given 
micropattern and a background region contains 
a contrasting micropattern (such as randomly 
oriented L’s on a background of randomly 
oriented X’s, Bergen & Julesz, 1983a). 

Nothdurft (1985~; see also 1985a,b) studied 
texture segregation using textures consisting of 
a random collection of short line segments with 
identical orientation. The line segments in the 
foreground texture had a different orientation 
than those in the background. It was shown that 
performance in a shape discrimination task 
improved with increasing difference in orien- 

tation of the lines in the two image regions. In 
addition, a spacing e&et was observed, wherein 
the effectiveness of a given o~entation difference 
dropped when the line segments were spaced 
further apart. Nothdurft took this as evidence 
for the computation of a structure gradient. In 
other words, for a given textural property (in 
this case, orientation $), the dete~inant of 
segregation performance is not simply the 
difference in that property from foreground to 
background (A@, but the spatial gradient of 
that property across the texture boundary 
(AB/Ax). 

There are some di~culties in inte~reting 
Nothdurft’s results. One problem is the issue of 
sampling, Given a foreground region of a par- 
ticular shape and size on a larger background, 
when the spacing between foreground micropat- 
terns is increased, the sampling density of each 
pattern is necessarily decreased {along with the 
dominant spatial frequency of the stimulus). 
Thus, it is unclear whether poor performance 
results from the decrease in structure gradient or 
from sparser sampling of the foreground shape 
by the micropatterns, The stimuli used by Noth- 
durft confound spatial sampling of the textures 
and the visible gradient of spatial structure 
between the micropatterns of differing orien- 
tation Nothdurft did examine this issue by 
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varying the size of the objects and the viewing 
distance, but these manipulations change other 
characteristics of the display in addition to those 
of interest. 

We investigate texture segregation and the 
structure gradient using filtered noise textures. 
The foreground and background again differ in 
orientation; in this case the difference is in the 
dominant o~~entution of the filtered noise, which 
is determined by the orientation of the filter that 
is applied. With this type of stimulus it is 
possible to vary the change in structure (AL\e) 
independently from the distance over which that 
change occurs (AX) by using a different filter 
kernel in different image iocations (nonisopla- 
natic filtering) to generate the textured image. 
The filters share the same dominant spatial 
frequency, which makes it possible to vary Ax 
without varying the spatial frequency content of 
the stimulus (unlike the micropattern textures 
used by Nothdurft). 

In the stimuli studied by Nothdruft, the orien- 
tation of each micropattern (a small line seg- 
ment) is well-defined and easily measured. For 
noise textures, as well as most naturally occur- 
ring textures, local orientation is not so easily 
defined, nor may it be specified with complete 
precision. However, in order to test the struc- 
ture gradient hypothesis using these stimuli, we 
must define an appropriate local orientation 
measure. One way to do this is based on the 
outputs of filters with different preferred orien- 
tations applied to a given image region (Free- 
man & Adelson, 1989; Knutsson & Granlund, 
1983). In order to analyze a texture for local 
orientation and scale, one can begin with a set 
of channels tuned for various orientations and 
spatial frequencies in much the same way as has 
been done in modeling threshold spatial vision 
(Watson, 1983; Wilson & Bergen, 1979). Mul- 
tiple channels models of texture segregation 
(Bergen & Adelson, 1988; Bovik, Clark & 
Geisler, 1990; Caelli, 1985; Clark & Bovik, 1989; 
Fogel & Sagi, 1989; Malik & Perona, 1990) may 
be used to analyze the artificial micropattern 
textures which have been popular in empirical 
texture segregation research. However, these 
stimuli are broadband, and hence stimulate 
channels with different preferred spatial fre- 
quencies as well as multiple orientation chan- 
nels. One added benefit of the filtered noise 
stimuli used in this paper is that these displays 
are narrowband in spatial frequency. In analyz- 
ing a texture segregation model we can concen- 
trate on the interactions between different 

orientations, since image information is re- 
stricted to a single scale. 

In this paper, we are interested in texture 
segregation performance, which we define as the 
ability to make different image regions distinct 
based solely upon a difference in a textural 
property. As such, texture segregation succeeds 
only when differently textured regions are per- 
ceived as having a well-defined shape. Hence, a 
shape discrimination task is used to gauge per- 
formance. By varying A8 and Ax independently, 
we are able to examine the structure gradient 
effect without the covariation of sampling of the 
displays found in the work of Nothdurft 
(1985~). We vary the dominant spatial fre- 
quency of the noise textures, as an analogy to 
the change in dominant spatial frequency which 
accompanies the change in raster width in Noth- 
durft (1985~). We also vary viewing distance, 
which allows us to determine whether the effects 
of varying spatial frequency are best described 
in retinal terms (cycles per deg) or in object 
terms (cycles per object), Finally, we show that 
human performance can be successfully mod- 
eled using a texture analyzer which consists of 
a set of parallel channels tuned for different 
orientations, followed by an edge detector 
which extracts the edges between differently 
textured regions. 

METHODS 

Subjects 

There were two subjects in these experiments. 
One was an author, and the other was a student 
naive to the purposes of the experiments. All 
had normal or corrected-to-normal vision. 

Displays 

The displays consisted of areas of oriented 
bandpass filtered noise. A region with one domi- 
nant orientation was set against a background 
of a different orientation. The shape of the 
foreground region was a square with a diago- 
nally truncated corner, and the subject’s task 
was to identify which corner of the square was 
missing. (In these respects the task is very 
similar to that used by Bergen & Julesz, 1933b.) 
We investigated the importance of orientation 
gradient by varying the difference in orientation 
between the central foreground square and the 
background, and also by varying the distance 
over which that change in orientation occurred. 
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Fig. 1. A representation of the way in which the filtered noise textures were generated. A noise stimulus 
(Gaussian, IID) was filtered using oriented filters with Gabor impulse response. The preferred spatial 
frequency of the Gabor (0) varied from the background (with value 0,) to the foreground shape (with 
value 0,). Across the boundary between the foreground and background, the dominant orientation rotated 

contiduously from 8, to sl, across a distance Ax. 

The oriented noise textures were generated by 
filtering Gaussian noise images (where each 
pixel is an independent random sample from a 
zero-mean normally distributed random vari- 

*It is important to be careful about the particular choice of 
filtering procedure used in order to avoid artificial cues 
at the edges of the figure other than the change in 
dominant orientation. There are three images used in 
this process: the Gaussian noise image G(x, y) (the 
input), an orientation map 0(x, y) (used to guide the 
filtering process so as to produce the square figure on the 
background), and the texture image T(x, y) (the result). 
The stimulus generation was accomplished in two steps: 
(a) compute an orientation map, and (b) use the orien- 
tation map to guide the filtering of the Gaussian noise 
image. 

First, we associate an orientation 0(x, y) with each pixel 
position (x, y) of the Gaussian noise image. For Ax = 0, 
the pixels lying inside the foreground figure (the square 
with the missing corner) are associated with an orien- 
tation of f3,, and others with 0,. This image of dominant 
orientations is the orientation mup. For larger Ax, the 
orientation map is simply a blurred version of the Ax = 0 
orientation map. We use a blurring filter with an impulse 
response which is a square with sides of length Ax. This 
causes the orientation to change linearly between the 
background and foreground values. 

The texture image may now be computed. The texture image 
is first cleared (to zeroes). Then, for each pixel in the 
Gaussian noise image, the value of that noise pixel is 
used to scale a Gabor with the dominant orientation 
associated with that pixel. This scaled Gabor is added 
into the texture image centered on that same pixel: 

T(x,y) = c G(x’,y’)W[x -x’,y -y’; G(x’,y’)]. 
1. >’ 

This procedure effectively blurs the dominant texture 
changes across the edge of the figure, avoiding artifac- 
tual edge cues. Note that this is true even for Ax = 0. 

able) using filters with a Gabor-shaped impulse 
response function: 

w&Y; 0) 

= sin[27$(x cos 19 + y sin fI)]e --(x* +92)1S2. 

The peak orientation of the filter was tI deg. For 
a viewing distance of 3Ocm, three dominant 
spatial frequencies were investigated: 0.75, 1.5 
and 3 c/deg. The spread of the Gaussian envel- 
ope s was set so that the diameter at half height 
of the weighting function was 1.4 cycles of the 
peak frequency f: 

The displays consisted of a foreground with 
one dominant orientation and a background 
with a different dominant orientation. Thus, the 
images were created using nonisoplanatic (non- 
shift-invariant) filtering. Figure 1 illustrates the 
manner in which we are able independently to 
vary A8 (0,- &, the difference between domi- 
nant foreground orientation 0, and the domi- 
nant background orientation 0,) and Ax (the 
distance over which that change in dominant 
orientation occurs). A cross-section across the 
edge of the square figure is shown. As the edge 
of the figure is traversed, a series of filters are 
used at each spatial position which slowly rotate 
in dominant orientation from f& to 0,. We used 
three background orientations 8, (O’, 60” and 
120”), two values of AtI (18” and 36”), and three 
values of Ax (0, 1.25 and 2.5 deg, from a viewing 
distance of 30cm).* Note that we will use the 
unit “deg” for spatial distance (as in “degrees of 
visual angle”), and the symbol “O” for dominant 
orientations of filters used to generate or ana- 
lyze a texture (as in “degrees relative to the 
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vertical”). For each display condition (combi- 
nation off, A@ and Ax) there were 12 possible 
stimulus displays (three values of 0, for each of 
four missing corners of the foreground square). 
Representative displays are shown in Fig. 2. 

The displays as stored on disk were 512 x 512 
pixels, with a 200 x 200 square figure centered 
in each display. The displays (and modeling 
described beiow) were computed using the HIPS 
image processing software (Landy, Cohen & 
Sperling, 1984a,b). A randomly chosen 
400 x 400 portion of a given display was shown 
on each trial centered in a 480 x 512 raster 
display. The subject was not aware in advance 
of the exact position of the square within the 
display area, and therefore could not use di- 
rected eye movement or other strategies involv- 
ing the attending to localized areas in the 
display in order to improve performance on the 
task. The stimulus geometry is shown (for a 
viewing distance of 30 cm) in Fig. 3. In the 
second experiment, a viewing distance of 60 cm 
was used as well with the same CRT displays. 
This resulted in reduced stimulus size (by ap- 
proximately one half), and increased dominant 
spatial frequency (1.5, 3 and 6 c/deg). These 
frequencies correspond to 16, 8 and 4 pixels per 
cycle, respectively. 

Stimuli were displayed using an Adage RDS- 
3000 display system on a US Pixel PX15 
monochrome monitor with a fast P4-like phos- 
phor. The video format was 60 Hz, noninter- 
lace, with 480 x 512 visible pixels. The mean 
luminance was 53 cd/m’, and the peak Weber 

3.5 - 13 deg L +-- 16.7 deg __+ 

3.5 - 13 deg 
5 deg 

*- 

_ 32.ldeg _ 

Fig. 3. Stimulus geometry for a viewing distance of 30 cm. 
For the 60 cm viewing distance all distances in retinal angle 

are halved (approximately). 

contrast of the images was approx. 98%~. The 
lookup tables of the display system were set so 
that the relationship between pixel value and 
display luminance was linear. The CRT display 
was kept at the same mean luminance between 
trials, and the area of the display outside of the 
visible 400 x 400 pixel portion of the texture 
display was also maintained at this same mean 
luminance. Subjects viewed the stimuli binocu- 
iarly in a dimly lit raom. 

Procedure 

The subject’s task was to identify which cor- 
ner of the foreground square was missing. The 
procedure was thus one-interval, four-alterna- 
tive, forced choice, with a chance performance 
rate of 25%. Subjects initiated each trial with a 
response key, and keyed in their responses after 
the stimulus display. Feedback was provided 
after the subject’s response which indicated 
which of the four corners was the correct 
answer. 

Each trial (Fig. 4) consisted of a cue spot 
(which lasted 250msec), a variable blank inter- 
val (250-500 msec), the stimulus texture (for 
two 60 Hz frames), and in some cases a variable 
blank interval and a post-masker (a 400 x 400, 
100% contrast, random-dot image, 50% white 
pixels and 50% black pixels). The variable blank 
interval before the stimulus image was intended 
to defeat subject strategies involving a weli- 
timed blink or eye-movement prior to the post- 
masker. Subject performance (percent correct) 
was measured as a function of the SOA between 
the appearances of the stimulus texture and the 
post-masker, the viewing distance (30 or 60 cm), 
and the display condition (combination off, A8 
and Ax). 

The first experiment was performed entirely 
from a viewing distance of 30cm. Each subject 
ran in 48 blocks of 144 trials. Within a block, 
A& Ax and f were fixed. The 48 blocks (4 
replications of each combination of A& Ax and 

CW? Blank Stimulus Blank Masker 

- 250.500 msec - 33 or more msec - 

f 

Time 

Fig. 4. A representation of the timing of the displays. 



Fig .2 Rep #rest mtative filtered noise stimuli. (A) 0, = O”, A0 = 36”, Ax = 0 deg. The 
the sq uare fW Ire is missing. (B) 8, = 60”, A0 = 36”, Ax = 2.5 deg at a viewing di 

UPI Kr. .right co mer of the square figure is missing. (C) 0, = 120”, A0 = 18”, Ax = 0 
co srnr :r of the square figure is missing. Note that segregation is poor with smalle 

uppc 

I deg. 
r A0 

x-rig ht corr ier of 
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Fig. 8. Representative output from the texture model. (A) Normalized opponent energy of a filtered noise 
stimulus (vertical - horizontal). (B) Normalized opponent energy (right diagonal - left diagonal). (C) The 
final edge detected output in response to a stimulus with At7 = 36” and Ax = 0 deg. (D) The final edge 
detected output in response to a stimulus with A0 = 36” and Ax = 3 deg (from a viewing distance of 

30 cm). 
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Texture and 

f = 1.5 or 3 c/deg) were run in random order. 
Within a block, 12 stimulus displays were used 
(4 corners of the square by 3 values of 0,). For 
subject MSL, the 144 trials consisted of 2 repli- 
cations of each display at each of 6 SOAs (33, 
83, 133, 183 or 233 msec, or no post-masker). 
For subject EMB, there were 3 replications of 
each display at 4 SOAs (33, 83 or 133 msec, or 
no post-masker). Thus, for subject MSL there 
are 96 trials per data point (4 replications of 
each block, 2 replications of each display per 
block, 12 displays), and for subject EMB there 
are 144 trials per point (3 replications of each 
display per block). 

A second experiment investigated the effect of 
viewing distance. A8 was fixed at 36”, and Ax 
was fixed at 0 deg. Twelve stimulus blocks were 
run in random order (2 viewing distances, 3 
values of f, and 2 replications). Each block 
consisted of 144 trials, with 4 replications of 
each of the 12 displays, and 3 SOAs (33 and 
83 msec, or no post-masker). There were 96 
trials per data point. 
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RESULTS 

The results for the first experiment are given 
in Fig. 5. Each panel shows the data for one 
subject at one spatial frequency. The time 
course of these data is substantially different 
from what is seen in texture discrimination 
experiments using binary high contrast displays 
for which percent correct performance usually 
asymptotes near 100% as a function of SOA 
(e.g. Bergen & Julesz, 1983a,b). With filtered 
noise textures, the display does not appear to 
produce a useful long-lasting after-image, and 
any improvement with increasing SOA is com- 
plete by 133 msec or earlier. There appears to be 
little possibility of a serial search of an iconic 
image after the display has completed. The time 
course of easier conditions (e.g. A0 = 36”, 
Ax = 0 deg), does not appear to be different 
from that for difficult conditions (e.g. A8 = 36”, 
Ax = 3 deg). Thus, we may characterize the 
interesting variations in the data by the asymp- 
totic performance value for each condition. This 
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Fig. 5. Shape discrimination performance as a function of the SOA of a post-masker. Open symbols denote 
A0 = 36”; solid symbols denote Ati = 18”. Ax = 0 deg (circles), I .5 deg (squares), or 3 deg (triangles). The 
viewing distance is 30cm. Chance performance is given by the horizontal dashed line. Data for two 
subjects are shown. (a) f = 1.5 c/deg. (b) f = 3 c/deg. One representative fit is shown of an exponential 
function which is used to derive the asymptotic performance levels given in Fig. IO. Selected error bars 

indicate -+ I standard error of the mean. 
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is done below (Fig. 10) by fitting an exponential 
function (a - Be -‘I?) to each data set and plot- 
ting the asymptotic value of the best fitting 
function (in the least squares sense).* The best 
fit values of y vary between 30 and 70 msec for 
the A0 = 36” conditions, and do not vary sys- 
tematically. The y values for the A0 = 18” con- 
ditions vary more, since the data are so hat and 
variable. 

Nothdurft (198%) suggested that the import- 
ant variable for determining performance in a 
texture task requiring a discrimination of orien- 
tation is the spatial gradient of orientation from 
figure to background (A(!)lA If this theory is 
correct, then performance should improve with 
larger AB and smaller Ax. This is precisely the 
case with filtered noise textures. Thus, we have 
been able to confirm Nothdurft’s basic obser- 
vation using a stimulus for which there is no 
covariation of Ax with stimulus sampling (the 
grid of micropatterns used by Nothdurft). The 
asymptotic values reported here are comparable 
to the 30 msec data from Nothdurft, where no 
post-masker was used (1985c, Figs 5 and 7b). In 
Nothdurft’s data, a substantial difference in 
texture segregation was found between A8 val- 
ues of 20 and 30 deg. Here, the drop in perform- 
ance was a bit larger, and the AtI values were 18 
and 36 deg. Direct comparisons between “com- 
parable” values of Ax are not possible given the 
different types of stimuli used. Nothdurft’s hy- 
pothesis relating the “structure gradient” to 
texture segregation leads to the following quan- 
titative prediction: conditions which have the 
same values of AtI/Ax should lead to the same 
performance. Before this prediction can be 
tested, a model is needed for how the observer 
computes a local value of 6. We discuss this 
issue in the next section. 

*Confidence intervals for the estimated asymptotic perform- 
ance level are difficult to define given that we fit a three 
parameter nonlinear model. We estimated such a confi- 
dence interval in two ways. Using the exact 95% confi- 
dence region described by Draper and Smith (1981, 
Chap. 10) based on the raw response data, and fixing the 
other two fit parameters at the values found by least 
squares, we determined the boundaries of the confidence 
region varying only the asymptotic performance par- 
ameter a. This yields an interval of +6% correct or so 
for each curve. In addition, one can estimate this interval 
simply by averaging all of the data for a given curve once 
asymptote has been reached (the rightmost four data 
points in Fig. 5 for subject MSL, and the rightmost two 
data points for subject EMB) and use the binomial 
variance. This yields slightly smaller confidence inter- 
vals. 

In this first experiment, there was only a small 
effect of dominant spatial frequencyf(compare 
the two panels for each subject in Fig. 5). There 
is some hint that performance is better for 
1.5 c/deg textures than 3 c/deg textures for short 
SOAs. The 33 msec SOA data for 1.5 c/deg are 
generally as good or better than the correspond- 
ing 3 c/deg condition. 

The results of the second experiment are given 
in Fig. 6. Here, a wider span of spatial frequen- 
cies were used in order to better show any 
frequency dependent effects. It is clear that with 
a sufficiently low-frequency texture, perform- 
ance suffers. Nothdurft (1985~) found that for a 
fixed difference in orientation between fore- 
ground and background elements (small ori- 
ented line segments), texture segregation was 
impaired by increasing the distance between 
adjacent elements (the raster width). That ma- 
nipulation had several effects. It increased the 
distance across which structure is changed (our 
Ax), decreased the dominant spatial frequency, 
decreased the sampling rate of the texture, and 
decreased the total amount of visible structure. 
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Fig. 6. Shape discrimination performance as a function of 
the SOA of a post-masker. A@ = 36”. Ax = Odeg. 
f = 3 c/deg (e), 1.5 c/deg (a), or 0.75 c/deg (A), viewed 
from a distance of 30 cm. The open symbols represent the 
same displays viewed from a distance of 60 cm (so that the 
retinal spatial frequencies were doubled). Data for two 

subjects are shown. 



Texture and orientation 

We have found that performance declines when 
either Ax is increased or dominant spatial fre- 
quency is lowered sufficiently, when these are 
varied independently of the other factors. 

The entire experiment was run using the same 
displays from two viewing distances. The bulk 
of the variation in performance may be at- 
tributed to the stimulus that was displayed on 
the CRT, with little effect of viewing distance. In 
other words, the effects of spatial frequency that 
we have observed here are a function of relative 
or object spatial frequency (measured in 
cycles/object or cycles/cm), rather than of reti- 
nal spatial frequency (cycles/deg). This obser- 
vation is consistent with other results involving 
supra-threshold spatial vision including studies 
of recognition of letters masked by noise (Parish 
& Sperling, 1987) and reading rate (Legge, Pelli, 
Rubin & Schleske, 1985). It is also consistent 
with the viewing distance manipulation used by 
Nothdurft (198%) in his study of texture segre- 
gation with rasters of oriented line segments 
(and with Nothdurft, 1985b). 

in a similar manner (Bergen & Adelson, 1988; 
Bovik et al., 1990; Caelli, 1985; Clark & Bovik, 
1989; Fogel & Sagi, 1989; Malik & Perona, 
1990), rather than resorting to specialized pro- 
cessing for texture (e.g. Beck, 1982; Julesz, 198 1; 
Iwama & Maida, 1989). 

We have simulated several variants of a 
model for texture segregation which compute 
local oriented energy (Adelson & Bergen, 1985). 
Here, we present a brief account of a particular 
model which can account for the data. A more 
extended account may be found in Bergen and 
Landy (1991). We have used the model to 
simulate to decline in performance with in- 
creased Ax and decreased A8. We have not 
modeled the effects of varying spatial frequency 
or viewing distance. Also, because there is no 
temporal component to the model, we do not 
account for the complete time course as a 
function of SOA, but merely the asymptotic 
performance levels. The model is shown in 
Fig. 7. 

A MATCHED FILTER MODEL 

From studies of threshold spatial pattern 
detection and discrimination, there is general 
agreement that visual processing includes a 
number of spatial channels tuned for a range of. 
spatial frequencies and orientations, and models 
of spatial vision at threshold generally include a 
set of such filters (Watson, 1983; Wilson & 
Bergen, 1979). It has also been suggested that 
texture segregation results may be explained by 
models which initially analyze the retinal image 

The model first analyzes the retinal image 
using a bank of several spatial filters varying in 
spatial frequency and preferred orientation. As 
noted above, one of the benefits of using band- 
pass filtered noise stimuli is that such displays 
are only passed by spatial filters with a peak 
spatial frequency near the dominant spatial 
frequency of the stimulus. Thus, we do not need 
to consider the manner in which responses are 
pooled across spatial frequencies. The more 
traditional micropattern stimuli used in much of 
the texture segregation literature are broad- 
band in spatial frequency content and more 
complicated to analyze using models such as 
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Fig. 7. A block diagram for a texture analysis model. The stimulus is analyzed by four oriented filters. 
The filter outputs are squared and pooled, resulting in local oriented energy maps. Orthogonal orientations 
are placed in opponency, and normalized by a local oriented contrast measure. The resulting normalized 
opponent images are edge enhanced, and then further processed by an acceierating nonlinearity which 

effectively discards weak texture edge responses. 
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this one. We include four filters, with preferred 
orientations spaced 45” apart, and with peak 
frequency centered on the dominant frequency 
of the stimuli. The orientation bandwidth is 40”, 
and the spatial frequency bandwidth (at half 
height) is 1.6 octaves. These produce four 
filtered images: vertical (“V”), horizontal (“H”), 
diagonal down-and-right (“R”), and diagonal 
down-and-left (“L”). 

The essence of a texture analysis (Bergen, 
1991; Caelli, 1985) is to look for particular 
image qualities (“verticality,” etc.) pooled 
across spatial phases within a small region of the 
image. This may be done by computing a pooled 
texture “energy” in much the same way that 
“motion energy” may be computed by squaring 
the output of a motion selective linear filter and 
summing across locations or phases (Adelson & 
Bergen, 1985). The four filtered images are each 
squared (point-wise) and averaged across a 
small spatial area. (Since averaging necessarily 
results in an image with less high-frequency 
content, we also subsample the image at this 
point.*) In order to produce responses that 
depend in a convenient way on local image 
orientation, two opponent signals are con- 
structed by taking the difference of the images 
corresponding to orthogonal orientations 
(P - V’ and R’- L’). Next, in order that the 
model measure a textural property independent 
of local image contrast, the opponent responses 
are normalized by the local oriented energy 
pooled over all orientations [e.g. (Hz - V*)/ 
(Hz + V” + R 2 + L’)]. This procedure reduces 
the effects of local contrast variation, and thus 
yields a less noisy estimate of local structure. 
The resulting images for our textures consist of 
a noisy square region on a noisy background 
(Fig. 8A,B). These values are systematically 
related to local orientation. If texture segre- 
gation performance depends on the spatial gra- 
dient of local structure, then this corresponds in 
image processing terms to working with edge 
gradient information rather than with the orig- 
inal energy values. Consequently, for analysis of 
the shape of the square boundary, we apply the 
Sobel edge enhancer (see Gonzalez & Wintz, 
1977) which computes the magnitude of the 
gradient at each location, followed by an expan- 
sive nonlinearity (a fourth power) in order to 
suppress weak edge responses. There is some 

*For the blurring and subsampling two levels of a Gaussian 
pyramid “reduce” operation were used (Burt, 1981; Burt 
& Adelson, 1983). 

evidence that texture segregation proceeds from 
the extraction of texture edges, rather than 
grouping uniform texture regions (for example, 
the texture-based Craik-Cornsweet figure in 
Nothdurft, 198% Fig. 8; and the texture con- 
trast-based Craik-Cornsweet figure in Sagi & 
Hochstein, 1985, Fig. 2). 

The subject’s task in the experiments reported 
above was to localize the square textured region 
and characterize its shape. We simulate this 
behavior by requiring the model to focalize the 
figure in the resulting edge images (Fig. 8C,D) 
and determine which of the four corners is 
missing. The model’s “performance” was deter- 
mined by Monte Carlo simulation using a noisy 
cross-correlator to determine the model’s “re- 
sponse” (Fig. 9). For any given condition (value 
of A0 and Ax; only the data for f = I .5 cjdeg at 
a viewing distance of 30 cm were analyzed), 12 
displays were used in the experiments (four 
missing corners and three values of f1,). For 
each such display, the texture analysis model 
results in two edge images (derived from 
V2 - H” and R2 - L’). Noise was added to each 
of these images (Gaussian noise; the standard 
deviation of the noise was adjusted to lower 
simulated performance to the range of human 
performance). A cross-correlation was com- 
puted between each of these two noisy edge 
images and four idealized edge templates 
(squares with missing corners). The template 
that produced the maximum cross-correlation 
value determined the model’s “response” on 
that “trial”. For each condition, the mode1 ran 
through $20 “trials” (IO replications with differ- 
ent additive noise fields for each of the 12 
displays), and a percentage correct performance 
was computed. 

The results of the Monte Carlo simulation are 
given in Fig. 10. Performance for the model and 
the asymptotic performance for the two subjects 
are shown as a function of Ax (the parameter is 
A0). The asymptotic performance levels were 
derived from the exponential fits to the data 
described above {a sample fit is shown in Fig. 5). 
The model was able to provide a reasonable fit 
to the data. 

Although the only parameter used to provide 
this fit was the amplitude of the additive noise, 
the model is quite elaborate. We believe that this 
complexity is justified because simpler versions 
of the model are unabfe to provide an adequate 
fit to the data (Bergen & Landy, 1991). if a 
noiseless cross-correlator is used, the model’s 
performance is perfect. Also, it is not consistent 
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Fig. 9. A block diagram of the Monte Carlo procedure. An edge detected response of the model was 
corrupted by noise and then cross-correlated with idealized edge images of the patterns to be 
discriminated. The pattern yielding the largest maximal correlation value was chosen as the “response” 
on that “trial”. In the simulations, this cross-correlation was performed between the templates and both 
the “vertical - horizontal” and “right diagonal - left diagonal” images, and the response was based on 

the largest correlation across all eight cross-correlations. 

with the data to omit the nonlinearity applied to 
the edge responses, or to perform the cross-cor- 

Fig. 10. Asymptotic performance in the shape discrimi- 
nation task and performance predicted by the texture 
segregation model. The human performance data were 
determined by curve fits to the data for f = 1.5 c/deg from 
Fig. 5a (solid lines; circles for subject MSL, squares for 
subject EMB). The performance of the texture segregation 
model (dashed line and triangles) is the result of 120 “trials” 

per data point. 

relation at any earlier stage of the model shown 
in Fig. 7, The qualitative reason for these fail- 
ures is that at each of the earlier stages, for 
sufficient additive noise, increasing Ax has too 
little effect on the model’s performance relative 
to that found in the human data, although 
~~o~an~ is strongly degraded by decreased 
A@. The effect of A8 is more a function of the 
effective bandwidth of the filters; excessively 
narrowband filters would be required to segre- 
gate textures differing by only 18”, given that the 
noise stimulus itself has a fairly large orientation 
bandwidth. Displays with large values of Ax do 
not give the impression of having an edge 
between the foreground and background tex- 
tures, even though these textures are easily 
discriminated. This accords with the notion that 
an edge response is computed between different 
textured regions, and that weak edge responses 
are discarded, as by the expansive nonlinearity 
in the model. 
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Nothdurft (198%) suggested that texture seg- 
regation occurs when the “structure gradient” is 
sufficiently large. Our results and analysis are 
essentially in agreement with this idea. A 
measure of local orientation can be computed 
from the normalized opponent energy values 
computed in the model (Bergen & Landy, 1991; 
Freeman & Adelson, 1989; Knutsson & Gran- 
lund, 1983). Our computation of texture edge 
strength is certainly related to the structure 
gradient, although we do not explicitly compute 
local orientation (0) in the model, nor do we 
compute the structure gradient (Ae~Ax). 

We have described a model for texture segre- 
gation. The model has been used successfully to 
model a portion of our results: the degradation 
of human texture segregation performance with 
increased Ax and decreased AB. We have not 
captured all of our results (variation with spatial 
frequency and viewing distance), although one 
would expect some amount of degradation with 
lower spatial frequencies simply because such a 
stimulus contains less information. But, we have 
shown that this approach to modeling can re- 
produce human behavior in a few circum- 
stances. More empirical research would be 
required to support a particular block diagram 
for the model, particular filter characteristics, 
spatial pooling, and so on. Fortunately, from 
our own investigations of this model, it appears 
to be robust with respect to the type of filters 
employed. For example, similar results were 
produced using first-derivative filters with a 
much wider orientation bandwidth. Because of 
the orientation opponency, the precise details of 
the filters become less critical. 

SUMMARY 

Texture segregation performance was ana- 
lyzed using filtered noise patterns. It was found 
that performance degrades with decreased 
o~entation difference between the foreground 
and background textures (A@) and with an 
increase in the distance over which that orien- 
tation difference occurs (Ax), which supports 
the results of Nothdurft (198%). Performance is 
also poorer for low spatial frequencies, and this 
is an effect of object spatial frequency, not 
retinal spatial frequency. The results may be 
accounted for using a model with channels 
tuned to various scales and orientations, fol- 
lowed by an edge detection stage which re- 
sponds to texture edges. This model is similar to 
current models of spatial pattern detection and 

discrimination, and can account for human 
texture segregation performance. The model 
does not require more elaborate processing 
mechanisms such as the detection of textons, 
linking of edges, and region growing. 
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