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Statistical Decision Theory
and Biological Vision

LAURENCE T. MALONEY
Institut fiir Biophysik, Freiburg, Germany

I know of only one case in mathematics of a doctrine which has been accepted
and developed by the most eminent men of their time . .. which at the same has
appeared to a succession of sound writers to be fundamenrtally false and devoid
of foundation. Yet this is quite exactly the position in respect of inverse probability
[an estimation method besed on Bayes' theorem].

R.A. Fisher (1930) Inverse Probability

Statistical Decision Theory (SDT) emerged in essentially its final form with the 1954
publication of Blackwell and Girshick’s Theory of Games and Statistical Decisions.
The elements out of which it developed antedate it, in some cases by centuries, and,
as the title indicates, an immediate stimulus to its development was the publication
of Theory of Games and Economic Behavior by von Neumann and Morgenstern
(1944/1953). Like Game Theory, SDT is normative, a set of principles that tell us
how to act so as to maximize gain and minimize loss.!

The basic metaphor of SDT is that of a game between an Observer and the World.
The Observer has imperfect information about the state of the World, analogous to
sensory information, and must choose an action from ameng a limited repertoire of
possible actions. This action, together with the true state of the World, determines its
gain or loss: whether it has stumbled off a cliff in the dark, avoided an unweicome
invitation to (be) lunch, or—most important of all—correctly responded in a psy-
chophysical task. SDT prescribes how the Observer should choose among possible
actions, given what information it has, so as to maximize its expected gain.

Bayesian Decision Theory (BDT) is a special case of SDT, but one of particular rele-
vance to & vision scientist. Recently, a number of authors (see, in particular, Knillet al.,
1996; Knill & Richards, 1996; Kersten & Schrater, this volume) have argued that BDT
and related Bayesian-inspired techniques form a particularly congenial *“language”

Perception ard the Physica! World: Psyctological and Philosophical Issues in Perception.
Edited by Dicter Heyer and Rainer Mausteld. © 2002 John Wiley & Sons, Ltd.




146 Perception and the Physical World

for modeling aspects of biological vision. We are, in effect, invited to believe that
increased familiarity with this “language’ (its concepts, terminology, and theory) will
eventually lead to a deeper understanding of biological vision through better models,
better hypotheses and better experiments. To evaluate a claim of this sort is very differ-
ent from testing a specific hypothesis concerning visual processing. The prudent, crit-
ical, or eager among vision scientists need to master the language of SDT/BDT before
evaluating, disparaging, or applying it as a framework for modeling biological vision.

Yet the presentation of SDT and BDT in research articles is typically brief. Standard
texts concerning BDT and Bayesian methods are directed to statisticians and statistical
problems. Consequently. it is difficult for the reader to separate important assumptions
underlying applications of BDT to biological vision from the computational details;
itis precisely these assumptions that need to be understood and tested experimentally.
Accordingly, this chapter is intended as an introduction for those working inbiological
vision to the elements of SDT and to their intelligent application in the development
of models of visual processing. It is divided into an introduction, four “sections”, and
a conclusion.

In the first of the four sections, I present the basic framework of SDT. including
BDT. This framework is remarkatly simple; I have chosen to present it in a way that
emphasizes its visual or geometric aspects, although the equations are there as well.
As the opening quote from Fisher aints, certain Bayesian practices remain controver-
sial. The controversy centers on the representation of belief in human judgment and
decision making, and the “updating” of belief in response to evidence. In the initial
presentation of the elements of SDT and BDT in the next section, [ will avoid contro-
versy by considering only decisions made at a single instant of time (“insiantaneous
BDT”), where the observer has complete information.

SDT comprises a “mathematical toolbox” of techniques, and anyone using it to
model decision making in biological vision must, of course, decide how to assemble
the elements into a biologically-pertinent model: SDT itseif is no more a model of vi-
sual processing than is the computer language Matlab®. The szcond section of the
article contains a discussion of the elements of SDT, how they might be combined into
biological models, and the difficulties likely to be encountered Shimojo and Nakayama
(1992), among others, have argued that optimal Bayesian computations require more
“data” about the world than any organism could possibly leam or store. Their ar-
gument seems conclusive. If organisms are to have accurate estimates of relevant
probabilities in moderately complex visual tasks, then they must have the capability
to assign probabilities to events they have never encountered, and to estimate gains for
actions they have never taken. The implications of this claim are discussed.

The third section comprises two “challenges” to the Bayesian approach, the first
concerning the status of the visual representation in BDT-derived models. To date,
essentially all applications of BDT to biological vision have been attempts to model
the process of arriving at internal estimates of depth, color, shape, etc., with little
consideration of the real consequences of errors in estimation. A typical “default”
goal is to minimize the least-squere error of the estimate. But the consequences of
errors in, for example, depth estimation depend on the specific visual task that the
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organism is engaged in—leaping a chasm, say, versus tossing a stone at a target. BDT
is inessence a way to choose among actions given kncwledge of their consequences:
it is equally applicable to leaping chasms, and to tossing stones. What is not obvious
is how BDT can be used to compute internal estimates when the real consequences
of error are not known. This discussion is evidently relevant (o issues concerning
perception and action raised by Milner and Goodale (1996) and others.

The second challenge concerns vision across time and what 1 will call the updating
problem. Instantaneous BDT assumes that, in each instant of time, the ervironment
is essentially stochastic Given full knowledge of the distributions of the possible
outcomes, instantaneous BDT prescribes how to choose the optimal action. Across
time, however, the distributional information may itszlf change, and change deter-
ministically. The amount of light available outdoors in terrestrial environments varies
stochastically from day to day but also cycles deterministically over every 24-hour
period. I describe a class of Augmented Bayes Observers that can anticipate such
patterned change and make use of it.

A recurring criticism of Bayesian biological vision is that is computationally im-
plausible. Givén that we know essentially nothing about the computational resources
of the brain, this sort of criticism is premature. Nevertheless, it is instructive to con-
sider possible implementations of BDT, and the fourth section of the article discusses
what might be called “Bayesian computation™ and its computational complexity.

Blackwell and Girshick’s Theory of Games and Statistical Decisions appeared just
300 years afterthe 1654 correspondence of Pascal and Fermat in which they developed
the modern concepts of expectation and decision making guided by expectation max-
imization (reported in Huygens, 1657; Arnauld 1662/1964; see Ramsey, 1931a). It
appeared obvious to Pascal, Fermat, Arnauld and their successors that any reasonable
and reasonably intelligent person would act so as to maximize gain. It is a peculiar
fact that all of the ideas underlying SDT and BDT (probabilistic representation of
evidence, expectation maximization, etc.) were originally intended to serve as both
normative and descriptive models of human judgmen: and decision making. Many
advocates of a “Bayesian framework” for biological vision find itequally evident that
perceptual processing can be construed as maximizing an expectzd gain (Knill et al.,
1986; Kersten & Schrater, this volume).

Itis therefore important to recognize that, as a model of conscicus human judgment
and decision mraking, BDT has proven to be fundamentally wrong (Green & Swets,
1966/1974; Edwards, 1968; Tversky & Kahneman, 1971, 1973, 1970; Kahneman &
Tversky, 1972; see also Kahneman & Slovic, 1982; Nisbett & Ross, 1982). People’s
use of probabilities and information concerning possible gains deviates in many re-
spects from normative use as prescribed by SDT/BDT and the axioms of probability
theory. The observed deviations are large and patterned, suggesting that, in making de-
cisions consciously, human observers are following ruies other than those prescribed
by SDT/BDT.

Therefore, those who argue that the Bayesian approach is a “necessary”, *obvious™
or “natural” framework for perceptual processing (Knill et al., 1996: Kersten &
Schrater, this volume) should perhaps explain why the same framework fails as a
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model of human conscious judgment, for which it was developed. It would be inter-
esting to systematically compare “cognitive” failures in reasoning about probability,
gain, and expectation to performance in analogous visually-guided tasks. I will return
to this point in the final discussion.

A companion article in this volume (Kersten & Schrater, this volume) contains a
review of recent work in Bayesian biological vision, and a second compan:on article
(von der Twer, Heyer & Mausfeld, this volume) contains a spirited critique. Knill
and Richards (1996) is a good starting point for the reader interested in past work.
Williams (1954) is still a delightful introduction to Game Thecry, a component of
SDT. Ferguson (1967) is an advanced mathematical presentation of SDT and BDT,
while Berger (1985) and O’Hagan (1994) are excellent, modern presentations with
emphasis on statistical issues.

AN OUTLINE OF STATISTICAL DECISION THEORY

... to judge what one ought to do 1 obtain a good or avoid an evil, one must not only
consider the good and evil in itself, but also the probability that it will or will not hapven;
and view geometrically? the proportion that all these things have together . . ..

A. Amauld (1662/1964) Logic, or the Art of Thinking

ELEMENTS

As mentioned zbove, Statistical Decision Theory (Blackwell & Girshick, 1954) de-
veloped out of Game Theory (von Neumann & Morgenstern, 1944/1953), and the
basic ideas underlying it are still most easily explained in the context of a game with
two players, to whom I'll refer as the Observer and the World.

In any particular application of Statistical Decision Theory (SDT) in biological
vision, the Observer and the World take on specific identities. The possible states
of the World may comprise a list of distances to surfaces in all directions away
from the Observer, while the Observer is a depth estimation algonthm. Alternatively,
the World may have only two possible states (SIGNAL and NO-SIGNAL) and the
Observer judges the state of the World. As these examples suggest, the same organism
may employ different choices of “Observer”, “World”, and the other elements of BDT
in carrying out different visual tasks via different visual “modules”.

In both of these examples, the Observer’s task is to estimate the state of the World.
SDT and the subset of it known as Bayesian Decision Theory (BDT) are typically
used to model estimation tasks within biological vision: “the World is in an unknown
state; estimate the unknown state”. Recent textbooks tend to emphasize estimation,
and vision scientists do tend to view early visual processing as fundamentally an
estimation task (Marr, 1982; Wandell, 1995; Knill & Richards, 1996).

Yet SDT itself has potentially broader applications: earlier presentations (Blackwell
& Girshick, 1954; Ferguson, 1967) emphasized that SDT is fundamentally a theory
of preferable actions, with estimation regarded as only one particular kind of action.
Rather than estimate the distance to a nearby object, the Observer can decide whether
it is desirable to throw something atit, or to run away, or both, or neither. And, rather
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than assess whether a SIGNAL is or is not present, the Observer may concentrate on
what to tell the experimenter in a signal detection task, so as to maximize his reward.
In both cases the emphasis is on the consequences of the Observer’s actions, and
the Observer’s “accuracy” in estimating the state of the World is of only secondary
concern, if it is of any concern at all.

What is constant in all applications of SDT is that (1) the Observer has imperfect
information about the World through a process analogous to sensation, that (2) the
Observer acts upon the World, and that (3) the Observer is rewarded as a function of
the state of the World and its own actions. I'll begin by describing the elements of
SDT (and eventualty BDT) at a single instant of time. We are not yet concerned with
past or future but only with selecting the best action at one point in time that I'll refer
to as a turn.

On each turn, the World is in one of several possible states,

62{91102»'-'vem}v (6,1)

and the current state of the World is denoted .. Each of the states of the World can
be a vecior (a list of numbers) and need not be just a single number. In any modeling
application, the World need only include the information needed 10 determine the
consequences of the Observer’s possible actions.

On each turn, the Observer’s selects one of its possible actions,

A={a1,a2,...,ﬁ.n}. (6'2)

Each action can be a vector {a list of actions). An action might, for example, specify
a sequernce of motor commands to be issued. The chosen action is denoted . The
current state of the World and the Observer’s choice of action together determine
the Observer’s gain. The gain function, G(a, 8), is simply a tabulation of the gain
corresponding to any combination of World state and action.

If the current state of the world, 6., were known, it would be a very simple matter
to find an action a, that maximized G(a,, 6,), the gain to the Observer (there may
be several actions that each maximize gain). We will assume that the Observer does
not have direct knowledge of the current state of the World and must select an action
without knowing precisely what gain will result. The framework developed so far is
that of Game Theory, and any text on Game Theory contains descriptions of strategies
to employ when we have no information about the current state of the Word (for
example, Williams, 1954).

Within the framework of Statistical Decision Theory, the Observer has additional,
imperfect information about the current state of the World, in the form of a random
variable, X, whose distributicn depends upon it. The random variable, X, which serves
to model sensory iaput, can only take on values® in a set of sensory states,

X={xux2 -+ Xp} (6.3)

Again, each of the sensory states can be a vector. For example, the current sensory
state could comprise the instantaneous excitations of all of the retinal photoreczptors
of an organism. The probability of taking on any particular value x, during the current
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turn depends, at least formally, on the current state of the world, 0,. The likelihood
function,

MBi, xj) = P[X = x; 16, = 6], (6.4)

serves as a summary of these conditional probabilities. I will refer to the current value
of X on the current turn as the Observer’s current sensory state, denoted x..

On a single turn, the only useful information available to the Observer about the
current state of the World is the sensory state, the value of the random variable X.
I will assume, for now, that his choice of action, o, is completely determined by this
current sensory state, x.. We can then write,

a (deterministic) decision rule.* Since X, is a random variable, so is a,, and so is the
gain, G(3(xs),0.).

There are n” possible, distinct decision rules (each of the p sensory states can be
mapped to any one of n possible actions). Because there are only a finite number of
possible World states, possible Sensory states, possible Actions, and possible decision
rules, I will be able to present SDT ina very straightforward and intuitive manner. In the
section titled “The continuous case” (p. 158), I'll describe how the basic mathematical
results of the theory change once we abandon the assumption of finiteness.

For any given choice of rule, we can compute the expected gain (EG) for any
particular state of the World, 9,

EG@®,0) = Z A(O, x;)G(B(x;), 8). (6.6)
j=12,..p

The expected gain depends upon both the decision rule, , and the unknown state
of the World, 8. SDT assumes that all preferences among rules are determined by
the expected gains. Statistical Decision Theory is the study of how to choose a good
decision rule, 3. Its elements are summarized in Figure 6.1. We next consider criteria
that help us decide which rules are “better” than others.

DOMINANCE AND ADMISSIBILITY

For now, let’s assume that there are only two possible World states, 8, and 8,. Each of
the points in Figure 6.2 corresponds to a decision rule. For each rule, 8, the expected
gain EG(3, ;) in World state 8 is plotted on the horizontal axis versus the expected
gain EG(3, 0, ) in World state 6,. I'll refer to this point as the gains point corresponding
to the rule. Of course, two rules may share a single gains point if they result inidentical
expected gain in each World state. I’l] sometimes refer to “the rules corresponding
to a particular gains point” or “a rule corresponding to a particular gains point”. If
there were more than two World states we would add dimensions to this gains plor,
but each decisicn rule weuld still map to a single point in this higher dimensional
space.
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decision

A d(x) X

Figure 6.1 The elements of Statistical Decision Theory. The three sets at the vertices are ©,
the possible szates of the World, X, the possible sensory states, and A, the available actions.
The three edges correspond to the gain function, G, the likelihood function, A, and the decision
rule, 3.

Next, consider the expected gains obtainable from each of the three rules labeled
81, 8,, and 33. Expected gain increases as we go up or to the right in the graph
in Figure 6.2. Examining the rules, it is clear that some of them have higher gain
than others, independent of the state of the World. Rule 83, in particular, is a sad
creature. No matter what the state of the World, rule 8, has a higher expected gain
than rule 83. Rule 3, is said to dominate rule 83 and it is evident that rule 35 should
never beemployed if rule 8, is available. The exact definition of dominance is slightly
more complicated: one rule is said to dominate a second if its expected gain is never
less than that of thz second rule for any state of the World, and is strictly greater for at

9,
L]

> )
CDN L L] 2
< 0
) 3
5§

EG(8,6,)

Figure 62 A gain: plot. For any decision rule 8, we plot its expected gain in the firsi World
state, E£G(8, 8;), on the first axis, its expected.gain in the second World state, EG (3, 6;), on the
second, etc. The resalting gains points for three rules are shown, labeled &;, 8,, and 55. The
plot shown is two-dimensional and, consequently, can only correspond to a World with two
states. If there are m World statzs the gains plot will be m-dimensional.
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EG(5,6,)

EG(5,0,)

Figure 6.3 Dominance. Examples of a dominated rule, 83, and two admissible rules 3, and
8 in a gains plot are shown. The rule 8 is dominated by the rule 8, since the latter has a higher
expected gain in both World states. It is also dominated by the rule 8, since the later has the
same expected gain in one World state and a strictly higher expected gain in the other. The
dominance shadow of 8,, enclosing 3,, is shown. A rule whose gains points fall in this region
(including the edges but not the Northeast vertex) is dominated by rule &;.

least one state of the World. By this definition, rule 8, dominates rule 83, even though
the two rules have the same expected gain in World state 2. The dotted lines in the
gains plot in Figure 6.3 sketch out the “dominance shadows” of one of the rules. Any
rule falling in the dominance shadow of a second is dominated by it.

Rule 3, does not dominate rule 8, in Figure 6.2, nor does rule 8, dominate rule 5.
Rules that are dominated by no other rule are admissible rules (Ferguson, 1967). The
wise decision maker, in choosing a rule, confines his attention to the admissible rules.

MIXTURE RULES

Given two rules, 8, and &,, we can create a new rule d by mixing them as follows:
“Given the current sensory state x., take action d1(x, ) with probability g, otherwise
take action 8,(x,).” The new rule is an example of a randomized decision rule or
mixture rule. We will use the letter d to denote such rules. From now on I’ll refer
to the original, non-randomized decision rules as deterministic rules. While there
are only finitely many deterministic rules, the mixture of any two of them results in
infinitely many randomized decision rules, one for each value of g. The application
of a mixture rule to the current sensory state is, accordingly, dencted d(x..).

When the mixture probability g is 1, the resulting mixture rule is identical to the
deterministic rule 8;(x. ), 5o we can regard all of the deterministic rules as mixture
rules as well. The expected gain of a mixture rule is easily computed,

EG(d, 0,) =qEG(d,,0,)+ (1 —q)EG(3,, 6.) (6.7)

that is, one may expect to receive the expected gain associated with rule 8, with
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Mixture rule

g

EG( 9, 6,)

EG(8,6))

Figure 6.4 Mixture rules. The upper-right edge of the shaded triangle contains the gains points
for all the randomized decision rules resulting from probabilistic mixtures of the deterministic
rules, 3, and 3;. The triangle contains the gains points of all randomized rules resulting from
probabilistic mixtures of 8, 8, and 84. The rule 8, is dominated by several of the rules resulting
from mixtures of & and 8,, and one dominance shadow containing 84 is shown. Note that
3, is dominated by a mixture of 8, and 8, but not by either 8, or 8, alone.

probability ¢, and otherwise, with probability 1-g, the expected gain associated with
rule 8;. Further, it is permissible to mix mixture rules to get new mixture rules.

The graphical representation of mixture rules is very simple: as g is varied between 1
and 0, the gain points corresponding to the new mixture rules fall on the line sesgment
joining the points corresponding to &, and 8, (see Figure 6.4). If we mix the new
mixture rules corresponding to points along this line segment with the point labeled
d4, the resulting points fill a triangle with vertices labeled 3,, 8,, and 84. These are
precisely the expected gains in the two World states that can be achieved, given the
three determinist:c rules and all their mixtures. Note that 84 is not dominated by
either of the deterministic rules 8, or 8, but is dominated by a mixture of the two. The
dominance shadow of one of the mixtures that dominates 8, is shown in Figure 6.4.

The shaded area in any gains plot (the region of achievable gains) will always
be convex,® and the admissible rules will correspond to points along its upper-right
frontier. The admissible rules in the gains plot in Figure 6.4 are precisely the mixtures
of 8, and 9, including, of course, the two deterministic rales themselves.

From now on, the term “rule” will be used to refer to both mixture ruies and
deterministic rules considered as special cases of mixture rules. The letter used to
denote a rule will typically be d.

EXAMPLE: THE THEORY OF SIGNAL DETECTABILITY

Consider a very simple perceptual task: The World is in one of two states,

© = {SIGNAL, NO-SIGNAL} (6.8)
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and the Observer has two possible actions,
A = {SAY-YES, SAY-NO} (6.9)

The sensory information X available to the Observer has different distributions, de-
pending on the state of the World, known in the Theory of Signal Detectability (TSD)’
as the signal - noise distribution and the noise distribution. These two distributions,
taken together, determine the likelihood function introduced above. Much work in
TSD theory begins with an explicit assumption concerning the parametric form of
the signal + noise and noise distributions (Green & Swets 1966/1974; Egan, 1975)
but the particular choice of distributions is not relevant to this example.

TSD can be treated as an application of SDT (Statistical Decision Theory) to the
simple problem just outlined (Green & Swets, 1966/1974; Egan, 1975).% We can define
the gain function as follows: one unit of gain results if the state of the World is SIGNAL
and the action selected is SAY-YES or if the state of the world is NO-SIGNAL and
the action selected is SAY-NO. Otherwise the gain is 0. The expected gain is easily
computed: when the state of the World is SIGNAL, it is the probability of SAY-YES,
when the state of the World is NO-SIGNAL, it is the probability of SAY-NO. In
the standard terminology of TSD, these two probabilities are referred to as the HIT
rate, denoted H, and the CORRECT-REJECTION rate, denoted CR. Figure 6.5 is the
gains plot for this version of TSD. The convex shaded area corresponds to the gains

P[ HIT | SIGNAL]

o
0 P[CR NO-SIGNAL] 1

Figure 6.5 A gains plot for a version of the Theory of Signal Detectability. The two possible
World states are SIGNAL and NO-SIGNAL, and the expected gains are the probability of
saying YES when the World state is SIGNAL (a “Hit” in the terminology of TSD) and the
probability of saying NO when it is NO-SIGNAL (a “Correct Rejection™). The gains points
corresponding to admissible rules (bold solid contour) form the “ROC curve” of TSD, reflected
around the vertical axis (in TSD it is customary to plot the False Alarm rate on the horizontal
axis, not the Correct Rejection rate). The shape of the ROC curve depends on the choice of the
underlying distributions and it may be smooth or polygonal as shown here (Egan, 1975).
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achievable by any possible rule. The admissible rules fall on the darkened edge facing
up and to the right, as shown.

Of course, the set of admissible rules is precisely the Receiver Operating Character-
istic (ROC) curve® of TSD, slightly disguised. We plotted CR as the measure of gain
along the horizontal axis where the World-state is NO-SIGNAL. InTSD, it is custom-
ary to use the FALSE-ALARM rate, denoted FA, which is just 1-CR. The neteffect of
this is simply to dip the normal TSD plot around the vertical axis. Viewed in a mirror,
the locus of admissible rules takes on the appearance of the familiar ROC curve.

The shaded area represents all the possible observable performances for the Ob-
server. Even if th: Observer attempts to do as badly as possible in the task, for example,
by replying YES when NO is dictated by an admissible rule, his performance will
just fall on the mirror of the ROC curve, the locus of optimally-perverse performance.
Even if he switches from rule to rule at random, his averaged performance will fall
somewhere within the shaded area.

ORDERING THE RULES

The reader familiar with TSD may have remarked that we neglected to include some
of the familiar components of TSD, notably the prior probability that a signal will
occur. We will introduce such prior distributions in the next section, remedying the
omission. However, it is important to realize that Statistical Decision Theory (SDT)
is not limited to the case where we know the prior probability that the World is in
any one of its states. It is applicable even when the World state cannot reasonably be
modeled as a random variable, as, for example, when the World is another creature
capable of anticipating any strategy we develop and dedicated to defeating us. It is
important to understand what is gained through knowing this prior distribution and
what is lost by acting as if it were known when in fact, it is not.

Note that SDT, as developed so far, cannot, in general, tell us which of two rules
to choose. Only in the special case where one rule dominates the other, is it clear that
the dominated rule can only lead to reduced expected gain. Although SDT cannot tell
us which rule is the best, we can assume that the best rule will be an admissible rule.

We seek an ordering criterion that allows us to order the rules unambiguously, and
to select the best among them. The Bayes criterion, presented in the next section, is
such a criterion.

[An aside: The literature concerning Bayesian approaches to biological vision is
almostentirely concerned with rules judged to be optimal by the Beyes criter.on. The
Bayes criterion can also be used to order rules (and visual systems) that are distinctly
sub-optimal. We'll return to this point in later sections.]

There are plausible criteria for ordering the rules other than Bayes. The remainder of
this section concerns a second ordering criterion, the Maximin criterion. The Maximin
critericn of Game Theory (von Neumann & Morgenstern, 1944/1953) assigns to each
rule its “worst case” gain: for any rule 8, the Maximin gain is,

Mm(3) = min EG(8, 6). (6.10)
fe®

The expected gain for rule 8 can be no less than Mm(8), no matier what the state




156 Perception and the Physical World

The Maximin
rule(s)

EG(5,6,)

EG(8,8,)

Figure 6.6 Graphical computation of the gains point corresponding to the Maximin rule. The
“wedge” slides along the 45-degree line from upper-right to lower-left until it just touches the
convex area at the point surrounded by a “blast”. Any rule with this gains point is a Maximin rule.

of the World. The rules are now ordered by their Maximin gains, and the rule with
largest Maximin gain is a Maximin rule (whose Maximin gain is the maximum of the
minima of the gains of all the rules).

The gains plotin Figure 6.6 serves to illustrate how a Maximin rule can be defined
graphically. The right-angled wedge “slides down” the 45 degree line until it first
touches the convex set of gains. Any rule corresponding to this pcint (there may be
several) is a Maximin rule. If you compare the gains for a Maximin rule to that for any
of the other possible rules, you will find that in at least one World state, the second
rule would do warse.

The Maximin criterion is particularly appropriate when the Observer faces an
implacable, omniscient World, capable of anticipating the strategic options of the
Observer and taking advantage of any error. The Maximin Observer is guaranteed the
Maximin gain no matter what the World chooses to do. Should the World prove to be
a bit dim, indifferent, or even benevolent, the Maximin Observer can only do better.

The Maximin criterion can, of course, be used to order any two rules, admissible or
not. Graphicaily defined, the better rule is the one whose gain point in the gains plot
(Figure 6.6) first'” touches the sliding wedge as it goes from upper-right to lower-left.

Savage (1954) criticizes the use cof the Maximin criterion, notably its excessive
pessimism. In particular, the Maximin Observer makes no use of any non-sensory
information he may have about the state of the World. Of course, this in itself is not
unreasonable. If, for example, the World is an intelligent opponent, there is reason for
him to act “improbably” precisely so as to gain an advantage. Little Red Riding Hood
had an accurate prior belief that wolves were not often present in Grandmother’s house,
and certainly not in Grandmother’s bed. The Wolf took advantage of her prior belief.
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PRIOR DISTRIBUTION AND BAYES’ GAIN

Like Maximin Theory, Bayesian Decision Theory (BDT) provides a criterion for
imposing a complete ordering on all rules, specifying when two rules are Bayes-
equivalent, and otherwise which of the two is the better. It can also tell us which, of
all the rules, is the best. In making the transition to Bayesian theory, we must first
assume that the current state of the World is drawn at random from among the possible
states of the World, ®: the Intelligent, Malevolent World of Game Theory has been
reduced to a setof dice. The probability that state 6 is p.cked is denoted () and the
probability mass function w(8) is referred to as the prior distribution or simply the
prior on the states of the World.

The ordering principle inherent in BDT is based on the expected Bayes’ gain of
each rule d, defined as,

EBG(8) = Zw(O)EG(S, 9), (6.11)

8e©

The expected Bayes’ gain is the “Expected Expected Gain”, averaging across the
states of the World. According to the Bayes criterion, one rule is better than a second
if its EBG is greater. Any rule with the maximum EBG is a Bayes’ rule.

The graphical definition of the Bayes’ rule is particularly pleasing. Consider, in
Figure 6.7, the solid line that passes through the points (0, 0) and ((6;), (7(82)), the
prior line. The dashed lines are perpendicular to the prior, and the points on each of
these dashed lines satisfy,

EBG(d) = n(8,)EG (8, 8;) + m(6,2) EG (3, 8,) = constant (6.12)

These are the lines of constant (expected) Bayes’ gain''; any two rules that fall on
a single line of constant Bayes’ gain have the same Bayes’ gain: they are Bayes-
equivalent. Bayes’ gain increases as we travel up or to the right, and the optimal
rules, according to the Bayes criterion, correspond to the point or points lying on the
dashed line that just “touches” the upper-right frontier of the convex set of possible
gains (marked in Figure 6.7). The ordering of the rules is the ordering of the lines of
constant Bayes’ gain.

If one accepts the assumptions of SDT and the additional assumption that there
is a known prior on the (randomly-selected) states of the World, and if one seeks to
maximize Bayes’ gain, any Bayes’ rule is the optimal decision rule. Pleass re-read
the previous sentence.

The consequences of having the wrong prior distribution are very easy to visualize.
In Figure 6.8 thedashed lines of constant Bayes’ gain correspond toan incorrect choice
of prior distribution. The solid line corresponds to the correct one. The incorrect and
correct maximum gains points are highlighted and a double-arrow line shows the
amount of Bayes gain lost by choosing the incorrect prior.

It is also interesting to consider the relation between the ordering of rules induced
by the Maximin criterion and the ordering of rules induced by the Bayes criterion for
a given prior. Is there a prior distribution such that the gains point correspending to
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EG(5,6,)

EG(8,8,)

Figure 6.7 A graphical computation of the gains point corresponding to a Bayes rule for a
given prior. (a) The bold vector has, as coordinates, the prior probabilities of the World states:
(m(8,), m(8,))'. The dashed lines are al! perpendicular to the prior vector: they are the lines of
equivalent Bayes' gain. All rules whose gains points fall on the same line of equivalznt Bayes’
gain have the same Bayes’ gain. The Bayes’ gain for these lines increases as the line is further
to the North and East. The gain point with the highest Bayes’ gain is marked with a “blast”.
The rules corresponding to this gain point are the Bayes rules for this prior. (b) The same plot,
but for a different choice of prior. Note that the gain point of the Bayes rules has changed.

the Maximin rule is among the gains points corresponding to the Bayes’ rule? The
answer is yes: there is always'? a choice of prior such that the gains point for any
admissible rule is among the gains points of the Bayes’ rule for that prior (Ferguson,
1967). As the Maximin rule is admissible, there must be a choice of prior that results
in a Bayes point that has the same gains point as the Maximin rule.

This prior is sometimes, but not always, the maximally-uninformative or uniform
prior that assigns equal probability :0 every World state, but it need not be. Figure 6.9
contains three diagrams, the first illustrating a case where it is, and two where it is not.

[A caution: When there are more than two World states, the geometric version of the
Bayesian approach remains valid. The prior line remains a line, but the perpendicular
lines of constant Bayes’ gain become planes or hyper-planes. The ordering of these
planes along the prior line induces the ordering of the rules.]

THE CONTINUOUS CASE

I've presented SDT and BDT in the special case where the number of possible World
states, possible Sensory states, and possible actions are all finite. So socn as this
finiteness assumption is abandoned, both the derivation and presentation of the basic
results of the theory become difficult. Remarkably, the basic geometric :ntuitions
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The correct
Bayes rule(s)

P The incorrect
k Bayes rule(s)

EG(5,6,)

EG(4,6,)

Figure 6.8 Consequences of selecting an incorrect prior. The dotted lines mark the lo-
cation of the gain point of the Bayes rules for a prior distribution that is incorrect. The
lines of equivalent Bayes’ gain for the true prior are shown as solid line. Note that the
Bayes rules for the incorrect prior share a Bayes’ gain strictly inferior to the Bayes’ gain
for the true Bayes’ rules. The double-headed arrow marks the cost of having incorrect prior
information.

remain more or less intact, even when the gains plot becomes infinite-dimensional.
The corresponding proofs become difficult and non-intuitive, and center on issues of
existence. Is there always one or more admissible rules, a Maximin rule, a Bayes’ rule
for every prior? (“No”, “No”, “No”.) Even when a Bayes’ rule does not exist, we can
typically find rules that, although they are not admissible, come as close as we like to
the performance of the non-existent Bayes’ rule. Ferguson (1967) presents this diffi-
cult material very clearly with constant reliance on geometric intuition accumulated
in consideration of the finite case.

To translate from the finite case to what I will refer to &s the continuous case, we
need only change the notation above slightly. Recall that 8, x, and a were potentially
vectors above, something we made no use of (and will make no use of). The sets
0, A, and X are subsets of real vector spaces of possibly different dimensions, the
gain function G («, 8) is defined as before, and the likelinood function (6, ) is a
probability density function on x for any choice of the world state 6 (.t is a parametric
family of probability density functions with parameter 0). The summation signs in the
finite case are replaced by integrals. Expected gain (Equation 6.6) becomes (replacing
the notation for a deterministic decision rule 8 by that for a randomized rule d),

EG(d,0) = /x(e, X)G(d(x), 0)dx, (6.13)

a multidimensional integral if X is a subset of a multidimensional real space.
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Expected Bayes’ gain (Equation (6.11)) becomes,
EBG(d) = /’IT((‘))EG(d, 0)deo, (6.14)

which is a multidimensional integral if 8 is multidimensional. Substituting Equation
(6.13) into Equetion (6.14), we find that

EBG®) = // w(OIA(O, x)G(d(x), 0) dxdo. (6.15)

If, fora given prior, there is a rule whose expected Bayes’ gain, computed by the pre-
vious equation, is greater than or equal to that of all otherrules, then it is a Bayes’ rule.

BAYES’ THEOREM AND THE POSTERIOR DISTRIBUTION

A vision scientist familiar with the usual presentation of BDT in the vision literature
may feel that scmething is missing. We have developed Bayesian Decision Theory
without mentioning Bayes’ Theorem! A version of Bayes’ Thecrem!'? is often the
first equation to appear in a vision article concerned with Bayesian approaches. In
fact, Bayes’ Theorem plays a very minor role in BDT, serving only to help us develop
a clever way to compute optimal rules based on Equation (6.11; or (6.14). Bayes’
Theorem lets us develop a simple method for computing the rule 4 that maximizes,

(%9 9)o7

EG(8,8,)

EBG®) = f / m(OINO, x)G(d(x), 0)dxd8. (6.16)

In this section, I'1l first describe how Bayes” Theorem allows us te simplify Equation
(6.16). Of course, were we ignorant of Bayes’ Theorem, we could still maximize
Equation (6.16) numerically by choice of d (see O’Hagan, 1994, Ch. 8).

First note that the likelihood function A(8, x) is, within the framework of BDT, a
conditional distribution f(x |8) of the random variable x on the random variable 6
and, by a variant of Bayes’ Theorem,'* we can find probability density functions g
and 4 such that,

(%99 )oq

EG(5,8,)

S(x10)m(8) = g(8]x)A(X) (6.17)

Substituting the right-hand side of Equation (6.17) into Equation (6.16), and reversing
the order of integration by Fubini’s Theorem (Buck, 1978), we have,

(‘e 9)oF

EBG() = / [ f £(81X)G(d(x), e)de] h(x)dx (6.18)

The probability density function A(x) is non-negative: to maximize the outer integral,
it suffices to maximize the inner integral separately for each choice of x, plausibly a
simpler computation than the maximization of the original integral.

the Maximin rule is marked with a white starburst, the gains point corresponding to the Bayes’ rule with uniform prior is marked with a shaded

uninformative) prior. (b) and (c). The prior of the Bayes’ rule corresponding to the Maximin rule is not uniform. The gains point corresponding to
starburst.

Figure 6.9 Maximin and Bayes. The Maximin rule has the same gains point (marked with a starburst) as the Bayes’ rule with a uniform (maximally-
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This method of computation, made possible by an application of Bayes’ Theorem,
has a straightforward interpretation. Once the Observer, following a Bayes’ rule,
has learned the current Sensory state x., he effectively forgets that there were ever
alternative outcomes for the Sensory state and chooses his action « so to meximize,

f 80| x+x)G(a, 8)d6 (6.19)

the expected gain with respect to the posterior distribution g(8 | x.)on 8. At this point,
the current sensory state (or rather, its realization) x, is known, ron-stochastic. We
can interpret the posterior distribution as an updated prior distribution and, arguably,
the Observer should use it, rather than the prior on a subsequent turn, all else being
equal. This use of the posterior as the new prior is a controversial aspect of Bayesian
theory, and I'll return to it in the third section.

SDT AS A MODEL OF BIOLOGICAL VISUAL PROCESSING

This model will be a simplification and an idealization, and consequently, a falsification. It
is to be hoped that the features retained for discussion are those of greatest importance in
the present state of knowledge.

AM. Turing (1952) The Chemical Basis of Morphogenesis

Let us distinguish two possible applications of instantaneous BDT to biological vision.
We could, first of all, use SDT/BDT to model the instantaneous visual environment
of an Observer, making no claims about how the Observer processes visual informa-
tion. Most psychophysical experiments are instantiations of instantaneous Bayesian
environments designed by an Experimenter: there is a well-defined and typically small
set of possible world states with specific prior probabilities and a limited set of actions
available to the Observer, etc. The Experimenter takes care that the state of the World
on any trial is a random variable, independent of the state of the World on other trials.
We could apply the results of the previous section to compute the expected Bayes gain
of an Ideal Bayesian Observer in such an experiment and compare ideal performance
to the Observer’s performance. This sort of application of BDT is important {Geisler,
1989; Wandell, 1995) but neither new nor controversial.

Alternatively, we could develop a model of human visual processing as a Bayesian
Observer which,'3 given sensory information, employs BDT to maximize its ex-
pected Bayes’ gain. If this Bayesian Observer had perfect information concerning
the likelihood function, gain function, prior, and so forth, then it is simply the Ideal
Observer just discussed. When human performance in a visual task falls shortof ideal,
as is typical (Geisler, 1989), the Ideal Observer is evidently an inappropriate model
for human visual processing.

In this section, I consider, as candidate models of human visual processing,
Bayesian Observers that have less than perfect information concerning the gain func-
tion and prior probabilities. (We could also consider Bayesian Observers that have
less than perfect information concerning the other elements of SDT/BDT such as the
likelihood function, but we will not do so here.)
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In the previous section we saw that the Bayes criterion not only allows us to
determine which rules are optimal (the Bayes rules) but also how to order all rules,
optimal or not. In Figure 6.8 we saw how an incorrect choice of prior affects the
expected Bayes’ zain of an otherwise optimal Bayesian Observer, and we can similarly
evaluate the consequences of choosing an incorrect gain function. In brief, within
the framework described in the previous section, we can analyze and compare the
performances of all Bayesian Observers from bad to (nearly) ideal. Such Non-ideal
Bayesian Observers would seem to be the obvious candidate models of biological
visual processing that could properly be called “Bayesian”. This section ccmprises
an analysis of the components of Bayesian Observers, ideal and non-ideal.

NON-IDEAL BAYESIAN OBSERVERS

The drop over the edge atthe top is fatal but the views are spleadid.
R. Magsood (19961 Petra: A Traveler's Guide

Hesitating a few steps away from Magsood’s cliff, bordering the High Place of
Sacrifice,!® straining to see over the edge, even the sworn Bayesian may be allowed
to doubt whether he has correct estimates of the instantaneous gain function and the
prior distribution on friction coefficients of sandstone. He may also feel that, however
much he trusts the prior distribution and gain function that allow him to navigate the
streets of a city, the current situation requires something else.

Bayesian Observers chcose actions by Bayesian methods, specifically by maxi-
mizing expected Bayes’ gain given information about the environment encoded as
priors, gain functions, etc. The Observer’s environment is assumed to be a Bayesian
environment with a well-defined set of World states, possible actions, and so forth.
The prior distribution and the gains function, in particular, are objective, measurable
parts of this environment just as much as the intensity of illumination. In this section,
as in the previous section, I'll consider only a single instant of time and the action to
be chosen at that instant of time.

The Ideal Bayesian Observer is assumed to have the correct values of all of the
elements of SDT in Figure 6.1 and, in addition, the ccrrect prior. In this section,
we consider Bayesian Observers whose information about the pricr distribution and
the gains function may not be the true prior or gain function of the Environment. To
raise this issue, requires a small change in notation. In addition to the objectively
correct components of SDT (Figure 6.1) and the prior of BDT, which accurately
describe the Bayesian environment, we have the corresponding elements ava:lable to
the Bavesian Observer: a gain function G(8, ), and a prior distribution, #(6). The
tilde over each symbol indicates that the element belongs to the Observer and need
not be the same &s the corresponding Environmental element.

THE PRIOR FUNCTION AS “PROBABILITY ENGINE”

A recurring criticism of Bayesian approaches to modeling biological vision is that, in
even very simple visual tasks, the number of possible states of the world is large, and
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Figure 6.10 Parterns and probabilities. A Bayesian Observer, designed to model pattern
vision, must assign probabilities to very large numbers of patterns including the “checkerboard
patterns” illustrated here. The sheer number of such patterns guarantees that almost all of them
have never been seen by a human observer before. The demands of the Bayesian formalism
insist that a non-zero probability be assigned to such a pattern if it is to be seen atall.

itis difficult toimagine how a biological organism comes to associate the correct prior
probability with each state. The states of the world in a visual task might correspond
to all possible arrangements of surfaces in a scene, and is difficult to see how a
visual system could acquire or encode all of these prior probabilities (Shimojo &
Nakayama, 1992). Of course, we are considering non-ideal as well as idezl Bayesian
Observers and we need not demend that the organism arrive at exactly the correct
prior probability for each state.

Even for relatively simple visual tasks, the number of possible World states can
be very large. Consider, for example, stimuli like the one in Figure 6.10@), N x N
checkerboards, with a single “item” placed in each square and where each “item” has
only one of two possible states. There are 2 2possible states in this very simple World
and it would be easy to envision using such stimuli in psychophysical experiments. Yet
the number of “states” in this simple world (with N = 6) is about 69 billion. For com-
parison, the number of seconds in the nominal 70-year life span is about 2.2 billion. It
would take about two millennia, viewing these patterns at the rate of one per second,
to encounter them all just once. It is implausible that a prior probability distribution on
such patterns could be based on frequency counts of the occurrences of such patterns.
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Yet these patterns form a very small proportion of the patterns that a prior distribu-
tion for a “pattern vision” Bayesian Observer should encompass. The checkerboards
have an evident interpretation as “shape-from-shading” stimuli, and thus all of these
stimuli fall within the domain of a Bayesian Observer model devoted to “shape from
shading.” Yet how could these probabilities even be stored in a nervous system? If
the checkerboard is expanded to 8 x 8, there are more than 10'° patterns possible, a
number larger by far than either the number of neurons or the number of synapses
in the human brain. We might also wish to save a bit of brain for something besides
storage of checkerboard pattern priors.

So long as we continue to think in terms of explicit stcrage of learned estimates of
prior probabilities, the objection of Shimojo and Nakayama is unanswerable. There are
too many things we might sze, and every evaluation of expected Bayes’ gain (Equation
(6.11) or Equaticn (6.15)) involves the prior probability of every one of them. Even if
we somehow decided to ignore most of the patterns in evaluating Equation (6.11) (orits
continuous version, Equation (6.15)), we certainly must :nclude the prior probability
for the pattern we in fact see in Figure 6.10(a). Yet that pattern could have been any
one of the 2V’ possible patterns.

In the fourth section, I address the apparently overwhelming computational de-
mands of Equations (6.11) and (6.15) and suggest that they are illusory. Yet it seems
inescapable that a Bayesian Observer, even one that is specialized to be a model of
just pattern vision, must be able to assign probabilities tc very largs numbers of pos-
sible visual outcomes, almost all of which it has never seen and almost certainly will
never see.

It seems an inescapable implication of the Bayesian approach that the visual system
assign probabilities to large numbers of possible scenes (or components of scenes)
and that these probabilities affect visual processing. The mechanism of ass:;gnment
of protabilities to scenes I'll refer to as a Probability Ergine, for concreteness. The
Probability Engine of a Bayesian Observer corresponds to () in the mathematical
formulation.

Consideration of the analogous problem in human judgment and decision making
is instructive. Given a sentence that describes a state of affairs in the world such as
(A) “Boris Yeltsin is roller-blading in Red Square”, can you assign a probability to
it? You may fee. that, although you have a consistent assignment of probabilities
to events including the one just described, you cannot come up with a number that
you could write down or say out loud. You may be capable of reasoning with such
probabilities, but are unable to turn them into numerical estimates on demand. Even
so, there are several alternative ways for me to test whether you can coherently assign
probabilities to events.

Suppose that you agree that you can order events according to their probabilities:
given any two evzats, you can tell me which of the two is more probable. Given two
sentences, the one above, and the alternative, (B) “Boris Yeltsin is asleep”, you can
order them by probability. Given only your ordering responses, | cannot reconstruct
the probabilities you assign to these events, but I can test whether you are assigning
probabilities in a way thar is consistent with probability theory. Consider a third
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event, (C) “Boris Yeltsin is secretly married to Madonna”. You assert that B is more
probable than C and that C is more probable than A. Next I ask you to compare B
and A. If you respond that A is more probable than B, then your pattern of responses
is inconsistent. If P[B] > P[C} and P[C] > P[A], then it is not possible that P[B] >
P[A]. I have tested, and rejected, the hypothesis that your orderings are consistent
with any pattern of underlying probabilities assigned to events.

The probabilities assigned by the Probability Engine of any Bayesian Observer
must also conform to the axioms of probability theory. This constraint can grovide
the basis for the sort of empirical test just outlined. If we can design experiments
that plausibly allow us to infer which of any pair of patterns drawn from thz class
of patterns illustrated in Figure 6.10(a) is assigned a higher probability by the visual
system, then we can test the transitivity property just discussed (For any three events,
A, B, and C, P[A] > P[B] and P[B] > P[C] implies that P[A] > P[C]).

We can test other implications of probability theory. To return to the case of human
conscious judgment and decision making, the sentence “Boris Yeltsin is roller-blading
somewhere” must not be ranked as less probable than the sentence “Boris Yeltsin is
roller-blading in Red Square”. The former event, includes the latter and, by elemrentary
properties of probability, cannot be less probable. Yet previous research suggests that,
for at least some pairs of events, human judges fail precisely this kind of test (Tversky
& Kahneman, 1980; see also Nisbett & Ross, 1982). It is certainly of interest, given
an experimental situation where perceptual prior probabilities can be ordered, to
determine whether this essential Bayesian assumption holds up.

If we can develop experimental methods that allow us to estimate not only the
ordering but also the difference or ratio between pairs of events, then we can develop
correspondingly more powerful tests of the claim that visual modules combine evi-
dence according to the axioms of probability theory (Edwards, 1968; Krantz et al.,
1971).

A “pattern vision” Bayesian Observer, then, must assign coherent probabilities to
Figure 6.10(a) and also to the highly-regular Figure 6.10(b). If the Bayesian approach
to biological vision is taken seriously, then it becomes of some importance to under-
stand how these probabilities are generated, and it is plausible that the presence or
absence of subjective patterns may influence the assignment of probabilities.

Research concerning human conscious judgment of the probabilities of patterns
is perhaps relevant. In reasoning about sequences arising from independent tosses
of a “fair coin” (P[H] = P[T] = /), human judges consistently judge the sequence
HHHHHH to be less probable than the sequence HHTHTH (Kahneman & Tversky,
1972; Nisbett & Ross, 1982). Of course, for a fair coin, any sequence of six tosses
is as likely as any other and the human judges have gotten it wrong once again. It is
plausible that the judges are responding to patterns (or the absence of patterns) in the
coin toss sequences, assigning lower probability to patterned outcomes. If this were
so, then it suggests that a mechanism for assigning probabilities to visual patterns is
not completely unreasonable.

It would certainly be of interest to delermine whether the prior probabilities assigned
by a pattern vision Bayesian Observer to the patterns in Figure 6.10(a) and (b) and
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other patterns of this sort and try to understand how a Probability Engine assigns
probabilities to never-before-encountered stimuli.

The ability to reason and judge the possible sequences resulting from successive,
independent tosses of a “fair coin” itself presupposes something like a Probabil-
ity Engine in cognition. It is unlikely that you have ever encountered a *“fair coin™:
*“...waenever refined statistical methods have been used to check on actual coin
tossing, the resul: has beeninvariably that head and tail are not equally likely” (Feller,
1968, p. 19). Feler argues that a ““fair coin” is a model, an idealization: . .. we pre-
serve the model not merely for its logical simplicity, but essentially for its usefulness
and applicability. In many applications it is sufficiently zccurate to describe reality.”
(Feller. 1968, p. 19). Just as the mathematical idealization called a “fair coin” can
assign probabilities to never-before encountered coin-toss sequences, so a Probability
Engine assigns probabilities to scenes. They need not be precisely correct, only useful.

THE LIKELIHOOD FUNCTION AND THE LIKELIHOOD PRINCIPLE

The likelihood function serves two roles in SDT and BDT. First of all it summarizes
what we need to know about the operating characteristics of the sensors that provide
information about the state of the World. Second of all, once the current sensory state
X+ 1s known, the likelihood function A(8, x.), as a functicn of 6, is precisely what the
Bayesian Observer knows about the state of the World. At first glance, it might seem
that we would be better off retaining the actual sensory data x . rather than running the
risk of losing information by discarding it and retaining only the likelihood function.
Or perhaps it would be better to supplement the likelihood function with additional
measures derived from the data.

It turns out that we lose no information about the state of the World when we
replace the raw sensory data by the likelihood function, a remarkable resul: known
in statistics as the Likelihcod Principle: “All of the information about 6 obtainable
from an experiment is contained in the likelihood function for 8 given X (Berger &
Wolpert, 1988, p. 19).

Protably every psychophysicist who collects psychometric data by an adaptive
psychophysical procedure such as a “staircase” method has wondered whether it
could really be correct to fit the resulting data exactly the same as if it had been
collected by method of constant stimuli. After all, using an adaptive procedure, the
specific intensities presented to the observer depended on the observer’s performance
on previous trials. Yet the fitting procedure is exactly the same as if the experiment
had chesen precisely those intensities before the start of the experiment and presented
them to the Observer in some other, randomized order. The justification for computing
the same maximum-likelihood estimate of a psychometric functicn in both cases is
the Likelihood Principle.

The likelihood function is an example of a sufficient statistic, a transformation of
the data that retains all of the information concerning the parameters that gave rise o
the data (the World state, 6. for our purposes). Any additional information in the data
that is lost, is not relevant to 0.




168 Perception and the Physical World

Suppose, for example, that we have a sample, X, X, ..., Xy, of size N from a
Gaussian distribution with unknown mean p and unknown variance o2. We compute
the maximum likelihood estimates!” of the unknown parameters:

N N
Y:ZX,/N and SZ:Z(XI-Y)Z/N‘

i=l i=1

and consider the joint statistic (X, $%). Given (X, 5%), how much additional infor-
mation about p. and o is contained in the raw data, X, X5, ..., Xy? The answer is:
none. The joint statistic (X, $2) is an example of a sufficient statistic that captures all
of the information relevant to estimating the unknown parameters. Put another way,
the N numbers in the original data se: have been compressed to only 2 without loss of
information concerning the unknown parameters. Note that we have lost information.
Given (X, $2), we cannot reconstruct the raw data when N > 2. We cannot even
determine the order in which the data occurred. Permuting the data does not affect
(X, §?) at all and consequently no order information is preserved. What is the case
is that the conditional probability distribution of X, X, ..., Xy given (X, 5?) does
not depend on . or ¢2: this property is essentially the definition of a jointly sufficient
statistic. Further discussions of likelihood and sufficiency can be found in Edwards
(1972) and Berger and Wolpert (1988).

A visual system which retains the likelihood function, then, can do no better.
Helmholtz, and especially Barlow, emphasized that neural processing concerns the
representation and processing of likelihood (von Helmbholtz, 1909; Barlow, 1972,
1995), a viewpoint buttressed by the Likelihood Principle.

If sensory data from muitiple sources are independent, likelihood information can
be readily combined across the sources. In our terminology, if the sensory data x =
(x',..., xP) is itself a vector, representing sensory information from p independent
sensors, then the overall likelihood function is just the product of the likelihood
functions based on the individual sensory data:

14
NGRS I EXC'S) (6.20)
k=1

Barlow has suggested that one of the organizing principles of neural processing is to
transform sensory data so that the resulting encoding comprises many independent
channels, each signaling likelihood (Barlow 1972, 1995).

GAIN FUNCTION

The choice of a gain function is, of course, important, and a non-ideal Bayesian
Observer may have less than perfect information concerning the true gain function
in the environment it inhabits. Freeman and Brainard (1995; Brainard and Freeman,
1997) analyze different candidate gain functions, comparing them against one another.
The intent of their research is laudable, but there is a fundamental incoherence in their
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Figure 6.11 Biases introduced by gain functions. The figures correspond to two versions
of the same visual task. The visual information is the same in both cases: a single Gaussian
variable X drawn from a Gaussian distribution with mean 0. The distribution is sketched for
both cases. (a) In the first the Observer must choose where to step in a path given imperfect
visual information. The gain associated with going to far to right cr left (“bumping into a wall”)
is symmetric and, across many trials the Observer’s choice of step point will be symmetric about
the midpoint of the path. (b) In the second version, the cost of deviations toward the left (“a
sheer drop”) is much greater than the cost of deviations to the right (“bumping into a wall”).
The Observer’s choice of step point is (correctly) biased to the right.

approach. Anevidentcriterion forchoice of a gain function is whether it reflects the true
gains to the Observer: and comparing different formal gains functions to one another to
see which one produces the “best” performance, judged intuitively, cannot be correct.

One possible approach would be to develop psychophysical methods that allow
us to estimate the gain function of a human Observer in a particular task (just as
we might estimate a contrast sensitivity function). Consideration of such empirical
gain functions would give us some insight into the rewards and penalties embodied
in visual processing.

The possible effect of the gain function on performance can be illustrated by a
simple thought example (Figure 6.11). The visual task is tochoose a location to place
one’s foct on a rather narrow path. There is considerable visual uncertainty concerning
the location of the center of the path (perhaps it is night time) but the width of the path is
known: 20 cm. The sensory data is a single random variable X, drawn from a Gaussian
distribution whose mean is the center of the path, 8, and whose standard deviation
is half the width of the path: 10 cm. The likelihood function is, as a consequence, a
Gaussian of the same width and mean X . The maximum likelihood estimate of 81s just
X, but the task is not to estimate 0: the task is to decide where to place one’s foot. To
make the example easier to follow, let’s assume that there :s no “motor” uncerntainty.
The foot will land wherever it is aimed. The only uncertainty in the thought example
is due to the visual uncertainty surrounding the location of the center of the path.

To decide where to place the foot, we must next consider the gain function. In
Figure 6.11(a), there are symmetric penalties involved in running into the two walls be-
side the path (— 10 for running into either wall). If the likelihood function is unimodal,
symmetric about its center, then a simple argument from symmetry suggests that the
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Observer will place his foot in the middle of the current likelihood function, i.e. he
will step on the point marked by X.

In Figure 6.11(b), however, the gain function is highly asymmetric: there is a
cliff face to the right (—10 for collision) and a sheer drop (—1000) to the left. The
Bayesian choice of foot placement, taking into account this asymmeiry in gain, will be
skewed to the right, away from the sheer drop, toward the cliff face. Again the visual
information is symmetric and the bias in the response is solely due to the asyrametric
gain function. I’ll return to this discussion in the next section.

EXPERIMENTAL APPROACHES

The gain function G(8, o) and the prior #(8) of the non-ideal Bayesian Observer are
estimable psychophysical parameters, no different in kind than spectral sensitivities
or contrast sensitivity. Unfortunately, we do not yet know how to design experiments
so that it is possible to obtain estimates of G(8, a) and 7(6), direcily from the data.
Ramsey (1931b), von Neumann and Morgenstiern (1944/1953), and Savage (1954)
all developed methods that permitted estimation of subjective probability and/or sub-
Jective utility based on human performance in preference tasks. In the simple case of
the Theory of Signal Delectability, prior odds and gains could, in part, be es:imated
from the Observer’s performance oncz the experimenter assumed specific parametric
forms for the noise and signal + no:se distributions (Green & Swets, 1966/1974).
The conclusions drawn were hostage to the parametric assumptions made, but it was
in principle possible to separately tes: and verify the distributional assumptions, e.g.
by consideration of the precise shape of the ROC curve (Green & Swets, 1966/1974;
Egan, 1975).

Mamassian and Landy (1996; see also Mamassian et al., in press), for example,
consider simple shape-from-shading stimuli where prior distributions on both the di-
rection of illumination and on contour cues are varied independently. They are able to
estimate both distributions from Observers’ data with parametric assumptions on the
possible priors. This sort of estimation of the components of Bayesian Decision The-
ory from the data would seem to be a very promising and important result of the use of
BDT as amodeling framework. Of course this is only possible with strong assumptions
on the possible distributions, functiors, etc., that must also be independently tested.

CHALLENGES

Unfortunately, Bayes's rule has been somewhat discredited by metaphysical applice-
tions . .. William Feller (1968) An Introduction to Probability Theory

The first part of this section contains a discussion of the status of the visual repre-
sentation in an instantaneous Bayesian Observer. Simply put, most work in Bayesian
vision is directed to modeling the estimation of internal representations of visual in-
formation: depth, shape, and so on. Yet SDT and BDT are theories of preferredaction,
not theories of representation, and the basis for preferring one actionto another are the
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consequences of the actions. It is not obvious what consequences an internal visual
estimate of depth can have. In this first section, I will discuss possible links between
the actions of a Bayesian observer and claims about its internal visual representation,
and describe how observed inconsistencies in representation inferred from different
kinds of actions (Milner & Goodale, 1996) may be illusory, a simple consequence of
the form of the gain function.

In the second part of this section, I will discuss the problems encountered in mod-
eling optimal (or even “gocd”) performance in environments where the true prior
distributions and gain functions change deterministically across time, as they do in
almost any environment outside the psychophysicist’s laboratory.

ACTION AND REPRESENTATION

“How many fingers, Winston?"’

“Four! Four! What else canl say? Four!” ....

“How many fingers, Winston?”

“Four. I suppose there are four. I would see five if I could. [ am trying 1o see five.”
“What do you vish: to perswade me that you see five, or really to see them?”
“Really to see them.” George Orwell (1983) 1984

SDT and BDT are theories of preferable actions, not representations. A moment’s
consideration of Winston’s horrific situation, at the mercy of O’Brien in the Ministry
of Love, serves to emphasize the distinction. O’Brien’s goal is that Winston see five
fingers when O’Brien holds up four, and his means of persuasion are most painful for
Winston It is not znough that Winston “see” four and respond five. He must “see”
five, something he claims he really wants to do. The gain function here is clear, as
are the possible actions, etc. If Winston were a good Bayesian Observer he would
“see” five rather quickly, with a minimum of pain, something that, in the course of
the novel he apparently manages to do, but only at great personal cost.

Applications of BDT to date are overwhelmingly models of internal estimates of
depth, color, etc. To focus on a particular problem, let’s suppose we want to estimate
the distance to the edge of Magsood’s cliff. The possible answer are a range of
(I would hope non-negative) real numbers, the possible states of our World. The
available sensory data is the posterior distribution including the prior. We combine
this postzrior with a fixed gain function (I’ll refer to this combination of posterior
distribution and gain function as Bayesian resolution). Perhaps we choose a gains
function that results in a least-squares estimate.

We are about to take a step and we know that errors that lead us beyond the edge
of the cliff lead to very different consequences than the same magnitude of error that
falls short of the edge of the cliff. The gain function we would like to combine with the
posterior distribution should be highly asymmetric. Unfortunately, if we have access
only to the distance representation, we have lost the posterior distribution and it is
too late to compute the correct stepping distance using all of the available sensory
information. The sequence of computations involved is summarized in Figure 6.12(a).
The Bayesian resolution occurs before the representation, and makes use of a fixed
gain function that is inappropriate to the current situation.
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Figure 6.12 Bayesian resolution and visual represent. (a) Bayesian resolution occurs before
the visual representation employing a fixed nominal gain function. The resulting point estimates
of visual quantities such as depth must then be combined with realistic gains functions, appro-
priate to the currentsituation. The rule of combination cannot be Bayesian as the distributional
information (the posterior distribution) is no longer available. (b) The visual representation
is viewed as one among many different visual tasks, each of which may have a distinct gain
function. (c) The visual representation is identified with the posterior distribution.
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Figure 6.12 (continued)

A second possibility (Figure 6.12(b)) is that we combine a realistic gain function
with the sensory information. [f we use different realistic gain functions for deter-
mining the visual representation and for deciding how close to the edge to step, then
we may exhibit an apparent dissociation between vision and action. The edge, judged
psychophysically anc by a stepping task, are estimated to be in different locations. It
is not at all obvious what a “realistic gain function” for the representation would be:
representation has no direct consequences.

Figure 6.12(c) suggests a third alternative, that what we should think of as the
representation is itself the posterior distribution, or at least includes the posterior
distribution. The advantage is obvious: we postpone the Bayesian resolution until
after the representation and we can now use a more flexible gain function, possibly
one that represents gain near the edge of a cliff or in the hands of O’Brien. There is
however a marked disadvantage. What does it mean to perceive a distribution rather
than a point estimate of depth?

One possible solution is to assume that conscious access to the sensory represen-
tation is itself a kind of act, one that we can model as a Bayesian resolution, but with
a fixed choice of gain function specific to that sort of act (Figure 6.12(b)). Given
another class of actions, such as stepping toward the cliff, we, in effect, use a different
gain function.'® If we are told to point to the edge of the cliff, or to say how far the
edge of the cliff is from our feet, or to step to the edge of the cliff, the associated gain
functions may lead tc actions that can be interpreted as inconsistent estimates of the
location of the edge.

Milner and Goodalz (1996) dzscribe the apparent discrepancies in inferred location
and shape of objects based on different tasks and classes of actions. I wish to point
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out here that this is to be expected under BDT given Figure 6.12(c) and the discussion
of bias introduced by the choice of gain function in the previous section (Figure
6.11). Recall that we examined how the structure of the gain function affected where
a Bayesian Observer might choose to step on a difficult-to-see path. When the gain
function is asymmetric, the Bayesian Observer’s aim point is biased away from the
greater source of danger (the sheer drop to the left) and toward the wall. If we were to
change the class of action from step-point selection to throwing a projectile down the
path, then the gain function in Figure 6.11(b) is plausibly no longer asymmetric. It
makes little difference (I'll assume) whether the projectile vanishes off the path into
the chasm to the left, or hits the wall to the right and stops. The Bayesian Observer
for stepping and for projectile throwing would “aim” for different places on the path,
given exactly the same visual information. It is no great leap to the idea that different
biases are associated with different classes of actions.

Again, if it were possible to measure experimentally the gains function and prior
for different tasks in the same scene, we could determine whether a verbal estimate,
or pointing has the same gain function as an estimate based on a different task.

PATTERNS ACROSS TIME

We may imagine Chance and Design 1o be, as it were, in Compeiition with ecch other, for
the production of some sort of Events . . ..
Abraham de Moivre (1718/1967), The Doctrine of Chances

Updating Priors, Updating Gain Functions

The discussion in the previous section touched on the obvious idea that both objective
priors on the states of the world may change, as may objective gain functions.'® The
idea of a probability engine was introduced to make it clear that even very simple
Bayesian Observers, specialized to depth or pattern vision, say, must be able to assign
probabilities to states of the World never before encountered and that perhaps will
never be encountered. In this section I consider a closely related problem. It is plausible
(and will prove to be true) that an Observer who correctly updates his own subjective
prior distribution and gains function can outperform an Observer with a fixed prior
and a fixed gain function, across many successive turns. For this to be possible,
information from the past must be preserved and used in selecting the new prior.

[An aside: BDT provides an obvious candidate for an updating rule, known as
Bayesian updating. We encountered it before: at the end of each tum, we need only
substitute the current posterior distribution (incorporating the sensory information)
for the previous prior. The usz of Bayesian updating in judgment and decision making
is one of the more controversial aspects of the theory in hurman judgment and decision
making. Even confirmed Bayesians such as Jeffrey argue that Bayesian updating is
inappropriate (Jeffrey, 1983). These criticisms and potential problems are not directly
relevant to the point made here, which is simply the following: Bayesian updaring is
a method for updating when the prior is stationary (not changing across time). It is
tempting to considzr using it on slowly-changing or even rapidly-changing priors in
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>pe that it will “track” the prior across time. The following example illustrates
3ayesian updating is not very suitable for tracking changing priors.]

Night and Day

example concerns Bayesian updating when the objective prior does in fact
re. There are two states of the World, Day and Night. Day endures for 40 turns
ved by Nightfor 40 turns. The sensory states of the Observer are Light anc Dark.
nitial prior on the state of the World is uniform: the probability of Day and of
are both 0.5. The likelihood of Light during the Day is 0.75, of Dark, is 0.25.
1g the Night, the likelihood of Light is 0.25, that of Dark is 0.75. We will follow
bserver’s prior through a full Day and Night. Of course, the prior distribution is
ribution and we need only follow P{Day], as P[Night] is 1 — P[Day].
tlowing “dawn”, the Bayesian updating procedure rapidly moves the prior prob-
y that it is Day toward 1.2 After 10 turns, the prior is 0.9959, that it is Day.
rroblem arises at “dusk”, where the state of the World turns deterministically to
: the Observer’s prior only slowly migrates away from 1. Indeed, three-quarters
way througt: the night, the prior probability that it is Day is stiil 0.9959 despite
'idence to the contrary in the most recent 30 trials. Even at the end of the night,
robability that it is Night is only 0.5: the 40 turns of Day and of Night have
1ed out, retuming the prior to indifference just as “‘dawn” breaks.
e defect exhibited here is not superficial. The essential problem is that Bayesian
ing gives exactly the same weight to evidence from recent turns and from turns
ccurred much earlier. Ithas no mechanism for discarding a priorthat is in serious
reement with (recent) sensory data. As a consequence, it will tend to be very
sitive to changes in the prior distribution of states of the World, both sudden and
al. Note that this example is in no way a criticism of Bayesian updating, but
- a criticism cf attempts to use it to track a prior that changes over time.
= Bayesian Observer in Night-and-Day needs an alamm clock that tells it when
card the current posterior and adapt a better estimate of the prior. Or perhaps it

a small program that detects temporal edges in the Light/Dark sensory states,
:sels its prior, something an instantaneous Bayesian Observer cannot do.

Augmented Bayes Observers

se that we address the updating problem directly. Let’s first of all concentrate
vironments where the prior distribution on the states of the World, 7(0), changes
ninistically, eccording to a specific algorithm. We can imagine that, on the Tth
a Prior Demcn selects a new prior, 7, (8), for the World. In the Night-and Day
ple, the Prior Demon need do little more than count to 40, switch from the Night
to the Day prior, or vice versa, reset the counter to 0 and start over again.

2 true priors on (Day, Night) on any turn are, of course, degenerate: w(Day)
ind w(Night) is O duriag the first 40 of each group of 80 successive turns;
y) 15 0 and w(Night) is | during the second 40. The choice of the uniform prior
%) for #(8) is a compromise imposed upon the instantaneous Bayesian Observer,
tially due to i's ignorance of the deterministic pattern in the successive choices
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of state of the World, its inability tc make use of this pattern. If the state of the World
were in fact drawn at random on every trial with the uniform pricr, the instantaneous
Bayesian Observer is, of course, optimal. An instantaneous Bayesian Observer, then,
is poorly equipped to act in a World where the prior distribution on states of :he World
changes algorithmically. The lack of a mechanism for updating 7(6) to “follow” a
deterministically-changing m(0) is its essential weakness.

Several initiatives in Bayesian vision can be viewed as attempts to augment the
instantaneous Bayesian Observer to permit it to deduce from sensory input a plausi-
ble, instantaneous choice of (8). For example, the competitive priors of Yuille and
Biilthoff (1996) provide a simple method for “prior switching” inresponse to sensory
data. Kersten and Schrater (this volume) describe various alternative approaches to
tracking changing priors across time.

The challenge proposed here can be treated as a search for an algorithm that, given
sensory data across multiple turns, X, X,, ..., X,, can provide estimates of a prior
that evolves in time taking on the value () at time ¢. Formally, we seek operators
T,(X1, X2, ..., X,) that estimnate 7,(8) given the sensory data so far available. This
estimate at each point of time serves as the prior of the instantaneous Bayesian
Observer. The resulting Augmented Bayes Observer has the potential to outperform
an instantaneous Bayes Observer with a fixed prior when the environmental prior
changes deterministically? and it is possible to estimate the current prior given only
sensory data.

Cat-and-Mouse
Suppose that, as you are reading this section in your comfortzble office with the
doors and windows closed. You suddenly see a mouse scurry across the floor. Your
instantaneous prior on mice in your surroundings 7,(X ) given this sensory event,
X1, is likely going to change. If you aren’t the owner of a pet mouse, it has likely
increased from the small value 7 which was your prior before you saw the mouse.

The mouse has vanished but it is reasonable to assume it is still in your (sealed)
office. How does your prior estimate 7,(X, X, ..., X,) evolve across time, in the
absence of further sightings of the mouse? What will it be a day later, after you’ve
left the office and returned (perhaps the janitor let the mouse escape)? How does
the temporally evolving prior affect your perception of any sudden motion in the
periphery? When does it return to its initial value (if ever)?

Your intuition concerning the time-evolution of the prior in this thought example
likely reflect considerable knowledge about deterministic aspects of the environment.
Mice, like mostobjects, do not vanish, and do not leave rooms unless there isan exit of
some sort. They may be able to gnaw an exit, but that would take some time. If alive,
they will likely be seen from time to time. Of course, they may die in your bookcase,
changing the modality of the problem from visual to olfactory. The issue then, is
whether the visual system makes use of earlier sensory data from a few minutes ago
or even days ago in selecting its current prior.

Designing intelligent Augmented Bayes Observers, then, is the challenge proposed
here. As noted at the beginning of this section, human observers are typically evaluated
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in experiments that perversely mimic instantaneous Bayesian environments. To un-
derstand how human observers update prior and gain function across time (if, in fact,
they do), new kinds of experiments are needed.

BAYESIAN COMPUTATION
AND COMPUTATIONAL COMPLEXITY

If you, dear rzader, are weary with this tiresome method of computation, have pity on ne,
who had 10 go through it at least seventy times, with an immense expenditure of rime.
Johannes Kepler (1609) Astronomica Nova

Bayesian Computation

Let’s consider the computational demands implicit in Bayesian Decision Theory in
the evaluation of Equations (6.11) or (6.15). If we could dissect a Bayesian Observer,
what characteristic computational resources would we find? Alternatively, if we were
to dissect an arbitrary Observer, what about its computaltional rescurces would con-
vince us it was, :n fact, a Bayesian Observer? SDT and BDT do not prescribe any
particular kind of processing despite the formulas included. We have already seen
that the “difficult’ computation implicit in Equation (6.15) is reduced to a “simpler”
compuation in Equation (6.19) by an application of Bayes’ Theorem. A particular
Bayesian Observer is characterized by its decision rule, d, a mapping from sensory
states to actions. BDT imposes an ordering on all decision rules but does not require
that any particular decisionrule be computed in any particular fashion. In this section
[ will explore possible “Bayesian architectures” and develop computational algebras
that allow use to replace operations on full distributions by induced operations on a
finite namber of parameters. Anyone who has translated a multiplication (hard) into
an addition (easy) by means of logarithms has done something similar.

This section is somewhat more mathematical than the remainder of the chapter,
and the reader uninterested in the details can skip to the Discussion where the main
points of this section are summarized.

Multiplication—-Normalization
Only two compuiational operations are really needed in evaluating Equation (6.15).
The first is the multiplication of two distributions? f(8) and g(6). The second compu-
tational operation needed is the maximization of Equation (6.19) by choice of action
for any particular gain function and posterior distribution. In this section. I'll confine
attention to the first operation. At any point prior to the choice of an action, this is the
single cperation presupposed by BDT.

The product of the two distributions is typically scaled so that it is also a distribu-
tion. The computation of the posterior distribution from the prior and the likelihood
function is an example of this operation. When the likelihood function is the prod-
uct of likelihood functions for independent sources of sensory information, it can
also be computed by the same multiplication-normalization. If we let ® denote this
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Figure 6.13 A family of probability density functions that are step-functiens. The step regions,
defined by the n + 1 points xo, xi, ..., x,, are fixed, part of the definiticn of the family. The
members of the family differ in the non-negative values (v, v, ..., v,), each has on the n
intervals delimited by xg, x;. ..., x,. Each step function is 0 outside these intervals and the
area under each step function must be 1. Multiplication of two members of the same step-
function family v = (v, v, ..., v,)andv’ = (v, v3, .. ., v, ) is equivalert to component-wise
multiplication of the entries of the two vectors followed by a scaling of all the entries.

multiplication—normalization operation, then it is defined as,

(f ®8X6) = BEAC) (6.21)
[F(®)g(8)d6

when the denominator is non-zero. The denominator can only be zero if the product of

the two distributions is the zero-function. It will prove to be convenient to intrcduce the

zero-function 0(8) = 0, as an “honorary” distribution. With this convention, I define

f ® g to be 0(8) when the denominator in Equation (6.21) is 0.

Suppose that the choice of possible distributions is restricted to 2 parametr.c family
Zindexed by a finite number of parameters £ = (£!, ..., £¥). The reader is very likely
familiar with a number of parametric families with a finite number of parameters: the
Gaussian, the Exponential, etc. A less familiar example of such a parametric family
is constructed as follows. First, we assume that 0 is a real number, not a vector of real
numbers, and we select v intervals on the real line. The values ¢ = (£!,.. ., &Y are
interpreted as the values of a step-function (Figure 6.13), which has constant value &’
on the ith interval and is ctherwise 0. In order to be a distribution each of the values
&' must be non-negative, and the area under the step function must be 1; we assume
that these conditions are met. This finite-parameter “Step Functior” family is one we
might employ in approximating Equation 6.15 numerically.
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Closed Parametric Families

Let us confine attention 10 parametric families = that are ciosed under the
multiplication—normalization operation: whenever f and g are in =, then f ® g is
also in . If a likelihood function and a prior distribution are both members of a
closed family, then so is the resulting posterior distribution. Put another way, if like-
lihood and prior share a common finite-parameter representation in a closed family,
then the posterior can be expressed in terms of the same parameters. The same can be
said of alikelihood function produced as a product of likelihood functions: if a series
of likelihood functions are all members of a closed family, then sc is their product
which tten has the same parametric representation as its factors.

What are examples of closed parametric families? The step-function family of
Figure 6.13 is almost 1. The product of any two step functions with the same interval
boundaries is also a step function with those interval boundaries. The problem is that
the resulting step function may be uniformly 0: £ = (0,0, ..., 0); we need only add
the zero function to the family to solve the problem.

The Gaussian Family
A second example of a closed parametric family is the Gaussian,

e~ [(0—)?/20%| 6.22)

fip o) =
2wo
with parameters &€ = (., o). Of course, any one-to-one transformation of the parame-
ters can equally well serve as a parameterization. If we use the parameterization, £ =
(W, r), where r = 1/ o2, then Equation (6.22) becomes

FO; . r) = /{;e—['<"~“>2/21 (6.22°)

With this new parameterization, we can compute the outcome of a multiplication—
normalization very easily. If the two Gaussian distributions have parameterizations
& = (wi.r) and & = (s, r2), then the result of multiplication—-normalization
is a Gaussian distribution with parameters (7w, + Fawo, ry + ), where 7, =
rif(ri+r2),i =12

The multiplication—normalization operation of Equation (6.21), restricted to a
closed parametric family, induces an operation on the parameters themselves. We
can unambiguously write, for the Gaussian case,

(Frpy +72p2, 11 +r2) = (pr, 11) ® (pa, r2) (6.23)

knowing that this operation on the parameters mirrors the operation on the distribu-
tions defined by Equation (6.21). To give a formal definition, if one distribution has
parameters §;, and a second has parameters &,, then the parameters of the distribu-
tion resulting from the multiplication-normalization of the two distributions are, by
definition, §, ® &;. Of course, we are now using the symbol ® in two distinct ways,
as an operator on d:stributions and as an operator on their parameters, but this should
lead to no confusion.
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The Gaussian family
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Figure 6.14 Operations on parameters induced by multiplication—normaiization of probabil-
ity density functions. Multiplication-normalization of members of the Gaussian family induce
operations on the parameters of the family.

Figure 6.14 may help to clarify this induced operation. We represent a distribution
by its parameters and represent operations on distributions by induced operations on
the parameters, and vice versa.?

Looking back at the simple Gaussian example, we see that a simple weighted aver-
age and an addition (Equation (6.23)) is equivalent to a multiplication-renormalization
operation on Gaussian distributions: visual processing confined to humble weighted
averages and sums, is, in fact, equivalent to Bayesian resolution on certain corre-
sponding distributions.

The Uniform Family

A third, and final, example of a parametric family closed under multiplication—
normalization is the family of all uniform distributions (on open intervals). Figure 6.15
illustrates a few members. The product of any two of them is either the zero distri-
bution or, after normalization, another member of the family. Accordingly, we once
again include the zero function as a member of the family. If we parameterize each
such distribution by its endpoints, (a, b), then the multiplication-normalization of
(a1, b1) and (a,, b,) induces the following operation on the parameters,

{max {ay, a2}, min{b;, by}) = (a2, b2) ® (az, b2} (6.24)

with the convention that (a, b) with ¢ > b denotes the 0-function.

Combining Families
We can take any two parametric families & and &’ and construct a new one, denoted*
E ® &’ as follows: the distributions in the new family are the normalized products of
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The uniform family
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Figure 6.15 Some members of the Uniform family. Multiplicationr—normalization of members
of the Uniform family induces operations on the parameters of the family.

pairs of distributions, one from the first family and one from the second:
E'=E@E ={f®glfeEandge &'} (6.25)

The parameter list for each f ® g parameter list is the concatenation of the lists for f
and the list for g. There is a natural choice of a parameter list for the product of two
families: it is the concatenation of the parameters lists of the two families. For the
Gaussian—uniform family the new parameter list is a 4-tuple,

(p,r.a, by =(p,r)®(a, b)), (6.26)

where the symbol & denotes concatenation. The operation induced by multiplication—
normalization on the product family is definable in terms of the induced operations
on the two original families,

(K1, 71, a1, b1) @ (2, 12, a2, b2) = [(1, 71) @ (K2, 72)]
@ [(a1, b)) ® (a2, b2)]. 6.27)

There are infinitely many clcsed parametric families, and, as we have just seen, we
can construct new ones from old. Further, we can re-parameterize the parameters of a
family by any one-to-one transformation as we did for the Gaussian, replacing (., o)
by (w, r). There is a well-defined operation induced on the new parameters as well.

Equivalent Data Principle
Once we choose some specific finite-parameter family, the corresponding parame-
ter lists £= (&', ..., £¥) represent evidence. Sensory data and prior distribution are
representzd in the same format and, consequently, the prior distribution at any in-
stant is precisely equivalent to a piece of sensory data that never occurred. Suppose,
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for example, that there is one source of sensory information and that, for convenience,
the Gaussian family with the £ = (., ) is appropriate. Let £; = (g, r4) be the sen-
sory dataand £, = (., r,) the instantaneous prior distribution. The first quantity
in each 2-tuple is the estimate of the quantity of interest, the second, an estimate of its
reliability as described above. The resulting estimate will have a bias in the direction
of pp, but the magnitude of the bias depends on the relative reliability of the prior
and the sensory data. If r, is O (the data are worthless), the resulting estimate will be
the priorestimate . If ry > r,, then the prior “data” will be (almost) ignored.

Edward’s Challenge

A standard criticism of the Bayesian approach (Edwards, 1972) is the following: If
Mp is notvery different from 4, the effect of including the prior is not very great. If
np is very different from p4, why would you want to contaminate the sensory data
with a prior that almost contradicts it? The preceding example discloses a new role for
a prior, as a default mechanism, that ceases to enter into visual processing so soon as
reasonable sensory data is available, and it would suggest in agreement with Edwards
argument, that the effect of the prior is only noticeable when the sensory data is of
poor quality or ambiguous in some respect, that prior information is, in effect, only
used when little or no sensory information is available.

Implications
The implications for the complexity issues is straightforward: there is no character-
istic form of Bayesian computation: two observers with very different compurational
resources and sequences of computations may be equivalent as Bayesian Observers.
The only invariant across these finite-parameter Observers is the number of indepen-
dent parameters. Further the computational demands of Bayesian resolution need not
be very great if Bayesian Observers are constrained to closed, finite-parameter distri-
butional families and carry out computations by induced operations on parameters.

CONCLUSION

“Yes, I suppose what I am saying does sound very general,” said Malta Kano. “But after
all, Mr. Okada, when one is speaking of the essence of things, it often happens that one can
only speak in generalities.

H. Murakami (1998) The Wind-up Bird Chronicles

The first section of this chapter included an introduction to the elements and basic
results concerning Statistical Decision Theory (SDT) and Bayesian Decision Theory
(BDT). In the second section I introduced a family of finite-parameter Bayesian Ob-
servers that all share the same descriptions of the states of the World, possible actions,
possible sensory states, and likelihood functions. They differ in their assumed gain
functions and prior distributions. The Bayesian Observer whose gain function and
prior distribution matches the true gain function and prior distribution of the envi-
ronment is the Ideal Bayesian Observer, but the other, Non-ideal Bayesian Observers
were more plausible choices as BDT-derived models of biological visual processing.
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A simple counting argument was used to motivate the claim that prior distributions
and gain functions could not be learned by repeated exposure to all possible states
of the World. A EDT-derived model of biological visual processing must have the
ability to compute the prior probability of World states never before encountered and
the likely consequences of particular actions never before taken.

Consideration of the updating problem and vision across time led to a similar con-
clusion: the Bayesian Observer’s prior distribution and gainfunction need to change as
the true prior distr:bution and gain function change. The change can be deterministic
or nearly so, and BDT is an awkward language to describe deterministic change. An
instantaneous BDT Observer can be woefully inferior to a hybrid Augmented Bayes
Observer that incorporates a small amount of additional computational capacity.

On page 77ff we considered the computational demands of BDT. These need not
be great, at least if we can confine our modeling to some closed parametric family
of distributions and compute by means of induced operations on the parameters of
the family. Whetter this is possible is simply a statement about the form of the
priors that occur in environment, the choice of visual sensors, and the choice of
early transformations in the visual system to enhance computability (Barlow, 1972,
1995).

The discussion of Bayesian computation leads from a different starting point to
the conclusion that non-optimal Bayesian Observers are the Bayesian Observers of
interest in modeling biological vision. Yet, if all distributions employed by a Bayesian
Observer are constrained to a specific closed, finite-parameter family of distributions,
it is implausible that the true environmental prior would happen to be a member of the
family. If the Bayesian Observer cannot represent the true prior, it will be sub-optimal.
A similar discussion of the representation of gain functions (not considered) leads to
the same conclusion: the Bayesian Observers of interest to biological vision are not
the ideal Bayesian Observers.

Last of all, estimation models of visual representation were discussed anc, as it
turns out, they are somewhat difficult to justify within the Bayesian framework. In a
World of changing gains functions, it is not clear why one would reduce the available
sensory information to a representation using a fixed gain function before deciding on
the task at hand and the particular dangers and opportunities available in the current
scene. In short, there is some confusion in current applications of BDT to biological
vision as to the poiat in visual processing where prior and gain are combined to select
actions.

How could we decide that the Bayesian approach to modeling biological vision
is worthwhile? Wtat sorts of experimental results would suggest that it is in serious
trouble? As I noted at the beginning, the Bayesian approachis not a specific falsifiable
hypothesis but rather a (mathematical) language that allows us to describe the structure
of the environment and the flow of visual processing. It is a powerful language and
therein lies a difficulty. After the data are collected it is not very difficult to develop a
Bayesian model that accounts for it. Indeed, almost all of the applications of Bayesian
tools to vision are post-hoc fitting exercises.” If Bayesian models are to be judged
useful, they must also permit prediction of experimental outcomes, quantitatively as
well as qualitatively.
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The prior distributions of a Bayesian observer are readily interpreted as claims
about the environment. In the discussion of the sub-optimal Bayesian observer,
Targued that it was reasonable to expect the prior embodied in a biological observer to
be discrepant from the true objective prior and consequently, an observed discrepancy
between the prior on X estimated from experimental data and the true prior on X in
the world is not conclusive evidence against the Bayesian approach. However, if we
find ourselves estimating the same prior on X in two different experiments, and find
that the two estimates are discrepant, then there are serious grounds to question the
entire Bayesian enterprise.

AmIaBayesian? Not yet, though the temptation is there. The concepts underlying
Bayesian Decision Theory are both evident and profound. I do think that a careful
program of experimentation devoted to evaluating the Bayesian approach will lead
to a much deeper understanding of how the visual system represents and combines
evidence—whether or not the Bayesian approach survives the program.

To conclude, it is interesting to compare the current status of Bayesian models in
cognition and in perception.

Bayesian models of (cognitive) decision making are controversial and inconsistent
with experimental results. The controversies concern belief: whether our beliefs can
be represented as probability distributions on the states of the World, whether our
beliefs follow the axioms of probability, or even whether they should. The sharpest
attacks on the Bayesian position concentrate on alternative representations cof belief
(Fisher, 1936; Edwards, 1972; Shafer, 1976). The Bayesian counterattack (Ramsey,
1931b; Savage, 1954; see Berger, 1985) is equally vigorous.

There is considerable evidence suggesting that our beliefs are not consistent
with probability theory (Edwards, 1968; Green & Swets, 1966/1974; Kahneman &
Tversky, 1972; Tversky & Kahneman, 1971, 1973; Kahneman & Slovic, 1982;
Nisbett & Ross, 1982). Consider, for example, the following problem (adapted from
Edwards (1968), illustrated in Figure 6.16):

There are two umns. The “Black Urn” contains two-thirds black balls and one-third white.
The “White Urn” contains two-thirds white balls and one-third black. One of the twourns
is selected at random by tossing a fair coin. You’d most likely accept that the probability
that the “Unknown Urn” is the “Black Urn” is one-half, that it is the “White Urn” is one-
half. Your prior distribution on the two Urns is (0.5, 0.5). Now let’s takz a sample from
the “Unknown Urn”. We sample (with replacement) from the Unknown Urn 17 times.
There are 11 black balls and 6 white. You'll likely consider that to be evidence in favor
of the claim that the Unknown Urn is in fact the “Black Umn”. But what exactly is the
probability now, after seeing the data, that the “Unknown Urn” is the “Black Urn’?

Please look at Figure 6.16 and make an estimate before reading further.

Most people, given the problem above, estimate that the posterior probability that the
“Unknown Urn” is the “Black Urn” to be about 0.75 (Edwards, 1968). The posterior
probability distribution on the two Ums is then (0.75, 0.25), about 3:1 odds in favor
of the “Black Urn”. The correct answer is (0.97, 0.03), or odds of 32:1, in favor of the
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Figure 6.16 “Conservatism”. The “Unknown Urn” is either the “Black Urn” or the “White
Urn” and the prior odds that it is the one or the other is ( /3, /2 ). A sample of size 17 is drawn
from the “Unknown Urn” and the results are shown. What is the probability, now that you have
seen the sample, that the “Unknown Urn” is the “Black Urn”? The correc: answer is given in
the text.

“Black Urn”. The discreparcy between the intuitive estimate of human observers and
the correct odds is an example of Conservatism, a pervasive error in human reasoning
with probabilities: Humans estimate odds that are roughly the cube root of the correct
odds (3:1 instead of 32:1).

Conservatism is observed not only in word problems such as the problem above
but also in human performance in the Theory of Signal Detectability: whatever
the prior odds of SIGNAL + NOISE and NOISE, human observers respond as if
(roughly) the cube root of the prior odds were, in fact, the true prior odds (Green
& Swets, 1966/1974). Conservatism, the “cognitive illusions” of Kahneman and
Tversky (Kahneman & Slovic, 1982) and other documented failures of human prob-
abilistic reasoning are difficult to explain away as minor deviations from probability
theory.

What if advocates of a Bayesian approach to biological vision turnout to be correct?
What if BDT-derived modzis do not break down as completely as their cognitive
counterparts, exhibiting analogous failures? What if a consensus develops that such
models mirror visual processing in important respects? In sum, what if Bayesian
Decision Theory turns out to be the natural “language” for developing accurate models
of visuel processing? If thatall came to pass, we could certainly draw solace from the
idea that, although we don’tseem able to judge or reason very well, at least something
in our skull, our visual system, can.
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NOTES

1. I will use the terms gain, expected gain, etc., throughout and avoid the terms loss, expected
loss (= risk), et¢. Any loss can, of course, be described as a negative ga:n. This translation
‘can produce occasional odd constructions as when we seek to “maximize negative least-
squares’. You win some, you negative-win some.

2. The phrase “view geometrically the proportion” describes what we would now call
“‘compute the expected value.”

3. Areader of an earlier version of this chapter wondered whether the term “random variable”,
most often encountered in phrases such as “Gaussian random variable” or “uniform random
variable”, is applicable to a process where there are only finitely many possible oucomes.
It is. The set of possible values of random variables can be finite and can even contain
non-numeric values such as “HEADS” or “TAILS”.

4. The term strategy can also be used. We will encounter randomized decision rules in a later
section.

5. Not to be confused with Expected Bayes’ Gain, defined further on. Expected Gain depends
on the state of the World, Expected Bayes’ Gain does not.

6. A set of points is convex if the line segment joining any two points in the set is also in the
set. An “hourglass” is an example of 2 non-convex set.

7. The Theory of Signal Detectability (TSD) is better known as Signal Detection Theory,
whose abbreviation (SDT) is identical to that of Statistical Decision Theory. To avoid
confusion, I will use TSD throughout in referring to the Theory of Signal Detectability /
Signal Detection Theory.

8. TSD also takes into account rewards and penalties associated with different kinds of errors.
The current discussion illustrates only one way to model TSD within SDT.

9. The reader may be surprised that the “ROC curve” in the figure consists of a series of line
segments instead of the usual smooth curve see in text books. The region of achievable
gains is always a convex polygon if the set of sensory states and the set of possible actions
are both finite, as we are currently assuming they are. The particular shape of the ROC
curve is of no importance to the example.

10. If more than one gain point touches the sliding wedge at the same time, then the Maximin
rules correspond to the gain point that is furthest up or to the right amongthe simultaneously
touching points

11. For the reader familiar with vector notation: Equations (6.11) and (6.12) are inner products
of the prior vector with gains points and Equation (6.12) is just the usaal formula for the
lines perpendicular to a given vector.

12. T emphasize: in the finite-dimensional case.

13. Bayes’ Theorem is (Equation 6.17) below. It can be found in almost any probability or
statistics text (e.g. O’Hagan, 1994, Ch. 1).
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14. Both sides of Equation (6.17) are equal to the joint probability density function /(6. x) of
the random state of the world 6 and the random sensory state x. The two sides are just
the two possible ways to define conditional probabilities of 6 on x and vice versa. Bayes’s
signal contribution was to correctly define conditional probability. His “theorem” is an
obvious consequznce of his definition of conditional probability.

15. T emphasize that a Bayesian Observer is a piece of mathematics intended to describe
some componen: of visual processing. While the language of probability and gain may
prove useful in describing ttis component, there is no assumption that the human observer
is consciously aware of these probabilities or gains or that his own beliefs concerning
probability or gain influence visual processing.

16. On thz peak of Jabal al-Najar in Petra, Jordan.

17. Note that the maximum likelihood estimate of the variance has N, not N — 1, in the
denominator.

18. I will speak of different gain functions for different actions but, of course, only one gain
function is needed, one that we partition according to the different kinds of actions.

19. Of course, all the elements of SDT and BDT may change from moment to moment, but
we will be mainly concerned with priors and gain functions here.

20. The posterior distributions (the successive prior distributions)are themselves random vari-
ables that depend on the exact sequence of Light and Dark. For simplicity, in this example,
I have compute the priors that would result from the mean rumber of Lights and Darks
after a given number of turns. That s, after 12 turns of Day, I assume that Light has occurred
exactly 9 times (0.75 x 12). The probabilities reported, then, are not the probabilities to
be exoected in a1y single “run” of a simulation of the prior updating process nor need it
be the mean of the probabilities across many runs. The essential points, that Bayes.an up-
dating responds slowly to change and that it gives the same weight to recent and long-past
information are, however, correct.

21. The argument is readily extended to the case where the choice of prior on each turn is
partly deterministic and partly stochastic. Many of these considerations could as readily
be applied to the gains function as to the prior.

22. For acontinuous random variable, the term “probability density function” should be used
here. For a discrete random variable, the term “probability mass function” is apprapriate.
I'll refer to both by the term “distribution” in this section.

23. The rzlation between the closed family of distributions and the parameters is an example
of an isomorphism.

24, We are implicitly assigning a third meaning to the symbol ® in defining this product of
families.

25. Also known as “death by a thousand parameters.”
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