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One early approach to the study of vision was 10 investigate the appearance of
small paiches of light and 1o try to explain the appearance of the whole visual
field as the juxtaposition of the appearances of many small patches. A theoret-
ical model that can be viewed as a natural descendant of this early approach,
made approprialely more rigorous for the case of threshold experiments, is
what I will call a single-channel model.

Despite considerable success in accounting for a variety of visual data, il now
appears Lhat a single-channel model is an inadequate description of visual per-
ception. Moreover, a currently prevalent view is that trying 10 describe the ap-
pearance of a whole visual field as the juxtaposition of appearances of single
points is doomed to failure from the start. Rather, according to this currenl
view, the appearance of things depends on many stages of complicated infor-
malion processing. The initial stages occur in the retina and further stages ex-
lend throughout the highest parts of the central nervous system.

A popular candidate for one of the earliest stages in this chain of visual in-
formation processing is a collection of feature detectors that simullaneously pro-
cess different kinds of information in the visual stimulus. Each feature detec-
lor is presumed to respond vigorously only when the stimulus situation con-
lains the appropriate ‘‘feature’’—for example, an “‘edge deteclor’® would
respond only when there is an edge in the appropriate place on the retina.

What | intend to do here is describe the role one kind of psychophysical ex-
Periment has played in the rejection of single-channel models of the visual
Syslem and in the exploration of feature-delection models. In this kind of ex-
periment, the visibility of compound patterns composed of two or more
simpler patterns is compared to the visibility of the simpler patterns alone.
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FIG. 1. A simple sine-wave grating containing one spalial requency is
s_h:w.n on the top left, and a compound graling containing two spatial
frequencies is on the top right. Underneath are the intensity profiles of
the gralings, showing intensity of the graling al each horizontal location
dacross the patiern. From Graham and Nachmias (1971),

In the first section | will review early experiments on the detection of com-
pound patterns made up only of sinusoidal componenls (examples of a simple
and @ compound sine-wyve pallern of this type are shown in Fig. 1). These
carly experiments produced strong evidence against the single-channel model
tor threshold vision. The findings can instead be interpreted as evidence for
the existence of u rather odd type of feature detector—a detector or channel
which responds only 10 patterns containing spatial frequencies within a limited
runge. Very roughly, being sensitive 1o a limited range of spilial frequencies
means responding best 1o a particular size of element in the pattern (e.g. width

of stripe); a more precise definition of spatial frequency is given below. I'll
refer 1o this kind of channel as a spatial frequency channel.

In the second section | will discuss some recent experiments by Shapley and
Tolhurst and by Kulikowski and King-Smith. These elegant experiments used
patlerns made up of sinusoids plus aperiodic stimuli (for example, sinusoids
plus lines, sinusoids plus edges) as well as various combinations of aperiodic
stimuli. These authors interpreted their results as evidence [or the existence ol
several additional kinds of fealure detectors—things like edge detectors and
line detectors. The crucial distinclion between these new feature detectors and
the spatial frequency channels, as will be described later, is that each of these
new feature delectors is supposed lo respond (o a broader range of spatial fre-
quencies than does any spatial frequency channel.

I will argue, however, that these experiments do nol actually provide per-
suasive evidence for the existence of additional feature delectors. On the con-
trary, my conclusion is that these new findings can praobably be explained in
terms of the same spatial requency channels that were inferred from the ear-
lier sinusoid-plus-sinusoid experiments. To reach that conclusion, I will reex-
amine the newer data in the light of a model that allows for probabilily sum-
mation among spalial frequency channels.

Much of the work referred to here is not mine and 1 will mention the au-
thors in the appropriate places. Much of the work that is mine has been done
in collaboration with Jacob Nachmias of the University of Pennsylvania.

A SINGLE-CHANNEL MODEL

Sine-Wave Gralings

Let's begin by looking at examples ol gratings containing one sinusoidal com-
ponent {the sine-wave pattern in Fig. 1 left) or two sinusoidal components
(Fig. 1 right). Below each pattern is a graph that shows how the intensity of
the gratling varies as you move horizontully across it. For the left pattern, the
graph depicls a single sinusoid added to a constant intensity (the mean lumi-
nance). For the right pattern, the graphed function is the sum ol two
sinusvids added 10 a conslanl inlensity.

For patterns such as hese, it is easy to specify and understand what spaiial
Jrequency is: The spatial frequencies contained in a pattern are the frequencies
(eycles per unit distance) of the sinusoids that add up to equal the function re-
lating intensity 1o distance across the pattern. Thus the left patiern conltains
only one spalial frequency and the right patlern contains iwo [requencies, hav-
ing a ralio ol three to one. For the patiern on the left, the spatial frequency is
the number of peaks (bright bars) per unit of horizontal distance. We define
the comirast of a stimulus (a4 measure of how different the light and dark bars



are) as halfl the distance between the peak and trough intensities divided by the
niewn ‘hlensity.

First, let's describe a typical single-channel model of the visual system and
then we can see whal such a model predicts for the responses (o simple
sine-wave grutings, gratings conlaining only one sinusoidal componenl. At the
same lime we can review a lew of the basic facts about sinusoidal stimuli.

A Single Channel

Those of you who like physiological analogues can think of a single channel as
an array of retinal ganglion cells or lateral geniculate cells or even simple corti-
cal cells. Each cell in Lhe urray has the same kind of receplive field (the same
shupe, the same orientalion, the same size, everything the same excepl the po-
sition on the retina). But the receptive fields of different cells in the array,
although they overlup, cover different portions of the visual field.

More abstractly, we can consider a single channel to be a two-dimensional
array of “weighting functions® (defined below) corresponding point-by-point
1o the visual stimulus, (My use of the term *‘channel™ is different from some
other people's uses. Readers imeresied in a discussion of this terminology
should sce page 254.) For the purposes of models like this, the visual
stimulus is considered o be lwo-dimensional as it is on the retina rather than
three-dimensional as it is in the world. In fact, we will be dealing only with
stimuli that are effectlively one dimensional: The striped gratings vary in inten-
sily only along the horizontal axis; they maintain the same intensity along any
verlical line. Therefore we need consider only a one-dimensional cut across
the two dimensions of the single channel. In general, then, the response ol a
chunnel is a two-dimensional array corresponding poini-by-goinl to the visual
stimulus. But we'll usually be considering 4 one-dimensional cul across the
response: the response profile.

The Weighting Function

The magnitude of the response al any point in the single channel’s response
profile can be specified by a wewhing function. The weighting function indi-
cales the extent to which light falling at various points on the retina adds to or
subtracts Irom the response at the given point in the single channel. (The
weighting function is so named because it describes how the light lalling on
different points is weighted in delermining the response.) In terms of the phy-
siological analogue, the weighting function would be a quantitative description
of a cell's receptive field, and the response at a point in the channel would be
the output [rom the cell connected 1o that receptive field.

One kind of hypothetical weighting function is represented by the small
sketches in the wp line of Fig. 2. The line as a whole represents a one-
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FIG. 2. Diagram of some of the weighting functions thal determine the
responses of a single channel (top row). The channel's responses
(thurd, fifth, and seventh rows) 1o three gratings of different spatial [re-
quencies (second, fourth, and sixth rows).

dimensional cut across the single channel. Each of the small skeiches of the
weighting function indicates (hat the response al a given point of the channel is
increased by light falling anywhere within some small area of the retina and is
decreased by light fulling ahywhere within a surrounding area. (The weighting
function shown in the figure has a somewhat artificial *‘rectangular” distribu-



tion for the center excilatory area and for the surrounding inhibilory area. It is
easy 1~ substitute other, more plausible configurations.) The weighting lunc-
tions should really be pictured as being densely distributed all along the top
line, with many of them overlapping al any given poinl, but they have been
thinned out for clarity here. Notice that the weighting functions at all poinits
across the channel are assumed 1o be the same;, this is an important assump-
tion of the single-channel model.

Response to Different Spatiul Frequencies

Your intuition may suggest that this single-channel model should produce big
responses [or gratings in which the bar-widths maltch the dimensions of the
weighting function, and smaller responses lor gratings of other bar-widths.
The rest of Fig. 2 shows that such an intuition is approximately correct. Here
we see the intensity proliles of three stimuli and the response al each point
across the single channel (o each of the three. Notice first that, conveniently,
the response 1o any sine-wave stimulus is itself sinusoidal, as long as you are
considering linear systems. (We are assuming that the single channel is linear:
All it does is add und subtract.)

The second row ol the ligure shows the intensity profile of a sinusoidal grat-
ing of intermediate spatial frequency. Consider the response (third row in
Fig. 2) at the middle of the bright bar al the extreme right end of the figure.
There is a lot of excilation because a bright bar is illuminating the center of the
weighting function (or receptive field on (he retina). There is little inhibition
because most of the surround of the weighting function is illuminated by dark
bars. Little inhibition and a lot of excilation produces a big net reﬁonse'
When the peak response is large (compared to the mean response) we say the
channel is responding well (o this stimulus pattern.

Now consider the response at the middle of the dark bar. There is a lot of
inhibition because most of the negative surround ol the weighting function is
illuminated by bright bars. The more strongly illuminated the inhibitory sur-
round is, the less the net response. Furlthermore, there is little excitation, be-
cause the excitatory center is getling little illumination from the dark bar.
Thus there is very little response al this point in the channel. So the total
difference between the peak response (the response in the middle of the bright
bar) and the trough response (the response in the middle of the dark bar) is
very large. A large difference between peak and trough also indicates that the
channel is responding well 1o the grating.

lHowever, when you consider a ugher spatial frequency grating (such as that
for which the intensity profile is shown in the fourth row of Fig. 2), the bars
are so closely spaced that many bright and dark bars fall within the center of
cach weighting function. Likewise, many bright and dark bars fall within the
surround. Thus the response al any point in the array is approximately the

same as that at any other point, because there are always approximately the
same number of bright bars as dark bars in both the center and surround. The
peak response is small, and so is the difference belween peak and trough. Thal
is, the channel does not respond well 1o this high frequency graling.

Finally, consider whal the response (seventh row) to a low spatial lrequency
grating (sixth row) is like. At the center of the bright bar, there is a lot of ex-
citution (as for the medium spatial frequency) because the center of the
weighling function is illuminated by a bright bar. But there is also a lot of in-
hibition (unlike the case for the medium spatial frequency) because Lhe nega-
tive surround of the weighting function is also illuminated by the bright bar. A
lot of excitation and a lot of inhibition leads to a smaller response than a lot of
excilation and a little inhibition, so the peak response to the low-frequency
graling is smaller than to the medium spatial frequency. We say that the chan-
nel is not responding well.

Like the peak response, the difference between the peak and rough response
is also smaller for a low-frequency grating than for a medium frequency. In
the middle of the dark bar there is little excitation (like the medium frequency
case) but there is also little inhibition (unlike the medium frequency case).
Little excilation coupled with little inhibition leads to a trough that is not as
deep as for the medium spatial [requency. Therefore the difference between
the peak response and trough response is relatively small for the low spatial
frequency.

[n short, a single-channel model with a center-surround lype of weighling
function predicts bigger responses 1o gratings of inlermediale frequency than 1o
gratings of lower or higher frequencies.

Psychophysical Data

In predicting the grealest response lo intermediate frequencies, a single-
channel model does agree well with psychophysical data. A human observer’s -
responsiveness to a grating is often measured by finding the contrast threshold,
the smallest light-dark contrast that enables the observer to tell there is a gral-
ing present rather than a blank field. (In these experiments, the average inlen-
sity is held constant while the contrast is varied.) Another measure of the
Sime Sort is comtrast sensitiviy, which is defined as the reciprocal of the con-
trast threshold; the higher the contrast threshold, the lower the contrast sensi-
tivily.

Consider what should happen il a human observer were well described by a
single-chunnel model and if we made the additionual assumption that the con-
trast threshold is the smallest contrast necessary to produce a sufficiently lurge
response somewhere across Lhe single channel. In other words, we assume the
contrast threshold is achieved when the contrast is high enough lor the
channel's peak response to exceed some criterion. Then we would expect the
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FIG. 3. The weighting function for a single channel model which leads
lo accurate prediclions of the data on human conirast sensitivity for
gratings. From John Robson.

contrast threshold to be lowest (contrast sensitivity 10 be highest) for gratings
of intermediate frequencies, since it is at intermediale frequencies that the
channel produces the bigges! response (for any given amount of stimulus con-
trast). This is just what does happen: It is well known that human contrast
sensilivily is greatest at intermediate frequencies. In fact, you can make the
single-channel model agree perfectly with human psychophysical data by simply
picking out a weighting function with an appropriale shape. Figure 3 shows a
weighting function that works well for human conirast threshold data.

Effect of Changing the Weighting Function

For future reference, it will be useful o consider now how changing the
weighting function changes the channel's response to different spatial frequen-
cies. The kind of weighting function we've already looked al, one cenlral ex-
citatory area flanked by surrounding inhibilory areas, always leads to a [requen-
cy response function something like the broadest one (B) shown in Fig. 4. It
is a rather wide function—the maximum sensitivily is 1o a spatial frequency of
14 cycles/degree, yel sensitivily is substantial even to spatial frequencies as
different us 5 or 30 cycles/degree. With this sort of weighting function, there
is a sizable response to spalial frequencies that differ from the best frequency
by a factor of two or more. (The function that gives the peak response lo vari-
ous frequencies is the same as what's called “‘the amplitude characteristic of
the Fourier transform.”” It can be computed easily using the methods of
Fourier analysis. It is important to note that although using the methods of
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FIG. 4. Theoretical frequency response curves (B and C) for two
different channels cenlered on the same spatial frequency but having
different bandwidths. The third curve (A) is a [requency-response curve
estimated from data. The vertical axis, marked ‘‘relative sensitivity,"
gives the peak response of the channel to a grating of some fixed cri-
terion contrast (relative to the peak response produced by a 14
cycle/degree grating at the criterion contrast). Or equivalently, since we
are considering linear channels, the vertical axis gives the reciprocal of
the amount of conlrasl necessary o produce a peak response that
reaches a criterion (relalive (o the conirast necessary a1 14
cycles/degree). From Sachs, Nachmias, and Robson (1971).

Fourier anulysis seems to imply analyzing a compound stimulus into its
sinusoidal components, it does not in fact imply the use of a multiple-channels
model.)

If you change the size ol the weighting function (if, for example, you double
the widiths of both the center and surround but leave the shape unchanged),
you will change the channel's best frequency (for example, from 14
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cycles/degree 1o 7 cycles/degree) but you will not change the breadth of the
response lunction. For example, il the original weighting function guve a
response o [requencies between 5 and 30 cycles/degree, a ratio of 1 to 6, a
weighting function twice as wide will give a response to frequencies belween
2.5 and 15 cycles/degree, again a ratio of | to 6. This means that when you
change only the size of the weighting function, the channel’s frequency
response function will keep the same shape when plotted against a logarithmic
frequency scale as in Fig. 4, but it will be shifted horizontally.

Suppose you wanted io construct & channel that responds only 1o a very nar-
row range of spatial lrequencies, something more like curves A and C of
Fig. 4. These curves depict a sizable sensilivity only to spatial frequencies
between 12 and 18 cycles/degree; a 10 or 20 cycles/degree grating gives only a
negligible response. Whalt kind of a weighting function would you need in ord-
er lo produce such a narrow response curve? Figure 5 gives the rather peculiar
answer: a multilobed weighting function with several evenly spaced excitalory
and inhibilory areus.

A channel thal is an array of such multilobed weighting functions is sensilive
to a much narrower runge of spatial [requencies than is the channel of Fig, 2.

/\ I\

FIG. 5. The weighting function for a channel having a [requency
respanse like that of curve Cin Fig. 4. From John Robson.
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To see why, first imagine a grating stimulaling the channel with multilobed
weighting functions, with a bright bar illuminaling the central excilatory part of
one particular multilobed weighting function. If the grating has the best spatial
frequency for this weighting function, bright bars will fall in all the excitatory
areas and dark bars will Tall in all the inhibitory areas. Therefore there will be
a very large response at this point in the channel. The large peak response
means that the channel is very sensitive to this stimulus. (Similarly, the
channel's response al the point where a dark bar falls on the central excitatory
part of a multilobed weighting function will be a very small response, so the
difference between the peak and trough responses of the channel will be
large.)

Now imagine a grating with slightly narrower, more closely spaced bars,
again with a bright bar falling on the central excilatory part of the weighting
function. You don't need to imagine much of a change in the grating’s [re-
quency belore dark bars start creeping inward into the outermost excitatory
areas, thereby reducing the response. Slightly widening the bars has the same
effect, as dark bars creep oulward inlo the oulermosl excitatory areas. [n
short, any slight mismatch between the bar-spacing of the graling and the di-
mensions of the multilobed weighting function will lead to a much reduced
response by the channel; thus the channel is sensilive 1o only a narrow range
ol spatial frequencies.

Response of a Linear Channel to Other Stimuli

Also for future reference, let’s look at another convenient fact aboul sine
waves. Kpowing how the channel (or any linear system) responds to sine
waves is enough 10 tell you how the channel responds to any stimulus at all,
This apparently magical fuct is true because \wo other facts are true: One—any
stimulus al all can be treated as the sum ol a number of sinusoidal stimuli;
and Iwo—a linear channel’s response 1o a stimulus which is the sum of various
component stimuli can be shown 1o equal the sum of the responses to the vari-
ous component stimuli. So to calculate the channel's response Lo any arbitrary
stimulus, you just need to know which sine waves Lhe stimulus is the sum of,
and then you add up the responses to those sine waves.

Sine Waves Added to Sine Waves

Let's go buck to the main discussion. Whalt does a single-channel model of the
visual system predict for the response lo sine waves? We have shown that a
single-chunnel model can deal very well with thresholds for single sinusoidal
gratings if an appropriate weighting function is chosen (Fig. 3). Bul how well
can it do with thresholds for a compound grating composed of two sinusoids
added wgether?
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FIG. 6. Four grating patterns (left column) and the responses Lo them
predicted by the single-channel (middle column) and multiple-channels
models (right column—three channels are shown). The broken lines in-
dicate the sinusoidal components of the compound gratings. From Gra-
ham and Nachmias (1971).
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The left column of Fig. 6 presents the intensity profiles of several stimuli
and the middle column shows the responses of the single channel 1o these
stimuli. The top stimulus is a simple grating (a sine wave added to a constant
luminance), with a contrast selected 1o put the grating at psychophysical
threshold. Remember that we are assuming thal “‘lo be at psychophysical
threshold™ means ‘‘to produce a peak response that is as big as a certain cri-
terion.”” This criterion size is labelled T (for *‘threshold™") in Fig. 6. (In this
model of the detection process, the threshold is determined entirely by the
peak response. Therefore the spatial ordering of the response magniludes in
the response profile is of no imporiance. That is, if you took the sel of
response magnitudes and scrambled them into a new spatial order, you would
still predict the same threshold. Another way of saying this is that in the kind
of channel models that | am discussing, all of the spatial interactions (i.e. all
the interactions that depend on dislances between points) are a result of the
weighling function.)

The second row shows a simple sinusoidal grating of three times the fre-
quency of the first stimulus. Its contrast, too, was chosen lo put the grating at
threshold; that is, it has been adjusted so that the peak response maiches the
crilerion T.

The third and fourth rows in Fig. 6 show two compound gratings that are
combinations of the simple sinusoidal stimuli in the first and second rows. (In
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both combinations, the two component sine waves have been added together,
and added 1o the same mean luminance as in the simple gratings.) In the com-
pound graling shown in the third row, the two sine waves were positioned so
that the darkest point of one coincided with the brightest point of the other
(the peaks-subtract phase). In the fourth row, the component sine waves were
positioned with the brightest point of one coinciding with the brightest point of
the other (the peaks-add phase).

The single channel’s response to each of these compound gratings can easily
be computed from its responses to the simple gratings. Since the single chan-
nel is a linear device and each compound grating is a sum of the simple grat-
ings, the response o the compound grating is just the sum the responses to the
simple gratings. (Of course you have to position the simple response functions
appropriately, so that they correspond with the positions of the simple
sinusoidal components in the compound grating. In this discussion, all pat-
lerns are adjusted to have the same mean intensity. This means that, for a
linear channel, the mean response across the channel is the same for all pai-
terns and therefore can be ignored in deriving predictions that compare
different patterns.) The responses shown in the second column were comput-
ed in this way. As you can see, the peak response to each of the compound
gratings is now greater than T, the criterion for detection. In fact, it is 1.4
limes T for the stimulus in the third row (the peaks-subtract stimulus) and 2.0
times T for the stimulus in the fourth row (the peaks-add stimulus). There-
fore, according to this single-channel model, you should be able to reduce the
contrast in each component of the peaks-add pattern by a factor of 2.0 and find
that the peaks-add pattern would then be at threshold, because the peak
response would then just equal T. You should be able to reduce the contrast
in each component of the peaks-subtract pattern by a factor of 1.4 and find that
the peaks-subtract paltern would be at threshold.

To put it another way, according to the single-channel model, the two com-
pound gralings should be more visible than either simple grating, and further,
the peaks-add compound should be more visible than the peaks-subtract. The
brightest part of the peaks-add compound is brighter than the brightest part of
the peaks-subtract compound, and both are brighter than the brightest parts of
the simple gratings.

Evidence Against a Single-Channel Model

What happens when you actually measure the thresholds of humans for such
simple and compound gratings? Rather strangely, but definitely, the com-
pound gralings are nor much more visible than the simple ones—certainly
nothing like the predicted factors of 1.4 or 2.0. Moreover, relative position
(phase) makes no difference—the peaks-add pattern is no more visible than
the peaks-subtract.
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This experimenltal finding is definitive evidence against the version of the
single-channel model presented above. Is Lhere some easy way 1o modify the
single-channel model to make it fit this finding? Apparently not. Postulaling
compressive nonlinearilies before or afler the single channel doesn’t help
much. Instead of assuming, as we did above, that the peak response must
reach some crilerion in order for a pattern to be at psychophysical threshold,
you might iry some other assumpltion about the detection process. However,
none of lhe obvious alternalives works, although some alternatives (such as
probability summation across space, which will be discussed later in another
context) do move the predictions closer to the data—that is, some relatively
simple detection processes do lead 1o single-channel predictions of a difference
between simple and compound stimuli that is somewhat less than the factors of
2 and 1.4 predicled by the peak-response criterion (but not as much less as
found in the experimental data).

Of course, postulating a sufficiently complicated detection process as a substi-
tute for the peak detector (which would be like postulating a large number of
other stages of processing occurring after the single channel) might predict
these data well and also might make an interesting model, but it would be a
rather different model from those considered to date.

It should be mentioned that James Thomas and his colleagues at UCLA
have done a series of experimenis similar to these, involving the detection of
disks of different sizes rather than gratings of different spatial frequencies.
Their experiments also produced resulls inconsistent with a single-channel
model.

MULTIPLE SPATIAL-FREQUENCY CHANNELS

So now we are left with the problem of explaining the unexpectedly low visibil-
ity of two sinusoidal gratings added together. On the basis of preliminary
resulls somewhal similar to these results from adding up sine waves, Fergus
Campbell and John Robson advanced a new model in 1968 as an alternative 10
the single-channel model. They proposed that the important part of the visual
system for experiments like these is not a single channel but a collection of
many channels.

Each of these multiple channels responds only to a relatively narrow range of
spatial frequencies. One channel might respond only to low spatial frequen-
cies, another only to high frequencies. The sensitivity of the whole visual sys-
tem to any paltern is determined by whichever one of the mulliple channels is
mosl sensitive to the pattern. In particular, a pattern will be above threshold
for the whole visual sysltem whenever it is above threshold for ar least one of
the spatial-frequency channels.
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Although one can certainly talk about these channels without specifying any
purticular physiological mechanism, I find it helpful to think of the multiple
channels in more concrete terms. One can consider each channel as an array
of receptive fields, or weighting functions, just like the single channel of the
single-channel model. Each channel is specialized for a different range of spa-
ual frequencies, so the weighting function (or the receptive field) for each
channel has a different size—the channel for low spatial frequencies has a
weighting function with much wider excitatory and inhibitory areas than the
channel for intermediate spatial frequencies has, and so forth for other chan-
nels. This multiple channels model is quite similar to a model proposed by
James Thomas, although Thomas's model was not developed to deal with
sine-wave grating experiments.

Sine Waves Plus Sine Waves

To see what this multiple-channels model will predict for the threshold of two
sine-wave pratings added together, let’s look at the right hand column of
Fig. 6. The lines labelled A, B, and C represent the responses of three
different channels. Channel A is the channel that responds to the low-
frequency sine wave in the left column, and it does not respond to the high
[requency at all; channel C responds to the high frequency, and not at all to
the low frequency; channel B doesn’t respond to either one. Since the lop
stimulus in this figure is assumed to be at threshold and only channel A
responds (o it, the response in channel A must be al threshold—that is, the
peak response by channel A must equal the criterion for threshold, marked T.
Similarly for the second pattern: Channel C, in reacting to the second pattern,
must give a peak response equal to T.

Now consider the peaks-subtract compound grating shown in the third row.
How will channel A respond to it? The compound grating is the sum of the
low-frequency and high-frequency sine waves pictured above it (and repeated
4s dotted lines in the third row). Therefore channel A’s response to the com-
pound grating is the sum of its response lo the low-frequency component plus
ils response to the high-frequency component. Since channel A doesn't
respond at all to the high-frequency component (its response profile is a flat
line), its lotal response to the sum of the two components looks just like its
response to the low-frequency grating alone. We've already said that the low-
frequency grating is at threshold for channel A so the compound graling,
which gives exaclly the same response, must also be just at threshold. Similar-
ly for channel C: lts response 1o the compound graling looks just like its
résponse lo the high-frequency component alone, so the compound grating is
just at threshold for channel C. Since the compound graling is just at thresh-
old for each channel individually, it is (according to the multiple-channels
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model’s assumptions) just at threshold for the visual system as a whole. (The
analysis differs somewhal if response variability is considered, as is done in the
nex! section.)

So, unlike the single-channel model, and in much better accord with the
psychophysical data, the multiple-channels model predicts that the peaks-
subtract compound graling should be no more delectable than one of its com-
ponents. We can go through the same analysis and reach precisely the same
conclusion for the compound grating shown in the fourth row, the peaks-add
stimulus. It is just at threshold for each channel individually and hence for the
visual system as a whole. Therefore this compound grating should be no more
detectable than either of ils sinusoidal components, and the peaks-add and
peaks-subtract gratings should be equally detectable. In other words, relative
position or phase of the two components shouldn’t matter at all. And that was
one of the surprising aspects of the psychophysical data: Peaks-add and
peaks-subtract gratings gave the same results.

Even this simple version of the multiple-channels model does quite a good
job of predicting a human observer's performance when detecting these kinds
of pattern: Compound gratings are (1o a first approximation) no more delect-
able than their most detectable component, and the relative phase between
componenls in a compound grating makes no difference to its detectability. In
the next section we will find that when we take response variability into ac-
count, the multiple-channels model fits the dala even more closely.

Probability Summation Among Multiple Channels

| have been talking as if there were no variability in the visual system, as il a
grating with a contrast just below the threshold were invisible every time the
subject looked at it and a grating with a slightly higher contrast, just above the
threshold, were visible every time. But in fact there is a whole range of con-
trast levels for which a grating is sometimes visible and sometimes invisible.
The **threshold™ is arbitrarily defined as that contrast level at which the grating
is seen a certain percentage of the time, usually 50%.

As Sachs, Nachmias, and Robson showed, in order 1o predict the thresholds
for compound gratings exactly, one has lo take the visual system's variabilily
into account. It turns out that a very simple way of dealing with the variability
will do, a way often referred 10 as **probability summation.”

Consider again the response of the multiple channels to the gratings in
Fig. 6. Remember thal each of the sinusoidal components is individually al
threshold; we've picked the appropriate amount of contrast to make that so.
Thus an 50% of the trials with the low-frequency component alone, channel
A’s response is big enough for the observer to see something. Likewise, on
50% of the trials with the high-frequency component alone, channel C’s
response is big enough for the observer lo see something. What happens when
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the compound grating is presented? According to the multiple-channels
model, just the same thing as when its two components are presented separate-
ly: On 50% of the trials channel A responds 1o the compound grating and on
50% of the trials channel C responds. But the trials on which channel A
responds are not all trials on which channel C responds (unless the variability
in Lhe two channels happens to be perfectly correlated). So on more than 50%
of the trials either channel A or channel C (or both) gives a response big
enough to meet the criterion for threshold. Therefore, according to the
multiple-channels model, the observer sees something on more than 50% of
the trials with the compound grating. This means the compound graling is
somewhat more detectable than either of its components; how much more
depends on the degree of correlation between the channels,

In faci, an assumption of complete independence (no correlation) between
channels produces predictions that agree quantitatively with the data. This in-
dependence is ordinarily implied by the term probability summation. In gen-
eral, probabiliy summarion among channels refers to the increase in the detec-
tability of a pattern that results when two or more uncorrelated channels rather
than one respond to the patiern (*‘summation because there is an increase in
detectability and *‘probability™ because the increase is a direct result of the
probabilistic nature of the process). Notice that probability summation can
make a compound pattern more detectable than any of its components even il
there is no ‘‘real” summation among components within any one channel—
that is, even if, as far as the response of any one channel is concerned,
presenting two (or more) components is no better than presenting one alone.

Thus, within the framework of a multiple-channels model, there are two
possible causes of an increased detectability of a compound pattern relative to
ils components: ‘“‘probability summation' resulting when channel responses
are uncorrelated and more channels respond (o the compound pattern than
respond to any one of ils components alone, and ‘**summation within a chan-
nel™ resulting when one of the channels responds better to the compound pat-
tern than lo any of ils components. This distinction between kinds of
summation will be very important in the next section.

An Example of Probability Summation

Probability summation can sometimes make a compound grating subsiantially
more visible than either of its components. Let me give an example. The data
shown in Fig. 7 come from a two-alternative forced-choice experiment that
John Robson and 1 ran, comparing the detectability of compound gratings con-
taining three components (rather than two as in Fig. 2) to the detectability of
each of the three components alone. The componenits’ frequencies were in the
ratio of 1 to 3 to 9. In the compound gratings, the three components were ar-
ranged in either of two phases, and the relative contrasis in the three com-
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FIG. 7. Percenl correct in a wo-allernalive forced-choice experiment
for three simple gratings and two compound gralings containing Lhe
three frequencies of the simple gratings but in (wo different phases. In
the compound gratings, the componenls were arranged so Lhat their
peaks coincided (cosine phase) or so thal the combination approximated
a square-wave graling (sine phase). The broken line is the prediction
for the compound gratings based on probability summation among Lhe
three simple components.

Each of the curves in the figure has been horizontally translated
(which is why the horizontal axis is marked *‘normalized contrast’ in-
stead of *‘contrast’’) so that the compound grating represented by any
one of the circles is made up of the three componenis whose detectabili-
lies are given by the three symbols directly below the circle. Notice that
the contrasts of the three componenis in any one of the compound grat-
ings were chosen so that all three would be approximately equally
detectable.

The mean luminance of the 7.25° x 4.5° desaturated green (P31)
display (29 x 18 centimelers al a distance of 2.28 meters) was 100 milli-
lamberts, and the display was surrounded by a homogeneous while
screen of approximately the same mean luminance wilh outer dimen-
sions of 60 by 60 centimeters. Each trial consisted of Iwo 600 millisec-
ond presentations of a tone, separaled by 300 milliseconds; during one
tone a grating was presented and during the other the display remained
unpatterned. The onset and offset of the grating were gradual, the con-
trast of the grating during the 600 millisecond period being proportional
1o e- 100 where 1| varied from —300 milliseconds to 300 milliseconds.
Trials were initiated by the subject. In any one block of Irials, 40 pat-
terns (eight contrast levels in each of the three simple and lwo com-
pound gratings) were presented once each in a random order. In accor-
dance with a “‘staircase’ rule, contrast levels were somelimes changed
between blocks to keep performance at a fairly constant level. Each dala
point in the figure comes from between 60 and 150 trials. The observer
was John Robson, viewing the display binocularly with normal speclacle
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COMPOUND GRATINGS ponents were adjusted so that all three were about equally deteclable when
901 « presented alone. (In accord with this adjustment of relative conlrasls, the hor-
'." izontal axis in Fig. 7 is labelled *‘normalized contrast.”” The normalization was
so+ . :a_.' ' done by dividing the actual contrast by a different factor for each component
o o, :: { = 1.33 cyc/deg frequency. Each point on the horizontal axis represents three different fre-
ot é 31 = 4 cyc/deg quencies’ contrasts in the same ratio in which they appear in the compound

704 3 9f = 12 cyc/deg ; F : .
o ; gratings. The value of 1,0 was assigned for convenience 1o thal normalized

oalE o | + 3f + 9f (cosine phase) :
@ e { + 3f + 9f (sine phase) contrast closest to the one producing 75% correct.)

60+ SIMPLE GRATINGS On each trial the observer had to say whether the grating was in the first or
FHEgICTlO:_t BQSED ON second interval. The three lower curves in Fig. 7 show the improvement in
50+ Lo i Ul seeing each of the three simple gratings as contrast is increased. The circles up
F : above give similar data for a compound grating. Each circle gives the detecta-

bility for a compound grating made up of the three simple components whose
detectabililies are represenied by the three symbols directly below the circle.
The dashed line shows the predictions for the compound graling’s detectability
based on probability summation among the three simple components. As you
can see, the fit is quite good, considering the binomial variability inherent in
the data.

In a two-alternative forced-choice experiment like this one, a subject will be
correct on 50% of the trials if he simply guesses randomly. The 50% guessing
rate has to be taken into account when computing the probability-summation
predictions. Thus, if a subject is correct on each component 50% of the time
(no more than chance), the prediction from probability summation alone is
that he will be correct on the complex grating only 50% of the time.

The threshold in forced-choice experiments is typically defined as the con-
trast needed for 75% correct. For each of the three simple components in
Fig. 7, then, the threshold is at a normalized contrast of about 1.0. The
threshold for the compound grating is quite a bit lower, at a contrast of about
0.8, lower than the lowest of the thresholds for any of the three components.
This substantial difference, a ratio of about 0.8 (0.1 log unit), is fully explained
by probability summation among the multiple channels.

I's important to bear in mind that even though the compound gratings in
this experiment did have thresholds considerably lower than any of their com-
ponents’ thresholds, the data are still far from consistent with a single-channel
model. A single-channel model would predict that when you add up three
components in peaks-add phase, you should need only one-third as much con-
trast to put the resulting compound grating at threshold. In Fig. 7 that would
be a contrast of 0.33, off the graph to the left.

Measuring the Bandwidth of a Spatial-Frequency Channel

So far I haven’t said anything specific about the bandwidth of each of the mul-
tinla abanmale Hew widas o ranos af enatial Freananciee doee g piven channel



234 Norma Graham

respond to? All I've said is that the range is considerably narrower than for
the single-channel model. In that model, the single channel responds 1o the
enlire visible range of spatial frequencies, so it predicts that a compound pal-
tern should be more detectable than any one of ils component frequencies, no
malter how far apart they are. We know that the channels can’t be rthar broad-
ly responsive, because the data show that for widely separated frequencies, a
compound patlern is no more deleclable than you'd expect from probability
summation among independent delectors that each respond o only one com-
ponenl [requency.

There is a way 1o estimatle more precisely the range of responsiveness of an
individual channel. Once Sachs, Nachmias, and Robson had shown that (al-
lowing for probabilily summalion among channels) the multiple-channels
model accurately predicis the findings for two widely separated frequencies
(which were assumed to stimulate complelely separaté channels), they could
use this model o estimale the bandwidth of an individual channel by choosing
frequencies that were quite close together.

When two neighboring frequencies were used, they found that the com-
pound patlern was more deleclable than probability summation predicts. The
“‘extra" detectability could be attribuled to summation within individual
channels—1o individual channels’ having responded to both frequencies. They
assumed thal only two channels were significantly involved in the deteclion of
any two-componenl graling—the two, independent channels with center fre-
quencies equal to the two frequencies in the compound grating.

To calculale backwards from the amount of extra detectability for compound
patterns to the sensitivity of individual channels, Sachs, Nachmias, and Robson
had to use some assumption about the combined effect of neighboring fre-
quencies on an individual channel, that is, about the exact form of the summa-
tion within each individual channel. For the patterns used in their experi-
ments, their assumption was equivalent to the following model of a channel (a
model that is consislent with everything said about channels so far): Each
channel is a linear sysiem exactly like the single channel of Fig, 6's middle
column, except that it is sensitive 1o a narrower range of frequencies; a pallern
is at threshold for a channel whenever the peak response across the channel
meels a crilerion; and the variability in a channel’s response (which leads 1o
probability summation among channels) comes from one of two equivalenl
sources—either the criterion varies from time to time, or the whole response
profile of a channel is raised or lowered by a noise signal added 1o it, which
- varies from lime 1o time.

In their study, Sachs, Nuchmias, and Robson measured the deteclability of
compound gratings containing two components, one of which always had a fre-
quency of 14 cycles/degree, and so they were able 10 estimate the frequency
response of the channel centered at 14 cycles/degree. You've already seen
their estimate of the frequency response of that channel; it is the extremely
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narrow curve in Fig. 4. Remember that there is nothing mysterious about an
extremely narrow frequency-response curve. If you think of a channel as an
array of receptive fields or of weighting functions, the frequency-response
curve is narrow if the weighting function has not only an excitatory central area
and an inhibilory surrounding area, but also auxiliary areas of excitation and
inhibition (like Fig. 5).

Studies by Quick and by Sachs, Nachmias, and Robson suggest that, for
channels centered at lower spatial frequencies, the estimated bandwidth (on a
log frequency axis) may be a good deal broader than for the channel at 14
cycles/degree. If so, then for the lower spatial frequency channels, this es-
timatled bandwidth implies that the weighting functions may be simple center-
surround weighting functions.

Discrepant Estimates of Bandwidth

The bandwidth that Sachs, Nachmias, and Robson estimaled for the 14
cycles/degree channel is a good deal narrower than the bandwidth usually de-
duced from a different type of experiment, involving adaptation or masking.
The explanation of this difference is not at all clear. It could be that the chan-
nels revealed by summation experiments are not the same channels as those
revealed by adaplation/masking experiments. Another possibility is that the
models currently used to deduce bandwidth from summation and
adaptation/masking experiments are inadequate. For instance, perhaps adapla-
tion itsell could cause an increase in bandwidth; this possibility was considered
and rejected by Lange,'Slecher. and Sigel (1973).

Inadequacies in the models that are used (either explicilly or, more often,
implicitly) to deduce bandwidth from adaptation/masking experiments are
beyond the scope of this discussion. But a possible shortcoming of the model
used to deduce bandwidth from summation experiments was alluded to earlier,
in the discussion of the single-channel model. There are other plausible as-
sumptions, besides those described above, that we could make about the detec-
lion process and about the variability in the channel's responses. Some of
these alternative assumptions (one example is discussed in the nexl section)
would lead us to derive a broader bandwidth eslimate from summation experi-
ments, an estimate more in line with those from adaptation/masking experi-
ments. However, precise quantitative agreement between such estimales based
on the different kinds of experiments remains to be shown, and trying to show
it may well reveal more problems. (The assumption that only two channels are
involved in the detection of a two-component compound graling may well be
another inadequacy of the model used by Sachs, Nachmias, and Robson. But
il more than two channels are involved, using the assumption of only two
probably makes the estimaled bandwidth broader than the actual bandwidth.
Thus, changing this assumplion could only’ muke the bandwidth estimated
from summation experimenls even narrower.)
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Probability Summation Across the Spatial Extent of a Channel

I will now give an example of a possible detection process olher than the sim-
plest form of peak-response detection. The example is particularly appropriale
because il involves another instance of probabilily summation. However,
understanding the example is not necessury for understanding the material that
follows Lhis section.

In the models described earlier, all of the variability in a channel’s responses
was assumed to come from one of lwo equivalent sources— variability in Lhe
threshold criterion for each channel or variability in a noise signal that is added
10 the whole response profile of the channel, thereby raising or lowering the
profile as a whole. Neither source of variability changes the basic shape of the
respanse profile; points that have equal responses al one time (the peaks, for
example) also have equal responses at any other time. In other words, neither
of these two sources of variability entails any variation in the relative magni-
tudes of responses at different points across a channel.

But other sources of variability in a channel’s responses are possible and are
perhaps even more reasonable. After all, why shouldn’t the relative response
magnitudes at different points across a channel vary? In the physiologicul
analogue, the responses al different points across a channel are produced by
different neurons. If the sensitivily of neurons varies over lime, and il the sen-
sitivities of different neurons are not perfectly correlated, there would have 10
be variation over time in the relative response magnitudes at ditferent poinls.

Let's try assuming that all the variability in a channel’s responses comes
from the variability of response magnitudes at individual points across the
channel (and nol from the two spatially uniform sources of variability men-
tioned above). Al any one moment, the response profile will look more irreg-
ular than those in Fig. 6; some “‘bumps’™ will be higher than others, for in-
stance. On different trials, the peak response (the highest bump) will occur at
different locations—somelimes al a location that doesn’t even correspond to a
peak in the stimulus.

We can still assume that a pattern is at threshold whenever the peak
response reaches a criterion, but now the particular location in the channel that
produces the peak response will vary from trial 1o trial. In this model of the
detection process, there will, therefore, be probability summation across the
spatial extent of a channel: When there are more localions at which a very
large response often occurs, there are more chances on any particular trial 10
get a very large peak response. Therelore, the channel will be more likely 1o
detect the stimulus, and will be more sensitive to the pattern. (In this model
of the detection process, as in the simple peak-response model described ear-
lier, the spatial ordering of the response magnitudes is of no importance. )

bu for example, as lhc number of burs in a grating is increased, a channel's
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have u chance 1o detect the grating. (In addition, ol course, there will still be
probability summation among different channels, because whether or not each
channel's peak response exceeds the threshold criterion will still vary from trial
to trial.) 3

As Granger (1973) pointed out, this new model of a deleclion process, in-
cluding probability summation across space, predicts that a channel will show
Jess summation between components of a compound grating than predicted by
the simple peak-detection model. Why this is so can be seen by carefully com-
puring a channel’s responses to simple and to compound gratings. Figure 8
shows the profiles of a channel's responses lo a single graling of 12
cycles/degree and 10 a compound grating of 12 cycles/degree combined with 11
cycles/degree. The contrasts in the gralings were chosen so that the peak
response would be the same height in both profiles. If a channel had a simple
peak-detection process, therefore, it would be equally sensitive (o both pat-
lerns.

However, according 10 the new model, the profiles in Fig. 8 represent only
average responses. The probability of getting a peak response thal meels the
criterion on a particular trial does not depend solely on the peak in the average
response profile. Rather, it depends on the mumber of different locations across
the channel that produce large average responscs (and, of course, on how large
those responses are). As is clear in Fig. 8, the “'beating’” between components
produces only a few high points in the compound graling'’s average response
prolile, whereas there are many high points in the simple graling's profile.
Therefore, according to the new model, the channel will be u good deul less
likely to detect the compound grating than 1o detect the simple grating. In
short, a model allowing for probability summation across space predicts much
less detectability for the compound grating relative to the detectability of the
component frequencies (that is, much less summation within a channel) than
does the simple peak-detection model.

The upshot is that if we were now 1o assume that there is probability sum-
mation across the spatial extent of a channel, then we would expect compound
stimuli to be less detectable than we expecied when we were assuming simple
peak detection. So when we find experimentally that a compound stimulus is
not very much more detectable than its components, we would no longer as-
sume that this means each channel is very insensitive to frequencies other than
ils optimal one. We would conclude instead that the channel is more sensitive
lo nonoptimal frequencies than we had previously thought. And saying that a
channel is more sensitive to nonaptimal frequencies than we had thought is the
same as saying that the channel’s bandwidth is broader than we had thought.

Preliminary calculations suggest that, when probability summalion across
spuce is considered, the data from Sachs, Nachmias, and Robson's experiment
may be consistent with an estimaled bandwidth almost as large as thal ol the
hroadect oneve chown in Fie 4 This bandwidth is substantially larger than
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FIG. 8. The top graph is a channel's response profile to a simple grating
of 12 cycles/degree, and the botlom graph is the response profile 1o a
compound grating containing components of 11 cycles/degree and 12
cycles/degree. The contrasts of the gralings were chosen so that the two
response profiles would have the same peak height. In particular, the
contrasts in the two components of the compound graling were chosen
so that the responses to each component alone would have the same
peak height. Hence, the contrast in the 12 cycles/degree simple grating
was twice the contrast of the 12 cycles/degree component in the com-
pound graling.
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that originally estimated and, if correct, the weighting function for the 14
cycles/degree channel might be of the center-surround type. However, il is an
open question whether or not probabilitly summation across space should be in-
cluded in the model of a spatial frequency channel. And it is worlth emphasiz-
ing that this broader bandwidth still is not nearly wide enough to make the
multiple-channel model into a single-channel model.

Summary

What I have said up to this point can be summarized as follows: To explain
the measured thresholds of compound gralings composed of several sinusoidal
components, it is nol sufficient to assume a single-channel model. It s
sufficient Lo assume probability summation among mulliple channels each of
which responds to only a relatively narrow range of spatial frequencies. Exaclly
how narrow a range depends on the particular model of a channel's detection
process thal is assumed. The range is narrower, for example, when simple
peak detection is assumed than when probability summation across spalial ex-
tent is considered. When I refer to a channel as ‘‘narrow™ in what follows, |
mean only that the range of frequencies to which the channel responds is nar-
row enough to require at least several such channels to span the range of fre-
quencies to which a human observer is sensitive.

EDGE DETECTORS AND OTHER NEW FEATURE DETECTORS

In the rest of the chapter | would like to discuss some recent interesting exper-
iments by Shapley and Tolhurst and by Kulikowski and King-Smith. These ex-
periments were interpreled by their authors as evidence for other kinds of
feature delectors in addition to spatial-frequency channels of Lhe sort discussed
above. First I'll review the interpretations given by the authors and then I'll
go on to look at an alternative explanation that assumes there are no feature
detectors other than the spatial-frequency channels.

Sine Waves Plus Broadband Stimuli

Rather than adding sine waves only to sine waves as in the experiments
described above, Shapley and Tolhurst and Kulikowski and King-Smith added
sine waves lo broadband ‘‘lest stimuli,”" such as edges and lines. (A bruad-
band stimulus is a stimulus lhat can be considered to be the sum of a large
number of sine-wave components, with a fairly large range of different fre-
quencies. All nonrepelitive or aperiodic stimuli are broadband. An edge
stimulus is a bright homogeneous field next to a dark homogeneous field. A
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line stimulus is u bright stripe superimposed on a dark field. The intensity
prlnﬁlés of an edge and of a line, as well as of the other aperiodic stimuli that
were used, are shown in the insets of Fig. 11).

They did their experiments in the following way: They set the contrasl in
the sine-wave grating atl some level below threshold. They Lhen huad the sub-
ject adjust the contrast in the superimposed tesl stimulus (in the edge, lor ex-
ample) until the subject could just barely see Lhat there was a patlern present
instead of a blank field. (The mean intensity of the pattern was held constant
while the conlrast was being adjusted.) This procedure wus repeated with
several subthreshold values (including zero) of sine-wave contrast.

The data they oblained were plotted as in Fig. 9: The test-stimulus contrast
nceded to make the compound paltern visible was plotied for each level of
contrast in the subthreshold sine wave. Their actual data looked much like the
fictitious data in Fig. 9. The points fell on a straight line, and the line inter-
secled the horizontal axis at a contrast lur above the threshold for the sine-
wave graling alone (here called 1.0).

Frequency Responses of the New Detectors

The investigators interpreled these results within the framework of the follow-
ing model: A large number of different feature deteclors exist, each of these
detectors is a linear system, and a stimulus is always delected by the deteclor
that has the lowest threshold for that stimulus. Notice that there is no provi-
sion for probability summation in their model—thal is, it never happens that
the relalive sensitivities of feature detectors Muctuate so that a stimulus is
sometimes delected by one feature detector and sometimes by another.

Using their model, they could easily interpret data like that of Fig. 9. The
data were gathered using added sine waves wilh low contrasts, including zero.
All of the data points fall on a straight line as would be true il only a single
linear feature deteclor were acling. Therefore they assumed that a single
feature detector did determine all the data points. That detector would be the
one wilh the lowest threshold for the tesl slimulus alone (i.e. the detector thal
determines the point on the plot where the sine-wave contrasl is zero) and so
will be called the **lest-stimulus detector.™

Then they could infer the test-stimulus detector's sensilivity to sine waves of
various [requencies by using data like that in Fig. 9. (Why not directly mea-
sure the deteclor’s sensitivily for a sine wave by presenling a sine wave 1o the
observer? You can't, according lo this kind of model, because when you
presenl a sine wave by itself, its threshold is determined by whalever delector
is most sensilive 1o the sine wave rather than by the tesi-stimulus detector.)
The way Lo infer the test-stimulus deteclor’s sensitivily is to see where Lhe
straight line through data like that in Fig. 9 cuts the horizontal axis: That in-
tercept should tell what contrast in the sine wave would produce a threshold
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FIG. 9. lilustration of the method used by Shapley and Tolhurst and by
Kulikowski and King-Smith to measure the ‘‘sensitivity of a test-
stimulus detector 1o sine waves.”” Inset at upper right shows the intensi-
1y profile for one kind of stimulus they used—a combination of an edge
and a sine wave. Data points are fictitious points typical of their actual
dalta, showing, for each amount of contrast in the sine wave, how much
contrast in the edge is necessary to make the compound patlern just visi-
ble to the observer. The straight line drawn through the data points is
assumed 1o represent the responses of a linear ‘‘test-stimulus detector™
whose behavior is described by the equation given in the figure, where
Cliest) and C(sine) are the conlrasts in the test stimulus and sine,
respectively, and S(iest) and S(sine) are the sensitivities of the tesi-
stimulus detector for the test slimulus and sine, respectively. (Sensitivi-
ly is, as usual, the reciprocal of threshold.)

response by the tlest-stimulus detector when there is no contrast at all in the
test stimulus (0.0 on the vertical axis). So the reciprocal of this intercepl is
the test-stimulus detector's sensilivity to that sine wave,

For each test stimulus, Kulikowski and King-Smith and Shapley and
Tolhurst used sine waves of a number of different spatial frequencies, finding
the intercept for each one, as shown for the fictitious data in Fig. 10 (left).
Then, by plotting the reciprocals of the values of those intercepts against the
spatial frequency, they produced a frequency-sensitivity curve like that in Fig. 10
(right), This curve shows, for each frequency ol sine wave, the inferred “*sen-

“TEST-STIMULUS DETECTOR"
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FIG. 10. The three plots on the left are the fictitious results of adding
sine waves of three dilferent lrequencies (5, 10, and 15 cycles/degree)
1o a test stimulus. See Fig. 9 for more details about the method. The
plot on the right shows the ‘‘frequency-sensitivity curve of the test-
stimulus detector’” that is derived from the plots on the left (and from
similar plots for other frequencies). For each 3patial_ frequency, the
curve gives the reciprocal of the intercept from a plot like those on the
left, (The righthand axis shows the actual value of the inlercepl.)

sitivity of the test-stimulus detector™ for that sine wave. Notice that the
steeper the line on one of the plots in Fig. 10 (lef1), the grcatelt the
corresponding sensilivity on the frequency-sensitivity curve in Fig. 10 (.nght)‘
I will sometimes refer, therefore, to the inferred sensitivily of the test-stimulus
detector for a sine wave as “‘the elfecliveness of a sine wave in reducing the
threshold for the test stimulus,’ as a reminder of whal was actually measured.

Figure 11 shows the actual frequency-sensitivity curves from Kulikowski and
King-Smith's data for six dilTerent test stimuli (one of which was a sine-wuve
prating as in the earlier experiments). The lower curve in each panel shmu‘-s
the data lor the sensitivily of the test-stimulus deteclor. The upper curve s
the psychophysical contrast-sensitivity function. Shapley and Tolhurst's curve
for an edge, not shown here, is similar to Kulikowski and King-Smith’s. P‘ss
you can see in Fig. 11, there are at least five diflerent curves for lhc‘stx
different test stimuli. (The curves for the two lines shown in the upper right
and lower left punels are very similar and might be considered identical.) By
these investigalors' interpretation, this indicates Lthe existence ol live dilTerent
detectors.

Weighting Functions of the New Detectors

Now, il these detectors are indeed linear systems (as was suggesied by the
straightness of the data plotted as in Fig. 9), the curves in Fig. 11 are just the
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FIG. 11. Daia from Kulikowski and King-Smith’s experiments adding
sine waves lo six different test stimuli. The lop curve in each panel is
shown for reference and is the usual psychophysical conlrast sensitivily
function; it gives the reciprocal of the threshold contrast for a simple
sinusoidal grating as a function of the spatial frequency of the grating.
The lower curves connect the data points for the sensitivity of six
“test-stimulus detectors’ calculated by the method illustrated in Figs. 9
and 10. The test stimuli were a blurry bar (upper left), an edge (upper
middle), a 3-minute wide line (upper right), a 0.3-minute line (lower

left), a triphasic light-dark pattern (lower middle) and a sine-wave
(lower right).

frequency responses of linear systems. So the curves in Fig. 11 can easily be
transformed mathematically to reveal the spatial weighting functions that
characlerize the various detectors. (Just as the spatial weighting function can
be transformed 10 give the frequency response by taking the Fourier
lransform, you can lake the inverse Fourier transform of the frequency
response (il you are willing to assume something about the phase characteris-
lics of the sysiem) in order Lo get the spatial weighting function.)

The results of this transformation are shown in Fig. 12. The weighting func-
lion of the edge delecior consisls of one excilatory region next to an inhibitory
region; the grating detector has a multilobed weighting function much like that
shown earlier for the original interpretation of the Sachs, Nachmias, and Rob-
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FIG. 12. The weighting functions characteristic of the deteclors for
which the frequency responses are shown in Fig. 11. There are only five
weighling lunctions shown because the dala for the two widths of line
(upper right and lower left in Fig. 11) were so similar. These weighting
functions were calculated from the data in Fig. 11 by using the assump-
tions that the detectors were linear and that certain kinds of symmetry
would be found in the weighting functions. Nolice that the scales on the
axes are different for the different stimuli.

son data (Fig. 5); and the other detectors have various versions of a cenler-
surround weighting lunction.

These weighting Tunctions, strictly speaking, describe the detection of the
test stimulus when the test stimulus occupies a particular location in the visuul
field (since the test stimulus was presented only in one location in these exper-
imenlts). Presumably, however, similar responses could be evoked over a wide
area of the visual field. Then you could describe the detection of an edge, for
example, by un array of the appropriate weighting functions (each weighting
function being an excitalory region next to an inhibitory region) spread over a
lurge part of the visual field. You might refer to this whole array as the “‘edge
detector™ or you might refer to each weighting function as an “‘edge detector.”
Either usage will make sense in everything that follows. In any case, in line
with the previous delinition of a “*channel,”” you might well refer lo the whole
array of weighting functions as a channel.

The channel deduced from the case where the test stimulus was a grating is
akin to a spatial-frequency channel. (It might not be exactly the same as a
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spatial-Irequency channel, because the logic used in deducing it, which ignored
probability summation, might not be quite right.) The channels deduced from
cases where the test stimuli were nonrepelitive (and therefore broadband) are
distinguished from the spatial-frequency channels by their responsiveness o a
much broader bund of spatial frequencies.

Other Predictions

It the detectors are linear, one can make two kinds of testable predictions [rom
the above data. The expected resulls for various other combination stimuli,
like edges and lines added togethér, are predictable from the weighting lunc-
tions (or equivalently from the sine-wave sensitivity profiles). And the actual
threshold of the visual system for a test stimulus alone is also predictable. The
invesligators made these predictions and checked some of them against data;
the predictions fit the data quite well.

BROADBAND FEATURE DETECTORS OR
PROBABILITY SUMMATION AMONG
SPATIAL-FREQUENCY CHANNELS?

Shapley and Tolhurst’s and Kulikowski and King-Smith's experiments and in-
lerpretalions make rather a pretty story, explaining quantitatively a variety of
interesting results. And in some ways, edge detectors and line detectors are
more appealing to common sense than are the spatial-frequency channels.
We've ull seen and drawn lines and edges, whereas sinusoidal gratings are a la-
boralory curiosity. -

Too Many Channels?

llowever, two things bothered us aboul these studies. First, almost any time a
new Lest stimulus is used a4 new feature deteclor—a new channel—is found.
How many channels are we going to end up with? Somehow it seems wrong 10
end up with an infinite number of them. In some sense of the word, of
course, there must be a dilferent channel lor each stimulus that we can name
differently; il we can recognize two things as diflerent, then somewhere in the
nervous system the responses 1o these two things must be different; the infor-
malion about the two things muslt be channeled differently at some point. But
that is not the kind of channel | thought we were studying and it is not the
kind of channel people talk about studying—we talk as if we were dealing with
# limited number of feature detectors which form an early stage in visual infor-
mation processing.
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Probability Summation

The second bolhersome thought was: “*What would happen if you tried to
tuke probability summation into account?”’, or in other words, “*Where have
all the spatial-frequency channels gone?'' Shapley and Tolhurst and Kuli-
kowski and King-Smith’s logic assumes that there is no probability summation,
thut whatever detector has the lowest threshold for the pattern will always
delect the patiern (i.e. there will be no variability from trial to trial in the rela-
tive magnilude of the responses from various detectors and thus it will never
happen thal on one trisl one delector has the biggest response and on another
trial another detector does). Using this assumption, they could indeed rule out
the possibility that any of the spatial-frequency channels detects the broadband
test stimulus. According to their logic, il a spatial-frequency channel e¢ver
detects the broadband lest stimulus (or the combination of test stimulus with a
very low contrast sine wave), then it must a/ways detect the broadband test
stimulus. And the kind of curve plotted in Fig. 11 would look like the narrow
frequency response of a spatial-frequency channel, just like the data from a
sine-plus-sine experiment. Obviously, the broadband-stimulus curves don’t
look narrow, so it does seem that the spatial-frequency delectors play no role
in Idelecling broadband stimuli.

The assumption that there is no probability summalion was certainly a rea-
sonable one 1o begin with, especially since il led to such good quantitalive
predictions. But we know thal probability summation does occur in the sine-
plus-sine experiments, so a model Lhal ignores probability summation (like
Shapley & Tolhurst’s or Kulikowski & King-Smith's) cannot explain those ex-
perimenlts completely.

Threshold for an Edge

Once you acknowledge the presence ol probability summation, it becomes
much more difficult 1o decide whether various lest stimuli are being delected
by new kinds of [eature deteclors or by conglomerates of spatial-frequency
channels. For example, you might try to make a straightforward calculation of
whal probubility summation among spatial-frequency channels would predict
about the threshold for an edge. To perform such a calculation you'd need to
know how many channels there are (which we do not know), what their fre-
quency response is (which we do not know, except at 14 cycles/degree), and
what the lower part of Lheir psychometric funclion looks like. With such a
lurge area of ignorance in which to make auxiliary assumplions it is, as you
might expect, possible to construct a model, involving only probability summa-
tion among spatial-frequency channels, that does accurately predict the thresh-
old for an edge. The problem, though, is thut when so many auxiliary assump-
lions are used to predicl sa little data, you cannol claim the successful predic-
tinn a¢ a9 claar validlatinn ol the maodel
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Sine Waves Plus Broadband Stimuli

So it seemed worthwhile 1o see whether we could devise a testable model with
fewer auxiliary assumptions, which could be checked against some other kind
of data. In particular, we asked what probability summaltion among spatial-
frequency channels would predict about the experimenits using broadband test
stimuli combined with sine waves. If these predictions had disagreed with
Shapley and Tolhurst and Kulikowski and King-Smith’s data (no matier what
kind of auxiliary assumptions were made), we would at last have had a con-
clusive demonstration of the insufficiency of spatial-frequency channels. As it
turned oul, the predictions agreed with all their data using only a few reason-
able auxiliary assumptions. This agreement gives considerable support to the
view that the only kind of channels involved in the detection of threshold
stimuli are spatial-frequency channels.

Qualitative Predictions from a Probability-Summation Model

Let's consider at a qualitative level (before going on to some quanlitalive pre-
dictions) whal you might expect to happen when a sine wave is added 1o a
broadband test stimulus, i you think the only relevant part of the visual sys-
tem is a set ol spatial-frequency channels and if you allow for probability sum-
malion.

The broadbund lest stimulus activates a certain subset of the spatial-
frequency channels: the subset that responds to the spatial frequencies of
which the test stimulus is composed. What happens when you add a sine wave
to the test stimulus? If the sine wave’s spatial frequency is nos contained in
the 1est pattern, the sine wave will not affect the channels that are responding
lo the test stimulus. So at low contrasts the added sine wave will have no
elfect at all on the threshold for a combination of itself and the test stimulus.
The sine wave will not contribute anything to the detection of the lest-plus-
sine combination until the sine wave's contrast is high enough to strongly ac-
tivate ils own spalial-frequency channel. And then the sine wave will contrib-
ule only because its own channel is probability summating with the channels
that are responding to the test slimulus, not because it is increasing the
response of any of the channels that the test stimulus is activating.

However, you would expect something quite different to happen il you add a
sine wave of a frequency that /s a substantial component of the test stimulus.
As soon as you add any of the sine wave at all, no matler how low its contrast,
you increase the likelihood of detection. When the sine wave is added, the
response of the channel tuned to the sine wave's frequency goes up from a low
level (due 1o the test stimulus alone) to a higher level. So the threshold for
detecting the test-plus-sine combination is lower than the threshold for the 1est
stimulus ualone.
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Of course, il the tesl pattern were a sine wave with the same [requency as
‘the §ing’ wave you are adding, the threshold would be even lower. In that case
you would be adding a sine wave 1o a sine wave ol the same frequency, so only
one channel would be involved in delecting either the test stimulus or the
test-plus-sine combination. For a broadband test stimulus, though, containing
many frequencies, a large number of dilferent spatial-frequency channels is in-
volved in delecting the lest stimulus. Adding a sine wave increases Lhe
response of only one (or a few) of them, so there is only a small effect on the
threshold.

More generally, if only spatial frequency channels are involved, the
eflectiveness of adding a sine wave (o a test stimulus should depend directly on
how much of that sine wave’s spatial frequency is present in the lest
stimulus—the greater the relative amount of the spatial frequency present, the
greater the elfectiveness of adding it. Notice that, qualitatively, this is whal
does happen in the experiments (Fig. 11). When a blurry bar (which conlains
only low spatial frequencies) was used, only sine waves with low spatial [re-
quencies were effective; when a triphasic light-dark-light pattern {which con-
tains only high spatial frequencies) was used, only sine waves with high spatial
frequencies were eflective.

Predictions for Simple Test Stimuli

Can we calculate quantitative predictions from a model with probabilily summa-
lion among spatial-frequency channels and no other feature detectors? For the
kind of experiment in which a sine wave is added to a test stimulus, it is rather
easy lo calculate predictions, i/ you choose a certain kind of test stimulus. Fig-
ure 13 shows the results of some calculations for four specially selecled test
stimuli. For these four stimuli, the calculations are easy because we don’t
have to worry about how many channels there are and what their bandwidths
are.

One of the four test stimuli was a sine wave graling. The other three test
stimuli consisted of two, three, or five sine waves added together. The sine
waves in any one lest stimulus were very different in frequency, so each sine
wave would aflect a different channel. The contrasts in the sine waves were
adjusted so that each of the two, three, or five channels involved was presum-
ably responding at the same level. (Il was assumed, for convenience, that a
sine wave afTects only one channel.) To carry oul the calculations, it is neces-
sary lo assume some form for a channel’s psychometric function. Purely for
convenience, the psychometric function used was a log-linear function that
spanned a range of seven log units on the log contrast axis. Neither of these
assumptions used for convenience is crucial.

Each line in Fig. 13 represents the predictions for adding a sine wave ol a
frequency contained in the test stimulus to one of the test stimuli. (The label
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FIG. 13. Quantitative predictions for the thresholds of combinations of
sine waves and cerlain test stimuli, assuming that there are only spatial-
frequency channels with probability summation among them. The four
hypothetical test stimuli consist of one, two, three, or five sinc-wave
components (as indicaled by the numbers next to the lines). See text
for further details.

next to each line identifies the test stimulus, by specifying the number of fre-
quencies it contains.) The symbols show, for various amounts of contrast in
the added sine wave, how much test-stimulus contrast is necessary to put the
test-plus-sine combination at threshold.

The plots in Fig. 13, depicting predictions from a model of probability sum-
malion among spatial-frequency channels, look just like plots of data from a
Shapley and Tolhurst or Kulikowski and King-Smith experiment (see Fig. 9).
The points fit quite well onto straight lines (although in fact the linearity is
only approximate). When the lines are extended, they hit the horizontal axis
far beyond the threshold for the single sine wave. The approximale linearity
simply shows there are many ways of getting a straight line.

The positions of the intercepts in Fig. 13 make sense according to the quali-
lative argument given earlier. To repeal briefly: When the intercept is at a
higher contrast than the threshold contrast for a sine wave alone, that means
that the sine wave is less effective in reducing the threshold for a broadband
stimulus than it is in reducing its own threshold (i.e. when the test stimulus is



also = sine wave, wilh the same frequency). The reason, according to a model
of .prehability summation among spatial-frequency channels, is that the test
stimulus is detected by several spatial-frequency channels (two, three, or five
channels for the test stimuli used here) whereas a sine wave is detected by
only one channel. Thus, when you add a sine wave to a broadband test
stimulus, you assist only one of several channels thal each contribute to detec-
lion at one lime or another (producing probability summation). When you
add a sine wave to a single sine wave of the same frequency you aflect the one
channel that is completely responsible for the detection. So, reasonably
enough, the sine wave helps more in the latler case.

Figure 13 displays another properly of the predictions from the model of
probability summation among spatial-frequency channels: The larger the
number of channels involved in detecling a test stimulus, the less il helps lo
add a sine wave to that stimulus (that is, the farther out the intercept of the
dala line with the horizontal axis). The reason for this is an extension of the
argument above: When more channels contribute to detecting the test stimu-
lus, any one channel contributes less, so the less the eflect of adding a sine
wave which affects only one channel.

Assumptions for a Quantitative Probability-Summation Model

The remaining sections of this chapter are for those readers who would like a
more detailed derivalion of quantitative predictions for the test stimuli actually
used by Shapley and Tolhurst and by Kulikowski and King-Smith, instead of
predictions that are qualitative or restricted to a special kind of test stimuli, as
discussed so far. The derivation will show that, using only a small set of reu-
sonable assumptions, we can calculate very good fits to the previously obtained
data.

We are going lo assume lhat the data result from probability summation
among a sel of spatial-frequency channels without any other, specialized,
broadband delectors al work. The calculations plotted in Fig. 13 show that
probability summation among spalial-frequency channels does predict the gen-
eral type of resulls found experimenitally when a sine wave is added lo certain
broadband stimuli. Bul we haven't yet demonstrated that such a probability-
summation model can predict quantitatively the results for various other test
stimuli as you vary the spatial frequency of the sine wave. To do so requires
either some assumplions about the number of channels, their bandwidth, and
their psychometric functions, or a general assumption that avoids those prob-
lems. 1've chosen lo make such a general assumption here because, although
it produces only an approximation of the predictions of a complete model, the
general assumption conveys a better idea of why the model makes the predic-
tions it does. And anyway the approximation is not loo bad.
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FIG. 14. Some results from sample calculations assuming only spatial-
frequency channels with probability summation among them. The hor-
izontal axis gives the proportion of the sum of the responses of all chan-
nels that is being contributed by the channel responding to the sine
wave. The vertical axis shows the effectiveness of adding the sine wave
to the test stimulus relative to the effectiveness of adding the sine wave
to itself (or, in other words, the sensitivity of the test-stimulus delector
to a sine wave divided by the sensitivity of the visual system to that sine
wave), See Lhe lower left section of Fig. 15 lor definition of the symbols
used on the axes.

To explain the motivation for the particular assumption I used ( Assumption
| in Fig. 15), the predictions from Fig. 13 are plotted in a different way in
Fig. 14. The horizontal axis of Fig. 14 gives the contribution by the one chan-
nel thal the added sine wave aclivates, as a fraction of the sum of the average
magnitudes of all channels’ responses to the test stimulus. (The average mag-
nitude of a channel’s response is simply the average peak in the channel’s
response profile, because, in terms of the models presented in the first half of
this chapler, the peak response determines whether a channel delects a
stimulus.) When the test stimulus has two sinusoidal components adjusted to
affect two channels equally, and the added sine wave affects one of those two
channels, the quantity on the horizontal axis is 1/2. When the test stimulus
has three components adjusled to affect three channels equally, the quantity is
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173, and so on. (For definitions of the symbols on Fig. 14's axes, see the bot-
tom of Fig. 15.)

Figure 14's vertical axis gives the effecliveness of adding a sine wave o the
test stimulus, relative 1o the effectiveness of adding the sine wave to itself, In
other words, the vertical axis gives the *‘sensitivity of the lest-stimulus detec-
tor™ lo a sine wave, divided by the sensitivily ol the visual system to the sine
wave. The solid points in Fig. 14 were determined from the intercepts of the
lines drawn in Fig. 13. (The other points come from other kinds of sample
calculations. The open circles come from calculations like those of Fig. 13 but
using a log-linear psychometric function spanning 5 decibels rather than 7 deci-
bels on the log contrast axis. The diamonds come from calculations using a
test stimulus composed of two sine waves far apart in [requency where the
contrasts were uof adjusted to produce equal responding in the two affected
channels but to produce several different ratios of responding; a 7 decibel
psychomelric function was used.)

Assumption 1 in Fig. 15 is a more general form of the relation suggested by
the straight line in Fig. 14. The fact that the points in Fig. 14 fall roughly
along a straight line suggests that the relative effectiveness of the added sine
wave is approximately proportional to the fraction of the total response of all
the channels that is contributed by the channel that the added sine wave ac-
tivates. [ am assuming that the proportionality shown in Fig. 14 lor a few sam-
ple calculations is true for all cases of probability summation among multiple
channels. (See Fig. 15 for a formal statement of this assumption.) Such an
assumption has the great advantage of circumventing the problems of how
many channels there are, their exact psychometric functions, etc. It is not
completely accurate, because the relative effectiveness depends not only on
what proportion of the total response a given channel contributes but also on
the distribution of the responses across the other channels. And even in the
case ol test stimuli composed of equally balanced componenlts, the relalive
effectiveness is not strictly a linear function of the fraction of total response
contributed by the added sine wave's channel. However, this assumption is
quite accurate enough for an investigation of whether probability summation
among spatial-frequency channels can predict the kind of results found when
sine waves are added to broadband stimuli.

The other assumption used here, Assumption 2 in Fig. 15, is that the aver-
age magnitude of the response of any channel to the test stimulus (more pre-
cisely, the average peak response) is proportional to the maximal sensitivity of
that channel (taken to equal the contrast sensitivity of the visual system for
that channel's center frequency) multiplied by the amount of that channel's
center frequency which is contained in the test stimulus (the magnitude of the
test stimulus spectrum at that frequency). Because this assumption is based
entirely on what happens at one spatial frequency (the channel's center fre-
quency), it is necessarily an approximation for any channel that is not extreme-
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A and B are consianis, the values of which are not known

FIG. 15. (Left) The assumplions and conclusions of a model of proba-
bility summation among multiple spatial-frequency channels for predici-
ing the results of experiments in which sine waves are added to broad-
band test stimuli.

(Right) lNlustration of the calculations involved in the probability sum-
mation model. The top curve shows the spectrum of an edge —the func-
lion giving the amount of each spatial frequency present in an edge.
The second curve is the psychophysical contrast-sensitivity function
(from Kulikowski & King-Smith) —the function giving the reciprocal of
the contrast threshold for simple sinusoidal gratings. The third curve is
the product of the first two and, according to Assumption 2 of the
probability-summation model, is proportional to the responses that an
edge produces in channels centered at different spatial requencies. The
fourth curve is the product of the second and third and is proportional
lo the “‘sensitivity of the edge detector™ as predicted by the probabilily
summation model.
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ly narrow (any channel with greater than zero bandwidth). But it is a very
good approximation for the spatial-frequency channels since, as can easily be
shown by direct calculation from the models described in the first part of this
chapter, Lhe approximation is good even for quite wide channels.

The relation of the constant of proportionality, B, to the bandwidth of the
channel does depend on the particular detection process that is assumed. To
predict a given value for the constant of proportionality, B, you need lo as-
sume 4 larger channel bandwidth when using the delection-process model that
allows for probability summation across space than when using simple peak
detection (in which case bandwidth will actually equal B if you define the spec-
trum of test stimuli carefully). The additional assumption, embodied in As-
sumption 2, that the same constant of proportionality B holds for every chan-
nel across the whole frequency range is lantamounl to the assumption that
every channel has the same bandwidth, measured on a linear frequency axis
(thus on a log frequency axis the bandwidth is broader for a low-spatial-
frequency channel than for a high). Quick’s study suggests thal this assump-
tion is quile reasonable.

Assumplion 2’s specification of the average magnitudes of the spatial-
frequency channels’ responses lo an edge is illustrated by the top three lines in
the right half of Fig. 15. The topmost line is the spectrum of an edge—how
much of each spatial frequency is present in the edge. The second, curved line
is the psychophysical contrast-sensitivity function (from Kulikowski & King-
Smith’s study), which also tells us the peak sensitivities of the channels cen-
tered at various spaltial frequencies. The third line is the product of multiplying
the functions in the first two. By Assumption 2, the value of this producl at a
given spalial [requency is proportional to the average magnitude of the
response lo an edge by the channel centered at that spatial frequency.

Quantitative Predictions from a Probability-Summation Model

Putting Assumption 1 together with Assumption 2, we can easily derive a
quanlitative prediction (see Fig. 15): The ‘‘sensilivity of the test-stimulus
detector™ (what I've been calling *‘the effectiveness of a sine wave in reducing
the threshold for the test stimulus') should be proportional to the spectrum of
the test stimulus mulliplied by the square of the conirast-sensitivily function.
Or in other words, the sensitivity of the test-stimulus detector to a given fre-
quency is predicted to be proportional to the average response magnitude of
the channel centered at that frequency multiplied by the psychophysical con-
trast sensitivity lor that frequency.

The predicted ‘‘sensitivity of the edge detector” is given by lhe bottom
curve in Fig. 15, which is the product of the second and third curves. Similar
predictions can easily be made for the other test stimuli used in Shapley and
Tolhurst’s and Kulikowski and King-Smith’s experiments.

The constant of propoertionality for these predictions ol test-stimulus detector
sensilivily, as can be seen in Fig. 15, is equal to the product of the two un-
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known constants of proportionality from Assumptions | and 2 (the conslants
do not depend on which test stimulus you are considering) divided by the sum
of all the channels® average responses to the test stimulus (this sum does, of
course, depend on which test stimulus you are considering). Thus, if you can-
not estimate the sum of all the channels’ average responses, you are left with a
different constant of proportionality for each test stimulus. In that case, you'd
have to fit the predicted sensitivities (e.g. bottom curve, Fig. 15) to the actual
data (Fig. 11) separately for each test slimulus, by finding the constant of pro-
portionality that produces the best fit. (In practice, you plot both the predicted
sensilivities and the actual data on log-sensitivily axes and shift the predictions
vertically to get the best possible fit Lo the data.)
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FIG. 16. Comparisons beiween predictions from the probability-
summalion model and data from Kulikowski and King-Smith's experi-
ments. The solid poinls are the “‘sensitivities of the test-stimulus detec-
tor"" 1o sine waves of different frequencies, as calculated from the exper-
imental data. (The same data points were shown in Fig. 11.) The lower
curve gives the predictions from the probabilily-summalion-among-spa-
tial-frequency-channels model. (The upper curve is the usual psycho-
physical contrast-sensitivily function.)

(A) Data and prediclions for experiment using a blurry bar. (B)
Edge. (C) 3.0-minute wide line. (D) 0.3-minute line. (E) Triphasic
light-dark-light pattern. No predictions are made for the sinc wave gral-
ing since it is nol a broadband stimulus.
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. Figure:- 16 shows how well the data collected by Kulikowski and King-Smith
are fit by predictions based on probability summation among spalial-frequency
channels. In each section, the lop curve is lhe visual syslem’s overall
contrast-sensitivity function, shown for reference. The poinls are Lhe experi-
menlal dala. The bottom curve is the prediction from probabilily summulion
among spatial-frequency channels. (There are no predictions for the sine-wave
grating since il is not a broadband stimulus.) As you can see, the prediclions
are a very good fit to the data. They are not perfect, of course, but neither are
the data. (By making an additional assumption, you can fit the dala almost as
well with just one [ree parameter. See the note on page 260-261.)

Remaining Problems

As mentioned earlier, Shapley and Tolhurst and Kulikowski and King-Smith
showed Lhat a few examples of lwo other kinds of data were quantitatively con-
sistent with their results from the test-stimulus-plus-sine experiment: the
results from test-stimulus-plus-another-test-stimulus experiments (such as
edge-plus-line) and the thresholds for each test stimulus alone. It can easily be
argued, on Lhe basis of some sample calculations, that the consistency found
between the data from the test-stimulus-plus-sine experiments and the data
from the test-stimulus-plus-test-stimulus experiments would be expected from
a model of probability summation among spatial-frequency channels. What
cannol be quantitatively predicted on the basis of probability summation
among spatial-frequency channels using the approach presented here are the
actual threshold conltrast values for various lest stimuli alone.

If instead of the assumptions used here, an explicit model of probabilily
summation among channels is constructed, then the thresholds for test stimuli
can be predicted and, in the process, estimates of channel density and
bandwidth are obtained (Graham, 1977). This estimale ol channel bandwidth
is in good agreement with the estimate from the sine-plus-sine experiments
like those of Sachs, Nachmias, and Robson and of Quick. Both kinds of esli-
mates depend in similar ways on the exact model assumed for the channel;
that is, on whether or not probability summation across space is included in the
model.

A possible shortcoming of the probabilitly summation model is that, in the
long run, even one free parameter 1o fit data is one too many—its value may
prove to be inconsistent with some other kind of data.

Finally, even if the collection of spatial-frequency channels could delect
broadband stimuli, it might not actually do so. An observer might, for exam-
ple, ignore the spatial-frequency channels when engaging in tasks for which
some other part of the visual system seemed more appropriate. Or there might
be inhibition among spatial-frequency channels, so that when many of them
are responding, none responds very well,
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Conclusion

At the moment, despile some remaining questions, | feel Lhere is no way (o
rule out the hypothesis that only relatively narrowband spatial-frequency chan-
nels, with probability summation, are involved in the detection of the various
kinds of stimuli used in these experiments. That hypothesis meuns that data
of the kind shown in Fig. 16, for example, from an experiment in which sine
waves of various frequencies were added to a broadband test stimulus, might
be better viewed as Lhe result of probability summation among several relative-
ly narrowband channels than as the frequency response of a single “‘test-
stimulus detector.”

As was explained earlier, however, these “‘relatively narrowband" spatial-
frequency channels may not be as narrowly tuned as was originally deduced
from the sine-plus-sine experiments. If probability summation across space
does occur, the bandwidth of these channels may turn oul to be much broader
than we at first thought,

To put this last point another way, suppose that we knew that an early stage
of the visual system consists of a set of spatial-frequency channels. Suppose
that each channel is an array of identical receptive fields (identical in all
characleristics except location in the visual field), but the characteristics ol the
receptive fields (size, in particular) vary from channel to channel. Suppose
further that there is probability summation across space (across different loca-
tions) and across channels (across different kinds of receptive field). What,
then, would be the bandwidths of these channels (what would be the Fourier
transforms of the weighting functions associated with the various channels)?
The answer is not yet known. But this much can be said. The bandwidths will
probably be greater than those deduced from sine-plus-sine experiments when
probability summation across space was ignored (although probability summa-
tion across channels was considered). But the bandwidths will probably be nar-
rower than those deduced for tesl-stimulus detectors from broadband-test-
plus-sine experiments when probability summation across channels was ignored
(probability summation across space was not very important because all the
test stimuli occupied fixed locations in the visual field). And such an inter-
mediate bandwidth is what | mean by “‘relatively’” narrowband.

Perhaps we are wrong to consider the results of detection-summation experi-
ments like those described here us telling us anything about a limited set of
parallel fealure detectors (spatial-frequency channels) early in the chain of
visual information processing. Perhaps we would do better (o consider all the
data as resulling from much more complex processes. But if we are going lo
consider these experiments as revealing the existence of parallel feature detec-
tors, it seems possible Lo explain all the psychophysical data described above
quite simply: You do nor need to conclude that there are broadband detectors,
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. like eéze detectors and line delectors, in addition to the relatively narrowband
spatial-frequency channels. Relatively narrowband channels alone, with proba-
bility summalion among them, would be sufficient. The exact characteristics of
these channels, however, remain lo be determined.

FURTHER COMMENTS FOR INTERESTED READERS

Terminology

Channels. Rather than using a purely arbitrary word Lo name a concepl, a
person often chooses a word suggestive of the concepl. Unfortunately, what
the word suggests lo one person may not be what it suggests to another. |
have used the word channel to mean a two-dimensional array or, in terms of
the physiological analogue, a collection of receptive fields that are identical ex-
cept in position. [ have heard at least two objections to this use of the word.

To some people, a ‘‘channel” should be something that produces only a sin-

gle number as its output. These people might prefer to call each single neuron
a channel. Or they might consider a channel to consist of the kind of array

that 1 call a channel plus a ‘‘detector” whose output is either the height of
peak response or perhaps a 0 or 1 depending on whether the peak response
exceeds the criterion level. (The terminology | have used is consistent with
that used in audition. The input for an auditory channel is an acoustic
waveform whose amplilude varies with time. The outpul is also a waveform,
filtered, whose amplitude varies with time. The output is a single number only
for a single instant. When we draw the analogy between audition and vision,
visual space takes the place of auditory time. So it is consistent with the usage
in audition to consider both the input and output of a visual channel to be a
waveform whose amplilude varies with spalial location.)

To some other people, a ‘‘channel’” should be something that produces a
distinctive perceptual effect—that is, the outputs of different channels should
be kept quite separate and should make qualitatively different contributions to
perception. Although my definition of “‘channels’ does net exclude their hav-
ing qualitatively different effects, the definition in no way requires it. And I do
not want to require it, at least not in this context, since it is irrelevant for the
kinds of experiments described here.

Detectors. There are several possible uses of terms like “‘line detector.” If
the bandwidth of the spatial frequency channels turns out to be wide enough,
the weighting functions associated with the channels will be of the simple
center-surround type (if symmetric). Each spatial frequency channel might
then be called an array of *'line detectors.”” These ‘‘line detectors,” however,
would not be the detectors deduced by Kulikowski and King-Smith from the
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experiments using combinations of lines and sine waves—that is, their weight-
ing functions would not be the same, except by accident.

There is another possible use of the term *‘line detector.” If it does turn out
that the detection of lines is done by a subset of the spatial-frequency chan-
nels, that subset might be called a *‘line detector.”

Modifications of the Model

Some slight modifications of the multiple-channels models described in this

chapter will have little or no effect on these models’ predictions. Three exam-
ples follow.

One peak detector or several? It was assumed here that each channel (each
array of neurons having the same kind of receptive fields) has its own peak
detector—that is, it was assumed that a pattern is above threshold for the visu-
al system when it is above threshold for at least one channel, and that it is
above threshold for a particular channel whenever the peak response in that
channel (the response of the neuron that gives a bigger response than any oth-
er neuron in that particular channel) is above some criterion. However,
without changing the predictions at all, one could instead assume that there is
only one peak detector associated with the whole collection of channels—that
is, it could be assumed that a pattern is above threshold whenever the peak
response in the whole collection of channels (the response of the neuron that

gives a bigger response than any other neuron in any channel) is abave the cri-
terion.

Peak or peak-irough detection? We could assume that the threshold is based
on peak-trough detection (the difference between the highest and lowest points
in a channel’s response profile) instead of on peak detection (the difference
between the highest point and the average across the profile). For very nar-
rowband channels, the change in assumption would not affect predictions at all.
For channels with slightly wider bandwidths (like the current idea of a spatial-
frequency channel), the change will affect the predictions somewhat. (Assum-
ing peak detection instead of peak-trough detection improves the approxima-
tion contained in Assumption 2 of the model summarized in Fig. 15.)

Retinal inhomogeneigy. A third modification that might make little difference
in the predictions of the multiple-channels model is based on retinal inhomo-
geneity. All sizes of receptive fields may not be present at all places in the reti-
na. The small receptive fields subserving high-spatial-frequency channels may
be located within and near the fovea, whereas the broader receptive fields sub-
serving low-spatial-frequency channels may be located more peripherally.
Whether or not retinal inhomogeneity makes a substantial difference in the
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predictions for aperiodic stimuli depends on several faclors, including the
bandwidth of the channels and the exact distribution of receptive field sizes.
Retinal inhomogeneity remains a potentially important factor that has not been
adequately explored.

Effect of Limited Extent of Gratings

Embodied in Assumption 2 of the model summarized in Fig. 15 is the assump-
tion that the peak sensitivity of a channel is correctly estimated by the visual
system’s contrast sensitivity for that channel’s center frequency. This assump-
tion is, unfortunately, introducing an approximation that may vary systemati-
cally with spatial-frequency. The peak sensitivity of a channel in the model is
the sensitivity for a grating containing only a single sinusoidal component. But
in order to have only a single component, the grating would have to be infinite
in extent. The contrast sensitivily of the visual system measured in an experi-
menl is of course based on sinusoidal gratings that are limited in extent. In
fact, changing the extent of gratings is known to change the shape of the
contrast-sensitivity function. In other words, changing the extent changes the
estimates of peak sensitivities by different factors for different channels.

There are good reasons, which should be incorporated into a more complete
model of multiple channels, why varying the extent of gratings might have this
experimentally observed effect. For one thing, a sine-wave grating that is lim-
ited in extent contains a band of frequencies in addition to the nominal fre-
quency and thus stimulates a number of channels. For another, if the extent
of a sine-wave graling is small enough, and the weighting functions are mul-
tilobed, the whole grating will be narrower than the weighting functions of the
most sensitive channels, and then the peak response in these channels will be
smaller than the peak in the channels’ responses lo an infinite grating. Furth-
er, the detection process in channels might depend on the exlent of a grating
in a way that would produce the observed effect of varying extent. (However,
if the detection process is either simple peak detection or peak delection with
probability summation across space, it would not depend on extent.) Finally,
as mentioned above, the retina is not completely homogeneous, so the
response may be different depending on how much of the retina is stimulated
by the grating.

Reducing the Number of Free Parameters

If you fit the data for each lest stimulus separately as was done in Fig. 16, you
are using as many free parameters as there are test stimuli. (The original in-
vesligators used as many free paramelers as there were data points.) It turns
oul that you can fit the data almost as well, and yet reduce the number of free
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lows you to estimate a quantity that is proportional to the sum of all the chan-
nels’ average responses to the test stimulus, regardless of whal the test
S‘limulus is. What you assume is that the channels are evenly spaced along the
linear spalial-frequency axis (there is no evidence on this one way or another),
Then the sum of the average responses of all the channels will be approxi-
mately proportional to the sum of the average responses of a subser of chan-
nels which have center frequencies evenly spaced along the linear spatial-
frequency axis. (In my calculatjons I used a spacing of 1 cycle/degree.) You
are then left with only one free constant (A times B divided by the constant of
p‘roporlionalily used in estimating the sum of the average responses), and that
single constant can be adjusted to fit the data for all the test stimuli simultane-
ously.

The only difference between the predictions that are obtained if one free
parameter is allowed and the predictions shown in Fig. 16 is that the vertical
position of the predicted curve for the blurry bar is higher relative to the verti-
cal positions of the predicted curves for other stimuli. This change in relative

vertical position produces somewhat less impressive, although not bad, fits
beiween data and predictions.
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Nowhere in auditory theory or in acoustic ps
praciice is there anything more ubiguitous |
band....And likely, in one way or another, it w.
Jinal undersianding of how and why we perce
reaches our ears. Students of vision have no :
entiyy 10 worry and console them. The other sen.
leriousness of this unseen—perhaps nonexisien
auditory filier [Tobias, 1970, p. 157].
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In 1967 Ira Hirsch and I completed an assignment familiar to g

'i. graduate students: Compare and contrast visual and auditory pt‘
. David and Peter Denes were putling together a book on human‘
EE% ) tion (David & Denes, 1972) and thought that some crosstalk bc
v cialist in audition and one in visual perception might be illumina

say grew lo a quite considerable length (Julesz & Hirsch, 1972)

f the finished product somewhat less satislying than I had hoped.
! had found some interesting analogies between visual and auditon
: ception, most of them represented rather complex processes at w
not been able to uncover any fundamental properties that the t

i o




