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Abstract-Quadtrees are a compact hierarchical method of representa-
tion of images. In this paper, we explore a number of hierarchical image
representations as applied to binary images, of which quadtrees are a
single exemplar. We discuss quadtrees, binary trees, and an adaptive
hierarchical method. Extending these methods into the third dimen-
sion of time results in several other methods. All of these methods are
discussed in terms of time complexity, worst case and average compres-
sion of random images, and compression results on binary images de-
rived from natural scenes. The results indicate that quadtrees are the
most effective for two-dimensional images, but the adaptive algorithms
are more effective for dynamic image sequences.

Index Terms-Binary images, hierarchical coding, image coding, image
compression, image processing, quadtrees.

I. INTRODUCTION

THE basic data idea behind hierarchical coding is to seg-
ment a picture into the largest possible uniform areas and

to transmit a hierarchical representation of these areas. The
representation takes the form of a rooted tree where the root
represents the entire image, and nodes on lower levels represent
increasingly smaller subregions of the picture. Leaves of the
tree represent uniform regions of the picture, which therefore
require no further decomposition. If the particular decomposi-
tion of the image used splits an initially square image by halv-
ing the vertical and horizontal dimensions, yielding four squares
within a square, we arrive at the quadtree image representation.
In this particular scheme, each node in the tree is either a leaf
or has four children, each of which in turn describes the four
quadrants created by splitting the square described by the
parent node. The quadtree representation has received a lot of
attention in recent years, both for its usefulness in pattern
recognition and computer vision schemes, and as a method for
image compression [1].
In this paper we discuss the special case of binary images,

wherein only one bit per pixel is contained in the original
image (black or white). With the goal of maximal errorless
compression of binary images, we show that quadtree repre-
sentation is not necessarily the best method among methods
which hierarchically decompose the image. We analyze several
hierarchical coding methods both theoretically and by apply-
ing each method to several types of binary images. We describe
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adaptive hierarchical coding methods in which the design of
the hierarchy is coupled more closely to the local statistics of
the picture. We also include analyses of dynamic images, which
are encoded by hierarchical methods that include the third
dimension of time in the hierarchical decomposition. We con-
sider six hierarchical coding schemes. The efficiency of these
schemes will be compared in terms of their worst case and
average performance on random and natural images.

II. OVERVIEW
The idea of representing images as hierarchies of features or

objects is a natural one, and arose independently in several
contexts of picture processing. In the area of formal picture
languages, Rosenfeld [2] (following Hunter and Steiglitz [3] )
suggested quadtree grammers. These grammars generate fam-
ilies of square pictures by application of production rules that
replace a node in a tree by a subtree. In the resulting trees, all
the nonterminal nodes are of degree four, and stand for square
subblocks of the picture.

In recent years the use of quadtrees for picture processing
has become quite popular. Quadtrees have been used for hid-
den line elimination [41, picture segmentation [5] , and a host
of other picture processing needs [3], [6] -[16] . The field is
reviewed in Samet and Rosenfeld [17] and a number of algo-
rithms are given in Pavlidis [1] . Hierarchical schemes are also
prevalent in image-understanding systems [18] ; in these
schemes however, the nodes of the tree represent features of
the scenes rather than areas of uniform gray level. For repre-
sentations of three dimensional objects, oct-tree representations
like those described here have been used [19] -[21] .

In the area of image compression and transmission, a repre-
sentation of pictures by binary trees was explored by Knowlton
[22] . In his scheme a binary tree which describes the image is
transmitted top-down (using a prefix notation). If the image
is uniformly black or white, only one symbol is transmitted-
the gray level of the image. If not, the transmitter sends a
metasymbol which indicates that the picture is not uniform,
and that the code that follows represents two subareas of the
picture. The two subareas are created by a single line (a "cut")
that divides the whole picture into two equal parts. The cod-
ing proceeds in this fashion recursively until the transmitted
code exhausts all the uniform sub- and sub-subareas of the
picture. In the worst case, the coding descends down to the
level of single pixels which are, of course, uniform.
This recursive method has two advantages.
1) Compression Efficiency: Pictures whiclh are comnposed of

large uniform areas can be highly comnpressed.
2) Progressive Transmission: For applications in which the

needed resolution is variable, the transmission can be termin-
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ated by the receiver as soon as sufficient information about
the transmitted picture has been gathered. This idea, which
was first suggested by Sloan and Tanimoto [231, is imple-
mented as a scheme in which the tree is sent in top-down order,
so that large uniform areas can appear to the receiver first, with
finer details progressively filled in as the lower levels of the
tree are reached.
The use of quadtrees for image compression has been studied

recently by a number of researchers. Most of these studies
have concentrated on theoretical results on compression ratios
for simple synthetic images. Examples include the work of
Dyer [24] and Grosky and Jain [251. Kawaguchi and Endo
[261 were the first to describe the use of quadtrees for com-
pression as described here, and an alternative method of quad-
tree compression (for image representation rather than coding
efficiency) was developed by Gargantini [27]. Types of
hierarchical methods used for compression in image databasing
include quadtrees [28] and a more general version of binary
trees than that presented here [291, [301.
In this report, we examine the effectiveness of hierarchical

methods for compression of binary pictures obtained from
natural scenes. Any hierarchical method can be used for pro-
gressive transmission if the coded tree is pre-ordered and sent
in top-down order. The motivation for this research is for
efficient compression schemes, but the new schemes we intro-
duce, like previous hierarchical representations, also have
relevance for the representation of dynamic images and as
possible data structures for image segmentation and recogni-
tion schemes.

1I. HIERARCHICAL REPRESENTATION SCHEMES

In this section we introduce six hierarchical encoding schemes
including quadtree representation, binary trees, and a new
scheme: adaptive hierarchical coding. Three-dimensional
counterparts to these methods will be explored, where the
time dimension is included. These methods include the oct-
tree, three-dimensional adaptive hierarchical coding, and a
hybrid scheme called binquad coding.

A. Example
Quadtrees are trees in which every nonterminal node has ex-

actly four children. In addition, the trees have labeled nodes,
and the children of a given node are ordered. Any given node
in the quadtree represents a square subimage with sides of
length 2'. If this subimage is uniform in gray level, then the
node level indicates the gray level, and this node is a terminal
leaf of the tree. Otherwise, the label indicates that the sub-
image is nonuniform, and four subtrees are created describing
the four subblocks obtained by splitting the square into qua-
drants. Fig. 1 illustrates this process.
In quadtree encoding, the tree is transmitted in a specified

order (in our case, depth-first). For each node a particular
binary code for the node's label is transmitted. For the tree
in Fig. 1, the encoding would be, in symbolic form:
G
G
G

G
WB W WG B W

WWBBW WB

(a)

1 121
(b)

G

W~~~~

WWBB WWWB

(C)

Fig. 1. (a) An image. (b) A quadrant ordering. (c) A quadtree represen-
tation of the image. Each node stands for a particular subimage. The
top node represents the entire image. If a node has children, then the
children represent the four quadrants of the subimage represented by
the parent. The node label describes the subimage associated with
that node as either black (B), white (W), or nonuniform (G, for gray).
Each G node has four children representing the four quadrants of its
subimage, where the ordering of the quadrants is as given in (b).

The vertical spacing here is for clarity only (i.e., the tree struc-
ture is still discernible); the symbols are transmitted as they
appear left-to-right on the page.

B. Quadtree Compression
Quadtree encoding can be implemented by recursive descent

in the following manner:

1) Start from the top level (i.e., the area to be considered is
the whole 2" X 2" picture).
2) Divide the area, if possible, into four subareas.
3) If the subareas are all uniform (of the same gray-level), or

if we are dealing with a single pixel, output B or W and exit.
4) If not, output the symbol for a nonterminal node, here

symbolized by "G," and then repeat steps 2)-4) for each of
the subareas in the prescribed order.

285

W W WB

Authorized licensed use limited to: New York University. Downloaded on May 19,2020 at 22:08:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 3, MAY 1985

Applying this procedure to the picture of Fig. 1(a) results in
the code given in the previous section, which is 21 symbols
long over the alphabet {G, W, B}.
Next, a bit assignment must be selected for the symbols. In

this paper we will not discuss the conditions for optimality,
and assume the following mapping from symbol to bit string:

{G, W, B} - ,01,00.

This decision will be discussed shortly. Applied to the previous
example this results in a comupression ratio of 37/64 = 0.578 bits
per pixel.
Further Improvement in Efficiency. It is assumed that the

receiver knows the size of the picture. Hence, when it en-
counters a "G" that cuts a 2 X 2 subblock into four single
pixels, it knows that the next four symbols describe single
pixels, and that no further cuts are possible. Thus, a block of
four pixels can be represented using four bits instead of eight.
Another source of redundancy derives from the fact that the

receiver knows that if a subblock was cut, then the subblock
must be iionuniform. If the first three quadrants are uniform
and of the same gray level, then the fourth must not be uni-
form and of the same gray level. If the following partial code

G W W W

for a block of size 2n X 2n is received, then if n = 1, the re-
ceiver concludes that the next symbol is B, and therefore the
code for B can be omitted. If n > 1, the receiver concludes that
the next symbol is either G or B and therefore a single bit suf-
fices for distinguishing between the two symbols.
Our example results in the following code:

Gl
Gl

Gl

Time Complexity of the Algorithm. Consider the size of a
quadtree. Clearly, in a full quadtree which represents every
single pixel with 21? X 2' terminal nodes there are

n . (4n+
NQT = Z 21X 2i =

i-o 3

1)
(1)

terminal and nonterminal nodes altogether. An efficient algo-
rithm visits each node once, including single pixels, and exe-
cutes a constant number of operations for each, regardless of
its level. Such an algorithm uses a bottom-up traversal of the
decision tree. At each level, uniformity is determined based
on the previously computed colors of the next lower level's
nodes. By (1), the time complexity is linear in the number of
pixels (which is 2" X 2n or 4").

C Binary Tree Coding
The binary tree scheme is similar to the quadtree algorithm,

but utilizes a binary tree structure to represent the picture.
The first cut of the square picture results in two rectangular
subblocks of equal size. In order to keep the aspect ratio of
the subblocks close to one, the next cut is in a direction per-
pendicular to that of the preceding cut. The transmitter and
the receiver of the code must agree as to which cut direction
dominates, which defines the order of the cuts. Given a block
size of 2n X 2m if n is not equal to m the cut is across the
longer dimension, but when n = m, the cut is taken along the
dominant direction. The binary encoding of a binary tree
representation is quite similar to that used in quadtrC coding,
including the mapping from symbols to bits, the elimination
of redundancy, and the linear time complexity.

Gl
W2 B2 W2 W2 Gl

W2 W2
B2 W2

WI Wl Bl Bl

The number of bits used to represent each symbol is given.
The savings on uniform codes at the single pixel level can be
seen at the bottom level. The code printed in boldface is the
one case where the second savings is applicable. The three W
codes must be followed by a B code, and therefore no bits are
used to represent that B. The code length is 28 bits, yielding
a rate of 28/64 = 0.436 bits per pixel.
The choice of bit mapping above is partially justified by the

redundancy savings we employed. The only case in which the
full bit mapping is used is for nodes where the full alphabet is
possible, which is for nodes which describe regions larger than
a single pixel and where the second savings does not apply.
Our choice of bit mapping is justified if the number of G nodes
is greater than either the number of B or W nodes among this
set, which is pretty much guaranteed for the methods (de-
scribed below) which result in binary trees. For quadtrees and
other nonbinary tree methods, the optimal choice depends in
a complicated way upon the image statistics. For images where
the number of black and white pixels are relatively comparable,
our choice is probably correct. On the other hand. for the
.mages described in Section IV-D, a choice tavoring the more
frequent pixel may have given slightly better results.

Wl Wl Wl BO

D. Adaptive Hierarchical Coding
In quadtree representation, any uniform region in the picture

which is not square is decomposed into smaller square areas.
Thus, the compression efficiency of this method is relatively
poor for pictures which are dominated by elongated regions.
A new method, adaptive hierarchical coding (AHC), overcomes
this disadvantage. In AHC, given a nonuniform region of the
picture, the decision whether to cut this region horizontally or
vertically is made dynamically by choosing the direction which
minimizes the code length.

In terms of number of symbols, the code that results from
AHC cannot be longer than that which is generated by BT
coding. But for AHC, four different symbols are needed in-
stead of three; the direction of the cuts must be specified,
since it is no longer predetermined. The code utilizes two sym-
bols to represent nonuniform areas (H for a horizontal cut and
V for vertical cut), and two symbols to represent the colors of
uniform areas (B and W). The method of mapping symbols to
bit strings, and the elimination of redundancy in the code is
somewhat more complicated in AHC than in QT or BT, but
the general idea is the same. The alphabet {B, W, V, H} is

286

Authorized licensed use limited to: New York University. Downloaded on May 19,2020 at 22:08:46 UTC from IEEE Xplore.  Restrictions apply. 



COHEN et al.: HIERARCHICAL CODING OF BINARY IMAGES

GI
C1 CI

1171
C1 51
aim el"W

W2G1
Ct C1

8I1 WO 1it/

G1
WC21

el GI
V2Wt 82W1

Total of 17 bits
(a)

Total of 12 bits
(b)

Fig. 2. A simple image processed by three hierarchical coding schemes.
(a) Binary tree coding with horizontal dominance. (b) Binary tree
coding with vertical dominance. (c) Adaptive hierarchical coding.
The cuts made by each method are shown in gray. Below each figure
the symbolic representation of the tree is given along with the number
of bits needed for each symboL

Total of 9 bits
(c)

Level 0

Level A
I

H 7

n~~ ~2GLA \ S

LevelLX?WWLSL@]. Jj L 2 JJ
Fig. 3. The complete decision tree for a 2 X 2 image used by the adap-

tive hierarchical coding method. This method requires that all possi-
ble combinations of vertical and horizontal cuts be examined.

initially represented with two bits each. Savings arise when the
potential alphabet is smaller, either because fewer cuts are pos-

sible (for m X 1, 1 X m, and 1 X 1 subimages), or fewer colors
are possible (for the last child when the first is uniform).
The differences between binary tree coding and AHC are

illustrated in Fig. 2. The example emphasizes the fact that
AHC can result in a code which is shorter than the best BT
code, in this example both in the number of symbols and the
number of bits which are required to encode the symbols.
Complexity of AHC: AHC can be implemented by a recur-

sive descent algorithm. This implementation, however, leads
to unacceptable time complexity, because many images are

examined more than once in this procedure. Consider Fig. 3,
where an AHC decision tree for a 2 X 2 image is drawn in de-
tail. Note that on level 2 each pixel of the picture is examined
twice. To avoid the repetitious computation, the algorithm is
modified so that the code length for each possible subarea is
computed only once. The question of complexity then be-
comes equivalent to determining the number of subareas to
be exa;nined: i.e., how many rectangles with sides which are
powers of 2, and which are offset from the picture boundary
by an integer multiple of their size, are contained in a 2" X 2n
picture?

Clearly, there are (n + 1) (n + 1) different sizes of such rect-
angles, ranging from the size of a single pixel to the size of the
entire picture. For a given size, 2' X 2i, there are (2"/2') (2f/
21) different rectangles. The total number of rectangles is
therefore

R= X 2n ; 2-X E 2i2
i=oj=o 1=0 j=0

and since

£ 2-i= 2 - 2-n
i=0

(2) can be rewritten as

R = 22"(2 - 2-n)2.

(2)

(3)

R is bounded by 4 X 22n, and the computational complexity
of AHC is thus linear in the number ofpixels. By starting the
computation from the smallest areas and proceeding in the
correct order, one can assure that the computation for a given
block will not require more than four look-up operations and
a constant number of comparisons and additions.

E. Hierarchical Coding in Three Dimensions
The hierarchical coding methods that were described thus

far are easily extended from two into three dimensions, from
the coding of single images to that ofdynamic images sequences
in which two dimensions are spatial and the third is temporal.
The analog to quadtrees in two dimensions is an oct-tree in
three dimensions (denoted OT). (Note that the use of the
term oct-tree here differs from the octrees of Meagher [20],
where the third dimension is spatial depth.) On each level of

a2w1e22612 Wl
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an oct-tree, if the three dimensional subblock is not uniform
it is subdivided further into eight sub-subblocks. Otherwise,
oct-tree coding is similar to QT in all respects. AHC trees can
also be extended to three dimensions by adding a symbol, T,
for the case in which a subdivision is made in the temporal
dimension.
We also consider a compromise between fully adaptive cod-

ing in three dimensions and oct-trees. This method, called
binquad encoditng (denoted BQ), is a hybrid between quadtrees
in the spatial dimension and adaptive coding otherwise. At
each point a decision is made whether to cut the image spatially
or temporally. A temporal cut is binary, whereas a spatial cut
is quaternary, and the order of cuts is chosen so as to minimize
the code length. This tree labeling involves an alphabet of four
symbols: B, W, S (spatial cut), and T (temporal cut).
There are similar issues with the three-dimensional methods

as with the previous methods with respect to actual binary
coding. Again, redundancy is eliminated by considering the
potential alphabet at a given point given the subimage size
(which indicates the possible cuts) and the color of the pre-
vious children of the same parent (which indicates the poten-
tial uniform colors). The only question is the priority for
making various letters have shorter codes. We always use the
shorter codes for symbols indicating cuts for the reasons indi-
cated previously. All of the three-dimensional methods have
the same computational complexity-they are all linear in the
number of pixels. However, they differ in the number of
operations; in our implementation, QT, BT, and OT are
roughly comparable, BQ takes three times as long, AHC takes
five times as long, and three-dimensional AHC takes nearly
14 times a's long.
Under what conditions can we expect superior compression

from three-dimensional methods as compared with two-dimen-
sional methods? Hierarchical coding methods are particularly
suitable for pictures in which boundaries are parallel to the
borders of the picture. A picture of an upright rectangle is
coded more efficiently than a picture in which the same rect-
angle is tilted. In practice, however, pictures with this attribute
are not easy to come by (except, perhaps, in document trans-
mission applications, where print lines and graphs are parallel
to the boundaries of the document). But in three-dimensional
sequences, the boundaries of objects which are stationary rela-
tive to the camera are always parallel to the temporal axis.
Thus, three-dimensional hierarchical coding of sequences
might benefit from this naturally available parallelism. This
observation was the impetus for the development of the BQ
and three-dimensional AHC methods.

F. Generalizations ofHierarchical Coding Schemes

Up until now, we have discussed the encoding of an image
as a single rooted tree, representing the entire image or image
sequence. This can easily be extended to a representation in
terms of a forest of rooted trees which are sent in a known
order. This is equivalent to having the receiver and transmitter
agree in advance upon a known number of cuts, and therefore
not sending the top nodes of the tree representing those cuts.
For large images, the size of the decision tree can get to be quite

large, as are the space requirements for the method, and so one
might pragmatically decide to limit the regions upon which the
method is used. This will result in slightly longer codes if huge
uniform regions exist, but otherwise results in shorter codes,
as the top of the (virtual) tree is not transmitted.
Thus, we have implemented the various methods with a limi-

tation on the spatial extent to which the method is applied. It
is assumed that the receiver and transmitter both know this
coding parameter. For oct-trees, the limited spatial extent is a
cube whose sides evenly divide the total image dimensions.
For three-dimensional AHC, the limitation for the various
dimensions are effectively independent, and need not be equal.
For binquad, the spatial extents must be equal. With this
generalization, two-dimensional AHC is merely a subcase of
three-dimensional AHC (with temporal extent of one), and
quadtrees are a subcase of binquad (similarly).

Lastly, the restriction we have been observing to powers of
two and square images (for quadtrees and binquad) is not
necessary. As long as the receiver and transmitter agree on
how a single cut works (especially in the situation of cutting
an odd number of pixels), then any shape will do, and the
procedure still recurses until single pixels are reached. Powers
of 2 are just convenient, and probably yield better compres-
sion ratios for that reason. Also, note that single cuts in a
given dimension need not be the rule. For example, one
might envision a "ternary-tree" method, which at any given
stage makes a double cut, splitting that dimension into three
pieces, and yielding three sons.
As a means of summarizing the coding methods, Fig. 4 gives

the hierarchy output by the various techniques as applied to a
single edge-detected image.

IV. EVALUATION

To evaluate the various coding methods, the algorithms were
applied to a number of images. Their efficiencies are com-
pared in terms of the number of bits per pixel which can then
be compared with the information content (e.g., standard en-
tropy measures) of the original picture(s).

A. Worst Case Analysis

We will now analyze the worst case for each of the methods.
That is, we will determine the longest code length which might
be generated for a given image size. For all six methods (QT,
BT, AHC, OT, three-dimensional AHC, and BQ), the worst
case analysis follows the same outline. A full encoding tree,
with total branching until every single pixel has a correspond-
ing node in the lowest level of the tree, always gives the long-
est code. For all methods, a checkerboard with black and
white alternating in all directions (including the temporal, for
three-dimensional methods) is an example of a worst case
image.
The reason that a full tree yields the worst case code is easy

to prove. Given a full encoding tree, the only way to create a
tree with less nodes is via a merge operation, where the sons of
a gray node are eliminated and the parent node becomes uni-
form. In all of our methods, a merge can never result in a
longer code than the unmerged version. In some cases, how-
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(b) (c)
Fig. 4. Summary of the two-dimensional methods. This figure depicts
the cuts made by three hierarchical coding schemes. (a) Quadtree
coding. (b) Binary tree coding with horizontal dominance. (c) Adap-
tive hierarchical coding. The cuts appear as gray lines in the otherwise
binary image.

ever, it can result in a code with the same length. We now

examine each method in turn.
Quadtrees: The number of nodes in a full quadtree for an

image of size 2' X 2' was derived above in order to prove

that the time complexity of the algorithm was linear. We
repeat that result here

NQT = E 2' X 2' =
3

(4)
i=o

In the worst case, every node in the tree requires 1 bit. Higher
level nodes are all gray, and therefore require 1 bit each. The
lowest level nodes also require 1 bit each. They require 1 bit
instead of 2 because they are lowest level nodes (single pixels),
but we restrict ourselves to images in which no other savings
are possible in order to reach the worst case. Thus, (4) also
gives the number of bits in the worst case image encoding

BQT = 22 X 2' = ( (5)
i=0

Dividing by the number of pixels in the image yields a com-

pression ratio slightly less than 4 bits per pixel.
Binary Trees: The full binary encoding tree is precisely a

full binary tree of 2n + 1 levels, and thus the number of nodes
is given by

2fl

NBT= E 2i = 22n + i_ (6)
i=0

In such a tree, every node is represented by 1 bit, except that
half of the bottom nodes are not represented at all. Thus, the
number of bits in the encoding is

BBr = (22n + ' - 1)- 22n = 3 22n -1. (7)

The bit rate is slightly less than 3.
Adaptive Hierarchical Coding: For the adaptive method, the

same logic applies as in the binary coding method. The full tree
is a full binary tree just as in BT, and the number of nodes is
as given in (6). For this tree, the adaptive scheme chooses the
order of cuts which yields the minimum code. Because of the
saving of bits when all cuts in one direction are exhausted,
the order chosen will be to do all cuts in one direction first,
then all cuts in the other direction. Thus, the top n levels will
require 2 bits per node, the next n levels will require 1 bit per

node, and the bottom level will require 1 bit per two nodes.
The number of bits will be

BAHC = 2 X (2" - 1) + 1 X 2n X (2n - 1) + 2X (22)

= 3 X 22n +2n - 2.
2i (8)

For large n this will yield a bit rate slightly over 3

Oct-Trees: The analysis of the full tree for the oct-tree
method is analogous to that for quadtrees, and so we merely
state the answer here. The number of nodes in the worst case

tree is

NOT = E 8 =

7
i=o

(9)

There is 1 bit per node, so the same expression yields the num-
ber of bits. The worst case bit rate is 8 bits per pixel.

7

Three-Dimensional AHC: The analysis of three-dimensional
AHC is analogous to two-dimensional AHC. The number of
nodes in a full tree is given by

(10)N3D-AHC =Y 2i = 23 + 1.
i=o

(a)

289

Authorized licensed use limited to: New York University. Downloaded on May 19,2020 at 22:08:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI 7, NO. 3, MAY 1985

The algoritlhm will choose the cuts so as to minimize the code
length. Thus, it will perform the cuts in dominance order (us-
ing the minimum code length cut at each point, and reducing
the number of possible cuts as quickly as possible). There will
be n T cuts, followed by ni V cuts, followed by n H cuts. The
T anid V nodes will then require 2 bits each, and the H cuts
will require a single bit. Onily half of the single pixels need be
coded. This results in the following bit count

B3D)AHC= 2X (22' - 1) + X 221X (2 - 1) + 2 3

= 3 23n + 22 2. ( 1)

For large n this yields a bit rate slightly higher than 3
Binquad: The binquad imethod is a little more difficult to

analyze because of the possibility of both binary and quater-
nary cuts. Even the number of nodes in the tree depends on
the order in which the cuts are made. Since the method
chooses the tree which minimizes code length, we must deter-
minie the form of that tree. This problem is not necessarily
solved, in general, by a single approaclh. Therefore we have
examined three cases.

1) All binary cuts are made first, then all quad cuts.
2) All quad cuts are made first, then all binary (temporal)

cuts.
3) All but one binary cuts are made first, then all quad cuts,

and lastly the final binary cut is made.
The rationale for examining these cases is as follows. In the

first case, we make the quaternary cuts lower in the tree,
which keeps the nighest branchin,g pjxt of tnl iree lower, and
minimizes the number of nodes in the tree (i.e., tii! number of
symbols to be coded). In the second case, the number of sym-
bols will be higher, but on the bottom level of the tree (single
pixels), we will save half the bits by the saving of redundancy
rule, which does not apply for the final quaternary cut of case
1). In the third case we combine the good points of the first
two cases, but we do not save on bits on any cuts before the
last, because we never exhaust either type of cut until then.
Working out the three cases in detail, it turns out that the

third possibility is the most efficient scheme, and is the scheme
chosen by our algorithm for any size image. In this scheme,
all but one of the binary cuts are made first, and require 2
bits each. Then the quaternary cuts are made, and each re-
quires 2 bits. Then the last binary cut is made, requiring a sin-
gle bit. Finally, the single pixels are coded, requiring 1 bit for
each pair. This yields

N =(2n - 1- 1) + 2n -X1 + 2n -1X 4n + 2 X 4BQ ~~~~~~3
5 3n 1n- 23 + 2 1
3 3

BBQ=2X (2n 1- 1)+2X 2n-i X
4n- 1

3

+ 1 X2 1X4+ 2 X 4
2

3n 2 .-2 2 2.
3 3

N

N

TABLE I
WORST CASE COMPRESSION RATIOS

theoretical
2 3 4 5 6 7 8 bound as

N -co

OT 1.313 1.328 1.332 1.333 1.333 1.333 1.333 1.333
BT 1.438 1.484 1.496 1.499 1.500 1.500 1.500 1.500
AHC 1.625 1.594 1.555 1.529 1.515 1.507 1.504 1.500
OT 1.141 1.143 1.143 1.143 1.143 1.143 1.143 1 143
3D-AHC 1. 7i 9 1.621 1.562 1.531 ? ? ? 1.500
80 1.344 1.340 1.335 1.334 ? ? 7 1.333

The questioni marks represent compression ratios which our programs
were unable to compute for lack of storage.

Thus, for binquad, the worst case compression ratio is slightly
higher than 43.
Table I gives the actual compression ratios for checkerboards

as computed by our programs, and the theoretical limits we
have just derived. In examining the code output by binquad,
one can see that case 3) is always used, as predicted.
The reader may have noted something curious in these analy-

ses. To wit, what is the point of using a hierarchical scheme in
the worst case if that worst case is more than 1 bit per pixel,
since the original image only required 1 bit per pixel to start
with? There are two answers to this point. First, the algo-
rithms can easily be modified so as to lower the worst case to
1 bit per pixel. Second, the relative worst case of the unmodi-
fied algorithms is of interest in its predictions of the operation
of the various methods on nonworst case images. We discuss
these two points in turn.
One way to modify these algorithms so as to lower their

worst case values without damaging their efficiency involves
sending the image as a forest rather than a single tree by agree-
ing upon an initial decomposition of the image. Thus, the
transmitter precedes the coded forest with an indication of
the level of the forest that follows, or the shape of the blocks
which are to be coded. If this shape is only single pixels, then
the image is simply coded as an array of pixels. But this
scheme allows one to adapt the level of hierarchical descrip-
tion to the image characteristics. In the QT scheme, the initial
indicator need only give the level in the full tree at which the
forest is, which for a 2' X 2n image is a number from 0 to n.
In the adaptive schemes, the most general scheme would allow
the transmitter to choose the most efficient block size and in-
clude a description of that shape in the transmission.
The worst case analyses are also useful indications of the

efficiency of the various methods despite the possibility of
their being circumvented by modifying the algorithms. In the
next section we will be comparing these methods as applied to
random images where the probability of one of the two colors
is varied. As the two colors become equiprobable, the random
images approach the worst case image, and the relative effi-
ciency of the methods approaches their relative worst case
efficiency. The worst case as we have derived it becomes a
predictor for the effectiveness of the methods on some non-
worst case images.

B. Expected Code Length for Random Images
Quadtrees: Consider a square picture wlhich is generated by

a random independent pixel process. In particular, let p be the
probability of a black pixel. For quadtrees, the expected code-
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TABLE II
EXPECTED COMPRESSION RATIO FOR QT

p .50 .75 .90 .95 .99 .995 .999 .9995
H (p) 1.000 .811 .469 .286 .081 .045 .011 .006

n dimensions
1 2 1.125 .980 .739 .628 .527 .514 .503 .501
2 4 1.187 1.039 .721 .498 .217 .172 .135 .130
3 8 1.203 1.054 .736 .510 .175 .109 .048 .040
4 1 6 1.207 1.058 .740 .514 .177 .105 .030 .019
5 32 1.208 1.059 .741 .515 .178 .106 .029 .016
6 64 1.208 1.059 .741 .515 .178 .106 .029 .016

TABLE III
EXPECTED COMPRESSION RATIO FOR BT

D 50 .75 .90 .95 .99 .995 999 9995
H(p) 1.000 .811 .469 .286 .081 .045 .011 .006

n dimensions
1 2 1.125 .992 .754 .638 .530 .515 .503 .501
2 4 1.309 1.140 .745 .494 .211 .169 .134 .129
3 8 1.355 1.187 .789 .521 .166 .102 .046 .039
4 16 1.367 1.199 .800 .533 .170 .098 .028 .018
5 32 1.370 1.201 .803 .536 .173 .101 .026 .015
6 64 1.371 1.202 .804 .536 .174 .101 .027 .015
7 128 1.371 1.202 .804 .537 .174 .102 .027 .0155

length in bits of a 2' X 2n image, L(n), is given by the follow-
ing recursion:

L(n)=4L(n - 1)+1 - 7(p4' +q4n)

p3X4n q4np-4n-1 3X4nq -

TABLE IV
COMPRESSION EFFICIENCY ON

256 x 256 PICTURES
P I .501 .749 .900 .950 .990 .995 .999 9995

method
BT 1.370 1.203 0.805 0.539 0.175 0.101 0.028 0.015
AHC 1.374 1.202 0.798 0.533 0.175 0.102 0.028 0.016
QT 1.208 1.060 0.742 0.517 0.180 0.106 0.030 0.016

(a)

.501 .749 .900 .950 .990 .995 .999 .9995
method
BT .0020 .0025 .0049 .0082 .0052 .0047 .0034 .0025
AHC .0017 .0024 .0046 .0072 .0052 .0051 .0035 .0024
QT .0026 .0020 .0030 .0074 .0053 .0048 .0037 .0027

(b)
(a) Mean compression-efficiency. (b) Standard deviations.

TABLE V
COMPRESSION EFFICIENCY ON UNIFORM RECTANGLES

size mean etficiency number of such
BT AHC QT rectangles

4X4 .823 .782 .848 100
8X8 .480 .394 .496 1296

.259 _181 269 1_8496
Proportlon of cases In which the
method is superlor to others.

4X4 .478 .384 .138 100
8X8 .276 .658 .066 1296
16X16 .132 .849 .019 j 18496

(13)

L(l) = 5 - (p3q + pq3) 3(p4 + q4)

where q = 1 - p, the probability of a white pixel (see Appen-
dix A.1 for derivation). Table II shows the compression ratio
for pictures of several sizes parameterized by the probability
of black (white) pixels. For comparison, the entropies per
pixel, denoted by H(p), which are associated with different
values of p, are listed in the first row of the table.
As indicated by the tabie, QT coding is inefficient for com-

pression of independent pixel-process pictures, which is to be
expected given that it is a method which takes advantage of
correlation between neighboring pixels. However, the method
is well behaved in the sense that its efficiency increases (the
compression ratio decreases) as the entropy decrease. It is
also evident from Table II that for each value of p there is an
optimal picture size. For a particular p, large pictures are

more efficiently transmitted as a forest instead of as a single
tree. The exact level at which the picture should be divided
into subpictures depends on p.

Binary Trees. By a derivation similar to that for quadtrees
(see Appendix A.2), the expected code length for the binary
tree representing a random picture of 2n pixels is

L(Xn) = 2L(Xn -1) + 1 - 2(p2n + q2n) (p2 -1 + q2 1)2

L(X1) = 2. (14)

Table III lists the expected code length in bits per pixel for
pictures of different sizes, for several values of p. BT compres-

sion is more efficient than QT for pictures with p's greater
than 0.99.
AHC: Because of its adaptive nature, an analysis of the ex-

pected code length produced by AHC on random pictures is
difficult. Therefore, we investigated this method using a

Monte Carlo procedure. Three types of images were used in

order to compare the efficiency of AHC with that of BT and
QT coding.

First, the three algorithms were tested on randomly gener-
ated pictures of size 256 X 256. The pictures were generated
by an independent pixel process with different p's (where p is
the probability of the more probable color). The results are
listed in Table IV. Note that the p values reported in the table
are the observed proportions which were obtained in the
generated pictures and not the parameters that were used to
generate the pictures. For each p, ten pictures were generated
which were then compressed by the three algorithms. As can
be seen in Table IV, in no case is there an advantage to the
adaptive method over the other methods. This is understand-
able because in the absence of any dependency between neigh-
boring pixels, AHC comes out the worse because of the extra
symbol in its alphabet.
More promising results were obtained with highly structured

pictures. In our second test of AHC coding we followed the
method of Dyer [241. For a given picture size (4 X 4, 8 X 8,
16 X 16), we generated all of the possible upright rectangles
that would fit anywhere in a picture of that size. Thus, for a
given size of n X n, (n2 + n)2/4 pictures were generated and
then compressed by the three algorithms (the expression for
the number of different rectangles is computed by summing
over all vertical and horizontal dimensions, and all displace-
ments for a given rectangle). As shown in Table V, the results
indicate a marked superiority of AHC coding over BT and QT
coding, an advantage which increases with picture size.
The superiority of AHC and BT over the QT method in the

last set of data is probably due to the fact that the majority of
the synthetic pictures contain elongated rectangles. This ob-
servation leads to the expectation that for random pictures in
which elongated rectangles dominate, the AHC method will
be superior. In our third experiment, we tested this theory by
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TABLE VI
COMPRESSION EFFICIENCY ON PICTURES OF RANDOM ELONGATED

RECTANGLES

5 75 .9 95 .99 995 .999 9995
T 1.211 1.155 .987 777 .311 .182 .052 .030

AH_ 1____ 1_286_.961 -.697 .25Z .155 .045
Standard Deviations (n=10 for each entry)

OT .003 .006 .010 .012 .018 .011 .005 .006
AHC 004 005 009 .011 .015 .009 .004 005

TABLE VII
COMPRESSION EFF1CIENCY ON THREE-DIMENSIONAL SEQUENCES OF

RANDOM PICTURES

5 .75 .9 .95 .99 .995 .999 .999
OT 1.208 1.056 .739 .515 .178 .107 .029 .015
OCT 1.1)36 1.053 .764 .553 .212 .132 .037 .019
AHC 71.387 1.206 .797 .533 .178 .107 .030 .015

3Q-AHC l .,389 1,205 .79 .526 .174 -._104 -.028 .015
Standard Deviations (n=10 for each entry)

OT .002 .004 .005 .011 .011 .005 .OOS .003
OCT .002 .005 .005 .009 .010 .007 .006 .004
AHC .002 .005 .006 .009 .010 .006 .006 ~003

3D-AHC .002 .004 .005 .010 .010 .006 .005 .003

applying the methods to a new set of random images. The
pictures were of size 128 X 128, and were generated by exclu-
sive bitwise ORing of six pictures. In one picture the rect-
angles were of size 32 X 4. in the second the rectangles were of
size 16 X 2, and so on with sizes: 8 X 1,4 X 1, 2 X l,and IX 1.
In each picture, the probability of a pixel to be covered by a
rectangle was fixed at p (the same for all the six pictures).
Table VI contains the coding efficiency for such random
pictures.
As can be seen from Table VI, the AHC method is superior

to the QT method by up to 17 percent, for p's of 0.9995 and
down to 0.9. The only cases in which QT is superior to AHC
are those for which the compressioni ratio is greater than 1, in
which case the use of these compression methods is not justi-
fied to begin with.
Three-Dimensional Methods. A comparison was made be-

tween the compression efficiency of the two-dimensional and
three-dimensional methods by applying the methods to se-
quences of random pictures (32 frames, each of 32 X 32
pixels). The results are presented in Table VII. As can be seen
from the table, on this type of material the three-dimensional
coding methods are not always more efficient. In fact, the QT
method is more efficient than other methods for p values of
0.90 and 0.95.

C "Naturi al"Images

Our first experimental results which are reported below are

based on two sets of pictorial material. The first set comprises
32 frames which are part of a sequence of binary pictures
which depict a signer of American Sign Language (ASL), sign-
ing the word tomato. This image sequence comes from our

research on extremely low bandwidth transmission of Ameri-
can Sign Language [31] -[33]. The pictures were transformed
using an edge-detection method based on the techniques
developed by Marr and Hildreth [34], yielding a line-drawing-
like image (see also [33] for a fuller description). The size of
the picture is 128 X 128 binary pixels, and resembles the image
shown in Fig. 5(e). The second set is a single 512 X 512 binary
picture which is a digitized and thresholded image of a portion

TABLE VIII
COMPRESSION RATIOS FOR THF TW\o DATA SETS

set A B
OT 078 205
H (1 X 1) 108 .596
H (2 X 2) .083 .303
H (4 X 4) 061 .178
OT + Huffman code .076 .201
Huffman code for 2 X 2 .281 .379
Huffman code for 1 X 8 .165 .285
BT .081 .217
AHC .080 .198

of a printed page (about 10 percent of the area of a full page).
The results are given in Table Vll1.
The quadtree compression algorithm was applied to the two

sets of data just described. The compression ratios of the two
data sets and the entropies associated with these sets are listed
in Table VIII. For both data sets, quadtree encoding is superior
to the lower-bound set by the entropies of 2 X 2 blocks (where
the picture is divided into nonoverlapping 2 X 2 blocks and
entropy is calculated over the alphabet of 16 possible 2 X 2
blocks). In fact, it is not too far from the entropies of 4 X 4
blocks. The results fare even better when compared with the
efficiency of Huffman coding [35] on various block sizes.
Table VIII also gives the results for a modified form of quad-

tree compression. The modification consists of using Huffman
coding for the code of the lowest level in the quadtrees (the
2 X 2 blocks of pixels). This modification should improve the
efficiency to the extent that some of the overall redundancy
of the picture is preserved in the 2 X 2 nonuniform blocks. In
practice, this modification increases the efficiency by a further
0.2-0.4 percent, as indicated in Table VIII. The BT-compres-
sion method was applied to our data sets, and as can be seen in
Table VIII, resulted in slightly poorer compression compared
with QT compression. Our expectation was that AHC would
be most useful for more structured pictures. The results in
Table VIII suggest that for highly structured pictures (e.g.,
documents), there is a slight advantage to the AHC coding
over QT compression.

D. Cartoon Images--Statistical A nalysis

In this section we apply the hierarchical coding methods
to a wider body of images. All too often image processing
methods are discussed in the context of one or two sample
images. In our opinion, this is poor scientific practice, allow-
ing the researcher to present only the "best" result, and in-
sufficiently predicting the belhavior of an algorithm in a real
situation. Therefore, we have applied the various hierarchical
methods to a large number of images in order to gain some
knowledge of the statistical behavior of the methods' compres-
sion characteristics.
As we have already mentioned, this laboratory is involved in

research concerning low bandwidth transmission of visual in-
formation, notably images of people speaking American Sign
Language, which is a manual form of communication used
with and among the deaf and hard of hearing [311 -[331 . In
carrying out this research, we have created a library of image
sequences of various isolated signs (the words of ASL), and
have transformed them in a number of ways. A number of
these transformations yield binary imcages which resemble car-

292

Authorized licensed use limited to: New York University. Downloaded on May 19,2020 at 22:08:46 UTC from IEEE Xplore.  Restrictions apply. 



COHEN et al.: HIERARCHICAL CODING OF BINARY IMAGES

(a) (b) (c)

(f)(d) (e)
Fig. 5. An example of an image processed by the six transformations
we have used. These image transformations include the following.
(a) Thresholding the gray-scale image so that 5 percent of the pixels
remain above threshold (t5). (b) The same procedure with a 10 per-
cent threshold (tlO). The other four images start from an edge-en-
hanced image resulting from a convolution of the gray-scale image
with a difference-of-Gaussian filter (or dog function). (c) The zero
crossings in the edge-enhanced image are computed and thresholded
based on their slope so that 5 percent of the pixels remain above
threshold (z5). The last three images involve thresholding the nega-
tive-going peaks in the edge-enhanced image, where the thresholding
is set so as to control the number of pixels below the threshold. The
thresholds are: (d) 5 percent (dS), (e) 10 percent (dlO), and (f) 15
percent (dlS).

toons or line drawings. It was this body of images which led
to our research in compression of binary pictures.
For this study, we have used a set of 84 single signs. These

were digitized and all subsequent processing of the images
utilized the image processing system HIPS [361, [37]. The
images are cropped and subsampled in time and space resulting
in images of 96 X 64 8-bit pixels, and sequence lengths of 15
to 45 pictures (1 to 3 s at 15 frames/s). Six transformations

will be examined in this section. Examples of the end result of
these transformations for the same initial picture are given in
Fig. 5. Two of the transformations involve a simple absolute
threshold applied to the image. These thresholds were set so
as to have 5 percent (t5) or 10 percent (tlO) of the pixels re-
main above the threshold.
The remaining transformations involve edge detection. All

four of these schemes begin by applying a difference-of-Gaus-
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TABLE IX
COMPRESSION EFFICIENCY ON THREE-DIMENSJONAL SEQUENCES OF CARTOON

IMAGERY
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.~25
.c
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10

5

d15 dlO z5 d5 tlO t5

Transformation
Fig. 6. Average baud rate for each transformation.

the encoding method used.
The parameter is

sians filter (as in [34 ). This convolved image is then further
transformed. In the zero-crossing method (z5), the zero cross-

ings are found in the convolved image (as in Marr and Hildreth
[34] ), and these are further thresholded based on their slope,
so that 5 percent of the pixels remain. The other methods
apply an absolute threshold to the convolved image which
picks out the most negative-going portions of the convolved
image (the negative peaks). We apply this method with abso-
lute thresholds that leave 5, 10, and 15 percent of the pixels
above threshold (d5, dlO, and dl5, respectively). The "d"
here stands for "dog" or difference-of-Gaussians.
The six transformations (d5, dlO, dl 5, z5, t5, and tlO) were

applied to all 84 original image sequences, yielding 504 binary
sequences. These sequences were then encoded with QT, BT,
AHC, OT, three-dimensional AHC, and BQ, along with run-

length encoding (RLE), for comparison's sake. The limited
extents used were as follows.

QT, BT, AHC
OT
3D-AHC
BQ

-GI

0C

-(0
0Z

-0

60

50

40

30

20

10

0

*20qj

-

(D

0

32 X 32
16 X 16 X 16
32 X 32 X 16
32 X 32 X (2,4, 8, and 16).

The last dimension given in the three-dimensional methods is
time or number of frames. We applied BQ with various tem-
poral extents in order to gauge the benefit of varying the depth
of encoding. These applications of the method will be referred
to as BQ2, BQ4, BQ8, and BQ16. Note that BQ with temporal
depth of 1 is identical to QT, as previously discussed.
The results are given in Table IX. Each cell in the table

represents a statistic based on a sample of 84 images. We have
ordered the transformations and the methods so that the means
generally decrease to the right and down. thus, BQ16 yields
the best compression ratio no matter which transformation is
involved, relative to the other algorithms, and t5 yields images
which are easier to encode for any hierarchical method com-

pared to any other transformation. This latter fact is under-
standable since the thresholding methods yield large uniform
regions in the image, for which hierarchical methods are best
suited. The edge-detection methods give images with thin lines

which require the methods to descend further in the encoding
tree, using more symbols in the encoding.
A comparison of the methods is made clearer in Fig. 6,

60
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30

20
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0

H(p)

_ dog
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0 5 10 15

Percentoge Block Pixels
(a)

H(p)

zc

dog
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0 5 10 15

Percentaqe Black Pixels
(b)

Fig. 7. Average baud rate as a function of the percentage p for quad-
trees (a) and binquad (b).

where the method's action is plotted as a function of the
transformation. Clearly, with these images the methods act
with a certain amount of consistency. Thus, the ordering
from best to worst method is preserved across transformations.
Second, although AHC is slightly worse than QT in the two-
dimensional case, in three dimensions the adaptive methods
are clearly better than OT, and the hybrid method BQ has a

slight edge over three-dimensional AHC.
As a comparison with our previous results on random pic-

tures for various proportions p, Fig. 7 gives the results in terms
of the percentage of black pixels in the images for QT and
BQ16. For comparison's sake, these results are plotted with
the corresponding information rate for that probability. These
results clearly show the advantage of taking regional dependen-

Mean Compression Ratios (n=84 for each entry)

Method
Transf. ALE ST AHC OT 802 OT BQ4 BQ8 3D-AHC B016
dc15 .553 .421 .389 .388 .365 .354 .298 .273 .272 .266
dlO .460 .333 .317 .312 ;29 .282 .236 .216 .214 .211
z5 .400 .288 .279 .273 .257 .249 .22 .205 .206 .201
d5 .338 .25 .237 .237 .215 .206 .174 .159 .155 .155
t1O .335 .166 .164 .162 .142 .145 .114 .104 .102 .102
t5 .303 .124 .123 .123 .108 .11 .089 .082 .081 .081

Standard Deviations
d15 .038 .02 .026 .018 .017 .025 .019 .023 .03 .027
dlO .030 .014 .019 .012 .011 .019 .014 .018 .026 .022
z5 .017 .008 .009 .007 .006 .012 .009 .013 .016 .015
d5 .022 .012 .015 .011 .01 .016 .012 .015 .02 .018

thrl0 .016 .015 .016 .013 .012 .019 .012 .014 .018 .016
thr5 .010 .01 .01 .008 .008 .013 .008 .009 .012 .011
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Fig. 8. A comparison of binquad and adaptive hierarchical coding. The
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Fig. 9. Average baud rate as a function of encoding depth for the bin-
quad coding method.

cies into account. They also show further how the method is
dependent upon the type of images, with large uniform regions
yielding the best results (the threshold methods), and small
noisy spotty images being the most difficult to encode (as in
z5).

Fig. 8 compares two methods, BQ16 and AHC, across the
six transformations. Here we see a further demonstration of
the consistency of the comparison between the methods on

"natural" images (i.e., the graph is monotonic).
One obvious problem with the BQ method concerns its space

requirements. In the case of real-time usage of the method,
the encoder in BQ16 would need to buffer 16 frames at a time.
First of all, this is potentially a large buffer space problem.
More importantly, in the case of information transmission, this
means that transmission will involve at least a 15-frame delay
(in our case a delay of 1 s), which may cause some difficulties
in an interactive communication system. In Fig. 9 we replot
the BQ data in terms of encoding depth, or number of frames
stored. Thus, we have points for each transformation corre-

sponding to BQ16, BQ8, BQ4, BQ2, and QT (which is the
same as BQ1). As can be seen in the figure, the major gain
from the depth is made in the first four frames, and so a practi-
cal application might conceivably limit depth of encoding in
images such as ours to between 0.25 and 0.5 s, without undue
decrement in compression performance.

V. SUMMARY AND CONCLUSIONS
In this paper we have examined a class of binary image cod-

ing methods based upon a recursive hierarchical decomposi-
tion of the image into uniform areas. These methods provide

very low compression ratios (as low as 0.08 bits per pixel)
while there is no destruction of information; every pixel can
be regained from the encoded form.
Hierarchical methods share a number of features. Given the

commonality of how the algorithms operate, all of these algo-
rithms have linear time complexity with the number of pixels.
Also, since they all globally combine locally gathered informa-
tion, they all lend themselves to parallel hardware implementa-
tions. Since buffer space and decision tree size is at a premium
in any such implementation, our results concerning temporal
depth are salient.
There is one important consideration which has not been

discussed in this paper. We have been considering hierarchical
methods for transmission of binary images which allow for the
possibility of progressive transmission discussed earlier. Unfor-
tunately, the transmission is dependent upon an errorless com-
munication channel. By eliminating redundancy entirely in
the bit stream, any single bit error can totally confuse the re-
ceiver. Thus, any real implementation of such a method in a
noisy environment (such as modems and phone lines) will need
some form of noise protection, and the consequent increase in
baud rate. The most appropriate method for solving the trans-
mission problem depends on the nature of the possible degra-
dations within the communication system. A discussion of
the communication systems is beyond the scope of this paper.
We have introduced a number of hierarchical methods, and

have proposed a number of new extensions incuding adaptivity,
and the incorporation of the time dimension into the encoding.
The performance of these methods has been analyzed theoreti-
cally with respect to time complexity and worst case coding,
and statistically for random images and for a body of images
derived from natural scenes. From this analysis we can see
that adaptivity is of little use with two-dimensional images
unless they are highly structured, but in three-dimensions a
substantial savings can be derived thereby. With our images,
the hybrid method we call binquad coding appears to be the
most effective.

APPENDIX
A. 1. Expected Code Length for the Quadtree
Representation ofRandom Pictures
Notation:

B(n) = {xi} is the set of all pictures with 4n spatially adjacent
pixels (e.g., all possible squares of sides 2").
Bb(n) C B(n) such that Vx C Bb(n), x = 0

B,(n) C B(n) such that Vx E B (n), x = 1

Bg(n) = B(n)- (Bb(n) U B,(n)), the set of all nonuniform
images.

u(n) = Prob fBu(n) U Bb(n)}, the probability that B(n) is
uniform.

g(n) = Prob {Bg(n)}, the probability that B(n) is nonuniform.

L(n) = the expected code length for B(n).

L"(n) = the code length for Bb(n) and B,(n), the uniform
blocks.
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Lg(n) -the expected code length for a nonuniform block
Bg(n).

p - the probability that a single pixel is black.

q -I - p = the probability that a single pixel is white.

Sg is the length in bits of the "meta-symbol" or gray node.

The following simple relation holds

u(n) = p4 + q (A. 1)

We begin with a derivation which utilizes none of the tricks
used to eliminate redundancy. We will then incorporate those
savings one by one. The basic relation from which we start is
that the expected code length of a given block is a linear com-
bination of the expected code length in the case that the block
is uniform, and of the expected code length in the case that
the block is nonuniformn; each of these cases is weighted by the
appropriate probability

L(n) = u(n) Lu(n) + g(n) Lg(f). (A.2)

In the case that the block is nonuniform, we can break it up
into different combinations of uniform and gray subblocks.
The nonuniform block can be divided either into four nonuni-
form subblocks, into any combination of uniform and nonuni-
form subblocks, or into four uniform subblocks which are not

of the same color. Each of the five last lines in (A.3) below
represents one of these combinations weighted by the appro-
priate probability.

L(n) = u(n) L.(n)
+ g4(n - 1) (Sg + 4Lg(nl 1))

+ 4g3(n - 1 ) u(n - 1 ) (Sg + 3 Lg(n - 1) + L(u 1))

(A.3)

+ 6g2(n - 1)u2(n - l)(Sg + 2L,(n - 1) + 2L0(n - 1))

+4g(n - 1)u3(n - 1)(Sg +Lg(n -1)+3Lu(n - 1))

+ (u4(n - 1) - u(n)) (Sg + 4Lu(n - 1)). (A.3a)

The last term involves a factor of (U4 (n - 1) - u(n)) rather than
simlply u4(n- 1) in order to account for a block whose four
quadrants are all uniform, but not of the same color.
Rearranging terms

L(n) = u(n) L.(n)
+ Sg((g(n - I ) + u(n - 1))4 u(n))
+ 4g(n - 1 ) Lg(n - 1 ) (g(n - 1 ) - u(n - 1)

+4Lu(n - 1) u(n - 1) ((g(n - 1)
+ u(n - 1))3 - u(n)/u(n - 1)). (A.4)

We can now substitute the following: Lu(n) = 2 since a uni-
form block is coded as 2 bits, Sg = 1 since a gray node is coded
as a single bit, g(n - 1) + u(n - 1) = 1 by definition, and lastly

which follows directly from (A.2); (A.4) can be now written as

L(n1) = 2u(1)

+I - U(ll)

+4(L(n- 1)- 2u(4n- I)) (A.5)

+ 8u(n - 1) - 8u(n)

=4L(n --1)+1- 7u(n).

Finally, substituting the value of u(n) according to (A.1 ) we get

L(n)= 4L(n - 1)+1- 7(p4 +q4 ). (A.6)

It remains to specify the starting equations for the recursion.
If the simplest code is selected, namely, that uniform blocks
are represented by 2 bits and gray nodes are represented by a
single bit, the recursion is started with

L(O) -2 (A.7)

If the lowest level nonuniform subblocks are represented by
a gray node followed by a 4 bit nibble, then, since 5 bits are

needed to represent a nonuniform block with a probability of
I - u(1), and 2 bits are needed to represent a uniform subblock
that occurs with a probability of u(1), the starting equation is

L(1) = 2u(1) + 5(1 - u(1))
= 5 - 3u(1) (A.8)

=5 -3(p4 +q4).

If the more compact scheme is used in which only 4 bits, in-
stead of 5, are used to code a nonuniform 2 X 2 subblock
when the first three pixels are of the same color, then

L(l)= 2u(1) + 4(p3q + qp3) + 5(1 p3q - pq3 u(1))

= 5 - (p3q + pq3) - 3(p4 + q4). (A.9)
Next, we derive L(n) under the coding scheme in which on

every level of the tree, if the first three subblocks are uniform
and of the same color, then the fourth can be coded in one

bit if it is uniform (and of the opposite color), since it has
only to be distinguished from the case in which the fourth sub-
block if nonuniform. Clearly, the only line in (A.3) that has
to be modified is the last line (A.3a) which takes care of the
case in which 4 uniform subblocks are coded. The term (A.3a)
now takes the form

(u4(n -- 1) - u(n)) (Sg + 4L.(n - 1))

(w3(n - 1) b(n - 1) + w(n - 1) b3(n - 1)). (A.10)

I Replacing line (A.3a) by line (A.10) gives the expected code
length under the modified coding scheme

L(n) = 4L(n - 1) + 1 7(p4 + q4 )
- (w3 (n - 1 ) b(n - 1 ) + w(n - 1 ) b3(n - 1)). (A., 1 1 )

Expressing b(n - I) and w(n - 1) in terms of p and q we get
the final form
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L(n) = 4L(n - 1) +1 - 7(p4 + q4)
3 3X4n-1 4n-1i 4n-1 3X4n 1I

p q p q . (A.12)
A.2. Expected Code Length for Binary-Tree
Representation ofRandom Pictures

The same notation will be employed as previously, with one
minor change. The subscript n now denotes a block-size of 2n
instead of 4n pixels. The quadtree equation (A.2) applies to
binary trees as well. (A.1), however, has to be modified to
reflect the fact that blocks in binary trees are divided into two
subblocks instead of four

u(n) = p2n + q2n (A.1 3)

The derivation of an expression for L(n) for binary trees is
similar to that of quadtrees. The coding assumptions are as
follows. A nonuniform block is represented by 1 bit followed
by the codes for the two subblocks. A uniform subblock is, in
most cases, represented by 2 bits. There are two exceptions
to this: first, if the subblock is on the lowest level (i.e., it is a
single pixel) it is represented by a single bit. Second, when the
subblock is the second of two uniform subblocks that consti-
tute a nonuniform block, it can be represented by 1 bit less.
Thus, if a single pixel is the second in a pair of pixels, then it
need not be coded at all.
We start the derivation from (A.2) which is reproduced here

L(n) = u(n) L"(n) + g(n) Lg(n). (A.2)

Expanding the second term

L(n) = u(n) Lu(n)

+g2(n -l)(Sg+2Lg(n- 1))
+2g(n - l)u(n- l)(Sg + Lg(n- 1)+Lu(n- 1))
+ (U2(n - l) - u(n)) (Sg + 2Lu(n - 1) - 2 Lu(n - )).

(A. 1 4)
Rearranging the terms

L(n) = u(n) Lu(n)
+ Sg(g(n - 1) + u(n - 1))2 - u(n)

+ 2g(n - 1)Lg(n - l) (g(n - 1 + u(n - 1))
+ 2u(n -1)Lu(n -1) (g(n -1)+u(n - ))
- Lu,(n - 1) (l u'(n - 1) - 2 u(n) + 2u(n)).

(A.15)

Substituting in (A.1 5):

L.(n)= 2;

Sg= 1;

g(n - 1) + u(n - 1) = 1,

and

Lg(n - 1)= (L(n - 1) - u(n - 1)L.(n - 1))/g(n - 1)

[which follows directly from (A.2)], we get

L(n) = 2u(n)

+ 1- u(n)

+ 2L(n - 1) - 4u(n - 1)

+4u(n- 1)
(A.1 6)

- 2(2 U2(n - 1) - 2 u(n) + 2u(n))
= 2L(n - 1) + 1 - 2u(n) - u2(n - 1).

Finally, substituting the value of u(n) according to (A. 13)

L(n) = 2L(n - 1) + 1 - 2(p2n + q2n) (p2n +q2n )2

(A.1 7)

The recursion is started with

L(1)= 2
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